
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume 3 Issue 5, August 2019 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470

@ IJTSRD | Unique Paper ID – IJTSRD26575 | Volume – 3 | Issue – 5 | July - August 2019 Page 1049

Analysis and Comparative of Sorting Algorithms

Htwe Htwe Aung

Lecturer, Faculty of Computer Science, University of Computer Studies, Pathein, Myanmar

How to cite this paper: Htwe Htwe Aung

"Analysis and Comparative of Sorting

Algorithms"

Published in

International

Journal of Trend in

Scientific Research

and Development

(ijtsrd), ISSN: 2456-

6470, Volume-3 |

Issue-5, August 2019, pp.1049-1053,

https://doi.org/10.31142/ijtsrd26575

Copyright © 2019 by author(s) and

International Journal of Trend in Scientific

Research and Development Journal. This

is an Open Access article distributed

under the terms of

the Creative

Commons Attribution

License (CC BY 4.0)

(http://creativecommons.org/licenses/by

/4.0)

ABSTRACT

There are many popular problems in different practical fields of computer

sciences, computer networks, database applications and artificial intelligence.

One of these basic operations and problems is the sorting algorithm. Sorting is

also a fundamental problem in algorithm analysis and designing point of view.

Therefore, many computer scientists have much worked on sorting algorithms.

Sorting is a key data structure operation, which makes easy arranging,

searching, and finding the information. Sorting of elements is an important

task in computation that is used frequently in different processes. For

accomplish, the task in a reasonable amount of time-efficient algorithm is

needed. Different types of sorting algorithms have been devised for the

purpose. Which is the best-suited sorting algorithm can only be decided by

comparing the available algorithms in different aspects. In this paper, a

comparison is made for different sorting algorithms used in the computation.

KEYWORDS: Bubble Sort, Selection Sort, Insertion Sort, Merge Sort, Quick Sort,

Heap Sort, Time Complexity, Stability

1. INTRODUCTION

Sorting is a process of rearrangement a list of elements to the correct order

since handling the elements in a certain order more efficient than handling

randomize elements [15].

Sorting is among the most common programming

processes, as an example take database applications if you

want to maintain the information and ease of retrieval you

must keep information in a sensible order, for example,

alphabetical order, ascending or descending order and

order according to names, ids, years, departments, etc. Each

sorting algorithm uses its own technique in execution. It is

also possible that a single problem can be solved by using

more than one algorithm. Here I will compare between the

sorting algorithms based on best case, average case and

worst case efficiency that refer to the performance of the

number n of elements.

Information growth rapidly in our world leads to an

increase in developing sort algorithms. Developing sort

algorithms through improved performance and decreasing

complexity, because of any effect of sorting algorithm

enhancement of the current algorithms or product new

algorithms that reflects to optimize other algorithms. A

large number of algorithms developed to improve sorting

like merge sort, bubble sort, insertion sort, quick sort,

selection sort and others, each of them has a different

mechanism to reorder elements which increase the

performance and efficiency of the practical applications and

reduce the time complexity of each one.

When comparing various sorting algorithms, the several

factors must be considered such as time complexity, space

complexity and stability. The time complexity of an

algorithm determined the amount of time that can be taken

by an algorithm to run [3][13][14]. The different sorting

algorithm compares to another according to the size of data,

inefficient sorting algorithm and speed. The time complexity

of an algorithm is generally written in form big O (n)

notation, where the O represents the complexity of the

algorithm and a value n represent the number of

elementary operations performed by the algorithm [19]. For

typical sorting algorithms, best behavior is O(n log n) and

worst behavior is O(n2).

Space complexity, an algorithm that used recursive

techniques need more copies of sorting data that affect

memory space [1]. Some algorithms are either recursive or

non-recursive while others may be both (e.g., merge sort).

Many previous types of research have been suggested to

enhance the sorting algorithm to maintain memory and

improve efficiency. Most of these algorithms are used

comparative operation between the oldest algorithm and

the newest one to prove that. In particular, some sorting

algorithms are "in place". This means that they need only O

(1) memory beyond the items being sorted and they don't

need to create auxiliary locations for data to be temporarily

stored, as in other sorting algorithms.

