
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume 3 Issue 5, August 2019 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470

@ IJTSRD | Unique Paper ID – IJTSRD26709 | Volume – 3 | Issue – 5 | July - August 2019 Page 1789

Implementation of 32-Bit RISC
Processor using Reversible Gates

Jyoti Choudhary1, Mahesh Kumar Sharma2

1PG Scholar, 2Assistant Professor
1,2Rajasthan College of Engineering for Women, Jaipur, Rajasthan, India

How to cite this paper: Jyoti Choudhary |
Mahesh Kumar Sharma "Implementation
of 32-Bit RISC Processor using Reversible
Gates" Published in
International
Journal of Trend in
Scientific Research
and Development
(ijtsrd), ISSN: 2456-
6470, Volume-3 |
Issue-5, August
2019, pp.1789-1793,
https://doi.org/10.31142/ijtsrd26709

Copyright © 2019 by author(s) and
International Journal of Trend in Scientific
Research and Development Journal. This
is an Open Access article distributed
under the terms of
the Creative
Commons Attribution
License (CC BY 4.0)
(http://creativecommons.org/licenses/by
/4.0)

ABSTRACT
Reversible logic is one of the emerging technologies having promising
applications in quantum computing. The aim of this project is to design the
schematic and simulation for a 32-bit RISC processor using reversible logic
peres gate. Beside the functional development, by optimizing the speed of our
processor in every block which is inside that, and to minimize the overall delay
conventional gates are replaced with reversible gates. This reversible gates
which are applicable in Nano technology, Quantum computing, Low power
CMOS, Optical computing. This RISC embodies 15 basic instructions involving
Arithmetic, Logical, Data Transfer and control instructions. To implement
these instructions the design incorporates various design blocks like Control
Unit (CU), Arithmetic and Logic Unit (ALU), Accumulator, Program Counter
(PC), Instruction Register (IR), Memory and additional logic. Design is
implemented and verified in VHDL in Xilinx 14.3.

KEYWORDS: RISC, Arithmetic Logic Unit, CISC, Reversible Gates

I. INTRODUCTION
In VLSI which is the growing technology in our day to day life. Everyday new
emerging technologies are introducing in market. So the technology
development is the most important in our current life. In past the computer
occupied the entire room. Gradually the size has reduced and today come to the
level of hand based equipment’s. At first in any device is made by the IC which is
based on the conventional gates. In VLSI it having the ultimate goal is less area,
high speed, and low power.

In those technologies the CMOS gates are better than the
bipolar gates. But the CMOS gates are having its own
limitations for that reason we are moving to reversible gates.
Reversible logic has received great attention in the recent
years due to their ability to reduce the power Dissipation
which is the main requirement in low power VLSI design. It
has wide applications in low Power CMOS and Optical
information processing, DNA computing, Quantum
computation and nanotechnology. High-performance chips
releasing large amounts of heat impose practical limitation on
how far can we improve the performance of the system.
Reversible circuits that conserve information, by un
computing bits instead of throwing them away, will soon
offer the only physically possible way to keep improving
performance. Since the development of the stored-program
computer, there has been remarkably few true innovations in
the areas of computer organization and architecture. In this
list, one of the most interesting and potentially one of the
most important innovations is Reduced Instruction Set
Computer (RISC) architecture. The RISC architecture is a
dramatic departure from the historical trend in CPU
architecture and challenges the conventional wisdom
expressed in words and deeds by most computer architects.
The aim of the project is to:
 Design the architecture of simple 32- Bit RISC processor.
 Implementation of individual modules of the RISC

processor using VHDL.
 Integration of individual modules.
 Their Simulation and Synthesis.

A CISC system offers a large menu of features which implies a
larger and more complicated decoding subsystem and
complex logic which is not in the case of RISC Processors. One
of the ways to increase the speed of execution on any
computer is to implement Pipelining which is difficult to
implement in CISC systems. But in RISC processors Pipelining
can be efficiently implemented. Due to this opposition to the
traditional CISC design, in early eighties there emerged a new
trend of computer design, i.e. RISC, which became popular
thereafter. Several advantages of RISC processors are:
 VLSI realization
 Increase in computing speed
 Less time to complete the design
 Reduction in overall design cost
 High Level Language (HLL) support

RISC processors are primarily used in work stations and
personal computers. RISC processors with integrated
graphics and display systems can be used in car navigation
systems, driver information systems etc. It is also applicable
in high speed data transmission and real time controlling
applications.