The stability of the algorithm keeps elements with equal

values in the same relative order in the output as they were

in the input [20]. Some sorting algorithms are stable by its

nature such as bubble sort, insertion sort and merge sort,

etc., while some sorting algorithms are not, such as selection

sort, quick sort, heap sort, etc. Any given sorting algorithm

which is not stable can be modified to be stable [13]. Stable

sorting algorithms maintain the relative order of records

with equal keys (i.e., values).

2. SORTING ALGORITHMS

Sorting algorithms are an important part of managing data.

Most sorting algorithms work by comparing the data being

sorted. In some cases, it may be desirable to sort a large

IJTSRD26575

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD26575 | Volume – 3 | Issue – 5 | July - August 2019 Page 1050

volume of data based on only a portion of that data. The

piece of data actually used to determine the sorted order is

called the key. Sorting algorithms are usually judged by their

efficiency [15]. Sorting is the process of arranging data in a

specific order which benefits searching and locating the

information in an easy and efficient way. Sorting algorithms

are developed to arrange data in various ways; for instance,

an array of integers may be sorted from lower to highest or

from highest to lower or array of string elements may sort in

alphabetical order.

This paper describes a comparative study of bubble sort,

selection sort, insertion sort, merge sort, quick sort and heap

sort. Compares six algorithms of their best case, average case

and worst-case time complexity and also discuss their

stability. It is a machine-independent analysis, which is a

good approach.

Bubble Sort

Bubble sort is a simple sorting algorithm. Let A be a list of N

numbers. Sorting A refers to the operation of rearranging the

elements of A so they are in increasing order, i.e., so that

A[1]<A[2] <A[3] < . . .<A[N]

The step in the bubble sort algorithm works as follows:

� Compare A[1] and A[2], if A[1] > A[2] then it swaps

them.

� It continues doing this for each pair of adjacent elements

until to reach the right end.

� After N-1 comparisons and swaps them if needed, then

A[N] will contain the largest element.

� It then starts again with the first two elements, repeating

until no swaps have occurred on the last pass [1][5][18].

Pseudo-code:

func bubblesort(var a as array)

 for j from 2 to N

swaps = 0

 for k from 0 to N-2

 if (a[k] > a[k+1])

 swap (a[k], a[k+1])

 swaps = swaps + 1

 if swaps = 0

 break

end func

The sorted array as input or almost all elements are in the

proper place, bubble sort has O(n) as the best case

performance since it passes over the items one time and

O(n2) as the worst-case performance and average-case

performance because it requires at least two passes through

the data. Bubble sort has to perform a large number

comparison when there are more elements in the list and it

increases as the number of items increase that is needed to

be sorted. Although bubble sort is quite simple and easy to

implement it is inefficient in coding reference. It is in place

sorting algorithm and it can be implemented as a stable sort.

Selection Sort

Selection sorts the simplest of sorting techniques. The main

idea of the selection sort algorithm is given by

� Find the smallest element in the data list.

� Put this element at first position of the list.

� Find the next smallest element in the list.

� Place at the second position of the list and continue until

the whole data items are sorted [11].

Pseudo-code:

for j ← 1 to n-1

 smallest ← j;

 for k ← j+1 to n

 if (a[k] < a[min])

 smallest ← k;

 Exchange A[k] and A[smallest]

end func

Selection sort is work very well for small files, also it’s has a

quite important application because each item is actually

moved at most once [17]. It has the best case and worst case

time complexity is O(n2), making it inefficient on large lists.

Selection sort has one advantage over other sort techniques

[16][2]. Although it does many comparisons, it does the

number of swaps reduced. That means, if input data is small

keys but large data area, then selection sorting may be the

quickest [19]. Selection sort is in-place sorting algorithm and

it can't be implemented as a stable sort.

Insertion Sort

Insertion sort is based on the idea that one element from the

input elements is consumed in each iteration to find its

correct position i.e. the position to which it belongs in a

sorted array. Insertion sort works as below:

� It compares the current element with the largest value

in the sorted array.

� If the current element is greater, then it leaves the

element in its place and moves on to the next element

else it finds its correct position in the sorted array and

moves it to that position.

� This is done by shifting all the elements, which are

larger than the current element, in the sorted array to

one position of the front [10].

Pseudo-code:

for k ← 1 to n-1

 key ← A[k]

 i ← k

 while i > 0 and A[i-1] > key

 A[i] ← A[i-1]

 i ← i - 1

 A[i] ← key

end func

The comparisons and copies of this algorithm required: on

the first pass, it compares a maximum of one item. On the

second pass, it's a maximum of two items, and so on, up to a

maximum of N-1 comparisons on the last pass. This is

1 + 2 + 3 + … + N-1 = N*(N-1)/2

However, because on each pass an average of only half of the

maximum numbers of items are actually compared before

the insertion point is found, can divide by 2, which gives

N*(N-1)/2

The number of copies is approximately the same as the

number of comparisons. However, a copy isn't as time-

consuming as a swap, so for random data, this algorithm

runs faster than bubble sort and selection sort. The insertion

sort runs in O(n2) time for random data as the worst-case

and average-case complexity. Best case complexity of O(n)

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD26575 | Volume – 3 | Issue – 5 | July - August 2019 Page 1051

while the array is already sorted. It is much less efficient on

large lists than more advanced algorithms such as quicksort

and merges sort. However, insertion sort provides several

advantages simple implementation and efficient for small

data sets [6][4]. It is in place sorting algorithm and stable

sort.

Merge Sort

Merge sort is based on divide and conquer strategy

technique which is a popular problem-solving technique. The

merge sort algorithm is work as under:

� Split array A(x1, x2, x3, …, xn) from middle into two

parts of length n/2 (x1, x2, x3, …, xn/2 and x(n/2)+1, …,

xn).

� Sorts each part calling Sort algorithm recursively.

� Merge the two sorting parts into a single sorted list

[21].

Pseudo-code:

MERGE-SORT(A, left, right)

 if left < right

 mid = (l+(r-l)/2)

 MERGE-SORT(A, left, mid)

 MERGE-SORT (A, mid+1, right)

 MERGE(A, left, mid, right)

end func

MERGE(A, l, h, ub)

 j ← 0

 lb ← l

 mid ← h-1

 n ← ub-lb+1

 while (l <= mid && h <= ub)

 if(theArray[l] < theArray[h])

 A[j++] ← theArray[l++]

 else

 A[j++] ← theArray[h++]

 while(l <= mid)

 A[j++] ← theArray[l++]

 while(h <= ub)

 A[j++] ← theArray[h++]

 for(j=0; j<n; j++)

 theArray[lb+j]← A[j]

end func

Merge sort can be easily applied to lists and arrays because it

needs sequential access rather than random access. It can

handle very large lists due to its worst case, best case and

average case running time are O(n log n). The O(n)

additional space complexity and involvement of huge

amount of copies in simple implementation made it a little

inefficient. It is stable sort, parallelizes better and is more

efficient at handling slow-to-access sequential media but not

in place. Merge sort is often the best choice for sorting a

linked list [7][12].

Quick Sort

Quicksort also belongs to the divide and conquer category of

algorithms. It depends on the operation of the partition. To

partition an array of an element called a pivot is selected. All

elements smaller than the pivots are moved before it and all

greater elements are moved after it. The lesser and greater

sub-lists are then recursively sorted. Efficient

implementations of quicksort (with in-place partitioning)

are typically unstable sorts and somewhat complex but are

among the fastest sorting algorithms in practice [8].