II. REVERSIBLE GATES
A function is reversible if each input vector produces a
unique output vector. Reversible logic is of growing
importance to many future computer technologies. It is not
possible to realize quantum computing without
implementation of reversible logic. The main purposes of

IJTSRD26709

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD26709 | Volume – 3 | Issue – 5 | July - August 2019 Page 1790

designing reversible logic are to decrease quantum cost,
depth of the circuits and the number of garbage outputs. The
reversible circuits form the basic building block of quantum
computers as all quantum operations are reversible. The two
main constraints of reversible logic circuits are:-
 Fan-out not possible.
 Feedback or loops not allowed.

A reversible logic circuit should have the following salient
features:
 Use minimum number of reversible gates.
 Use minimum number of garbage outputs.
 Use minimum number constant inputs.

A. NOT Gate
The simplest Reversible gate is NOT gate and is a 1*1 gate.
The Reversible 1*1 gate is NOT Gate with zero Quantum Cost
is as shown in the Figure 1.1. If input is A then output is P=A

Fig.1. NOT Gate

B. Feynman Gate (FG)
Feynman gate is a 2*2 one through reversible gate as shown
in figure 2. The input vector is I(A, B) and the output vector is
O(P, Q). The outputs are defined by P=A, Q=A^B. It is the
universal reversible gate.

Fig.2. Feynman Gate

C. Peres Gate (PG)
It is a basic reversible gate which has 3-inputs and 3- outputs
having inputs (A, B, C) and the mapped outputs (P=A, Q=A^B,
R= (A.B)^C).This PG is depicted in Figure.3

Fig.3. Peres Gate

III. PROPOSED RISC PROCESSOR
The design of 32-bit RISC processor incorporates various
design blocks like Arithmetic Logic Unit (ALU), Accumulator,
Program Counter (PC), Instruction Register (IR), Memory,
Control Unit (CU), and additional logic.

The design incorporates some the following issues.
 It handles 32 bit data ,28 bit address
 Uses fixed instruction format of length 32 bit.
 Size of opcode is of 4 bit, handling 15 instructions.
 Has 256 memory locations
 32-bit registers (IR,ACC)
 Implements 2-staged pipelining i.e overlaps of fetch and

execute cycles.

 Has two addressing modes ,Register addressing and
memory addressing modes

 No interrupts and No conditional branches
 Data that it handles is unsigned integer type.

The next sections of this chapter presents the schematic
diagrams of individual modules, explanation of their function,
flow chart to implement the function, VHDL description of the
individual modules. In the last section the top order module
Block diagram, functioning, VHDL description of the top
module are given.

Fig.4. Proposed RISC Processor

A. ALU
The ALU performs both arithmetic and logical operations
and as well as control of transfer instructions. It takes data
and acc as inputs to generate output according to the opcode.
An execlk is given as input for synchronization and the
output is available at positive edge of the execlk. It performs
arithmetic and logic instructions directly and control of
transfer instructions are performed with the help of control
and logic decoder. The arithmetic-logic unit (ALU) performs
all arithmetic operations (addition, Subtraction,
multiplication, and division) and logic operations. Logic
operations test various conditions encountered during
processing and allow for different actions to be taken based
on the results.

Fig.5. Block Diagram of ALU

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD26709 | Volume – 3 | Issue – 5 | July - August 2019 Page 1791

The data required to perform the arithmetic and logical
functions are inputs from the designated CPU registers and
operands. The ALU relies on basic items to perform its
operations. These include number systems, data routing
circuits (adders/subtracters), timing, instructions, operands,
and registers. Figure shows are presentative block diagram of
an ALU of a microcomputer.

B. ACCUMULATOR

Fig.6. Block Diagram of an Accumulator

The result of an Alu operation is always stored in
accumulator at some specified time based on the control logic
instruction and also the execlk. This output is again fed to Alu
as input. If Reset =0, the output of accumulator is cleared to
zero. When reset is high and load accumulator signal is set
high, the output of the ALU is loaded in to the accumulator at
the neg.edge of the execlock.

C. Buffer
Used for writing data in to memory. When it is required to
write data in to the memory, then necessary control signals
are generated at the buffer. Buffer is used for achieving bi-
directional operation of the data bus.

Fig.7. Block Diagram of Buffer

D. Memory

Fig.8. Memory Unit

TABLE I Operation of Memory Unit

TABLE II Functioning of Memory

E. Multiplexer
Multiplexer provides memory access to either IR (instruction
register) or PC (program counter) based on Fetch signal.
Memory has both data and instructions .In order to access
both data and instructions through a single address port a
multiplexer is needed. It selects address according to the
fetch signal. If the fetch signal is high pcout is selected and
irout is selected when fetch signal is low.

Fig.9. Multiplexer

F. Program Counter

Fig.10. Block Diagram Counter of Program Counter

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD26709 | Volume – 3 | Issue – 5 | July - August 2019 Page 1792

The program counter (PC) contains the address of the next
instruction. The CPU fetches an instruction from memory,
executes it and increments the content of PC. Thus in the next
instruction cycle, it will fetch the next instruction of the
program pointed out by the program counter. The
instructions are executed sequentially unless an instruction
changes the content of program counter.

G. Instruction Register
Instruction register is a 32-bit register which gets loaded
with data from the memory. When LdIr signal is high, the
data bus contents get loaded into the Instruction register. The
4-MSB’s of this loaded data [31:28] are the OpCode of the
Instruction and the remaining bits [27:0] are the address of a
memory location to fetch the subsequent data. On the falling
edge of the asynchronous signal Rst the IR gets cleared
irrespective of any condition. Outputs of IR module are IrOut
(lower 28-bits) and OpCode (upper 4-bits) of the data fetched
from the memory.

Fig.11. Block Diagram of Instruction Register

H. Control Unit

Fig.12. Block Diagram of an Control Unit

The control logic generates all the necessary control signals
required for satisfactory operation of the CPU. The control
signals are load accumulator, load instruction register,
increment program counter, load program counter, memory
read, memory write. When LdAcc is set high, the output of the
ALU is loaded into the accumulator. When Ldpc is set high
program counter is loaded with the address from where the
next instruction is to be fetched. When Ldir is set high the
instruction register is loaded with the instruction that is to be
executed. If increment program counter signal is set high,
program counter is incremented by one to the previous value
.If write signal is set high and read low then the data bus is
being written on the address of the memory location
indicated by the program counter .If read signal is high and
write low this is memory read operation and the data at the
memory address indicated is placed on the data bus.

IV. RESULTS
The simulation and synthesis result for code for 32-bit- RISC
design written in VHDL and verified in Xilinx is shown in
below figures

Synthesis Results

Fig.13. Block Diagram

Fig.14. RTL Schematic Diagram

Fig.15. Technology Schematic

V. SIMULATION WAVEFORMS

Fig.16. Addition

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD26709 | Volume – 3 | Issue – 5 | July - August 2019 Page 1793

Fig.17. Increment

Fig.18. Decrement

VI. CONCLUSION
To this paper we design a processor (RISC) with using the
reversible logic gates. In that processor it can hold the many
logic blocks with itself. In those blocks we took the main
logic block which is ALU block, and design that block with
using the reversible gates. The different modules of 32- bit
RISC processor were identified and the architecture has been
designed. The VHDL code for these blocks were written and
were implemented with the aid of XILINX software. This
code was compiled and then simulation was carried out.
Analysis and Synthesis reports of various modules were
observed. The results obtained were found to agree with the
expected results. Finally the individual modules were
integrated. This top order module was compiled and then
simulated.RTL views of the individual modules were also
observed after simulation and synthesis. The further scope
of this project is that the design can be verified for timing
functionality and can be implemented into FPGA chips.
Additional features like interrupt processing, instructions
employing conditional branches, more registers can be
included in the RISC processor design aspects. The CMOS
logic for the above design can be implemented, synthesized
and simulated using VLSI software tools like Tanner Tools
software. There may be a chance of design the chip for this
RTL using TSMC also.

VII. REFERENCES
[1] R. Landauer, “Irreversibility and heat generation in the

computing process,” IBM J. Res. Dev., vol. 5, p. 183, 1961.

[2] V. V. Zhirnov, R. K. Cavin, J. A. Hutchby, and G. I.
Bourianoff, “Limits to binary logic switch scaling – a
gedanken model,” Proc. of the IEEE, vol. 91, no. 11, pp.
1934–1939, 2003.

[3] C. H. Bennett, “Logical reversibility of computation,”
IBM J. Res. Dev, vol. 17, no. 6, pp. 525–532, 1973.

[4] Y. syamala & A. V. N Tilak , “Reversible Arthematic logic
unit”, IEEE conference, Page no: 207-211, 2009

[5] D. Mandalidis, P. Kenterlis, J. Ellinas, “A computer
architecture educational system based on a 32-bit RISC
processor,” International Review on computers and
Software, pp. 114-119, 2008.

[6] Antonio H. Zavala, Jorge Avante R.,”RISC- Based
Architecture for computer Hardware Introduction”

[7] M. Jaumain, M. Osee, A. Richard, A. Vander Biest, P.
Mathys, “Educational simulation of the RiSC processor,”
ICEE International Conference on Engineering
Education, 2007.

[8] David A. Patterson, John L. Hennessy, “Computer
Organization and Design - The Hardware/Software
Interface” Second Edition (1998) Morgan Kaufmann
Publisher, Inc.

[9] Xiao Li, Longwei Ji, Bo Shen, Wenhong Li, Qianling Zhang,
“VLSI implementation of a High-performance 32-bit
RISC Microprocessor”, Communications, Circuits and
Systems and West Sino Expositions, IEEE 2002
International Conference on ,Volume 2, 2002 ,pp. 1458
1461.

[10] Kusumlata Pisda, Deependra Pandey, “Realization &
Study of High Performance MIPS RISC Processor
Design Using VHDL”, International Journal of Emerging
trends in Engineering and Development, Volume 7,
Issue 2, November 2012, pp. 134 – 139, ISSN: 2249 –
6149.

[11] Kirat Pal Singh, Shivani Parmar, “VHDL Implementation
of a MIPS – 32 bit Pipeline Processor”, International
Journal of Applied Engineering Research, Volume 7,
Issue 11, ISSN: 0973 – 4562.

[12] Samiappa Sakthikumaran, S. Salivahanan and V. S.
Kaanchana Bhaaskaran,“16-Bit RISC Processor Design
For Convolution Application”, IEEE International
Conference on Recent Trends In Information
Technology, June 2011, pp.394-397.

[13] Rupali S. Balpande and Rashmi S. Keote, “Design of
FPGA based Instruction Fetch & Decode Module of 32-
bit RISC (MIPS) Processor, International Conference on
Communication Systems and Network Technologies
pp. 409 –413.

[14] R. Uma, “Design and Performance Analysis of 8 – bit
RISC Processor using Xilinx Tool”, International Journal
of Engineering Research and Applications, Volume 2,
Issue 2, March – April 2012, pp. 053 – 058, ISSN: 2248 –
9622.

[15] V. N. Sireesha and D. Hari Hara Santosh, “FPGA
Implementation of a MIPS RISC Processor”,
International Journal of Computer Technology and
Applications, Volume 3, Issue 3, pp. 1251 – 1253, ISSN:
2229 – 6093.

[16] M. Yugandhar and N. Suresh babu, “VLSI Design of
Reduced Instruction set Computer Processor Core
Using VHDL”, International Journal of Electronics,
Communication & Instrumentation Engineering
Research and Development (IJECIERD), Volume 2,
Issue 3, pp. 42 – 47, ISSN: 2249 – 684X.