Pseudo-code:

QUICKSORT(array A, int j, int k)

 if(k > j)

 then i← a random index from [j..k]

 swap A[i] and A[j]

 p ← PARTITION(A, j, k)

 QUICKSORT(A, j, p − 1)

 QUICKSORT(A, p + 1, k)

end func

The partition algorithm works as follows

� A[j] = x is the pivot value.

� A [j…p - 1] contains elements less than x.

� A [p + 1…r - 1] contains the elements which are greater

than or equal to x.

� A[r...k] contains elements which are currently unknown.

PARTITION(array A, int j, int k)

 x ← A[j]

 p ← j

 for r ← j + 1 to k do

 if (A[r] < x) then p ← p + 1

 swap A[p] and A[r]

 swap A[j] and A[p]

 return p

end func

Quicksort is one of the fastest sorting algorithms which is the

part of many sorting libraries. The running time of Quick

Sort depends upon heavily on choosing the pivot element.

Since the selection of pivot element is randomly, therefore

average case and best-case running time is O(n log n).

However, worst-case running time is O(n2) but it happens

rarely. Quicksort is not stable but is an in-place [20].

Heap Sort

Heapsort is a comparison-based sorting algorithm. It is the

most efficient version of selection sort. It divides its input

into a sorted and an unsorted region, and it iteratively

shrinks the unsorted region by extracting the largest

element and moving that to the sorted region. The

improvement consists of the use of a heap data structure

rather than a linear-time search to find the maximum [22].

Heaps can be used in sorting an array. In max-heaps, the

maximum element will always be at the root. Heapsort uses

this property of heap to sort the array.

Consider an array A which is to be sorted using Heap sort.

� Initially build a max heap of elements in array A.

� The root element, that is A[1], will contain a maximum

element of A. After that, swap this element with the last

element of array A and Heapify the max heap excluding

the last element which is already in its correct position

and then decrease the length of the heap by one.

� Repeat the above step, until all the elements are in their

correct position.

Pseudo-code:

Heapsort(A)

 BuildHeap(A)

 for i ← length(A) step -1 until 2

 interchange A[1] and A[i]

 Heapify(A, 1)

end func

BuildHeap(A)

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD26575 | Volume – 3 | Issue – 5 | July - August 2019 Page 1052

 heapsize ← length(A)

 for i ← Xloor(length/2) step -1 until 1

 Heapify(A, i)

end func

Heapify(A, i)

 l ← left(i)

 r ← right(i)

 if (l <= heapsize) and (A[l] > A[i])

 largest ← l

 else

 largest ← i

 if (r <= heapsize) and (A[r] > A[largest])

 largest ← r

 if (largest != i) {

 interchange A[i] and A[largest]

 Heapify(A, largest)

end func

Heap sort has O(n log n) time complexities for all the cases

(best case, average case and worst case). Although

somewhat slower in practice on most machines than a well-

implemented quicksort, it has the advantage of a more

favorable worst-case O(n log n) runtime. Heapsort is an in-

place algorithm, but it is not a stable sort. [22].

3. COMPARATIVE STUDY AND DISCUSSION

In this paper, there are two classes of Sorting Algorithms:

O(n2):

� Bubble Sort

� Selection Sort

� Insertion Sort

� O(n log n)

� Merge Sort

� Quick Sort

� Heap Sort

Under best-case conditions (the list is already sorted), the

bubble sort can approach a constant O(n) level of

complexity. General-case is abysmal, while the insertion sort

and selection sorts also have complexities; they are

significantly more efficient than bubble sort.

Heapsort is the slowest of the sorting algorithms but unlike

merge and quicksort, it does not require massive recursion

or multiple arrays to work. The merge sort is slightly faster

than the heap sort for larger sets, but it requires twice the

memory of the heap sort because of the second array. The

quicksort is massively recursive sort. It can be said as the

faster version of the merge sort.

In the following figures is the efficiency of different

algorithms according to the above-stated criteria.

Figure.1 Efficiency for O(n2) Sorts [9]

Figure.2 Efficiency for O(n log n) Sorts[9]

This table gives the comparison of time complexity or

running time of different sorting algorithms in a short and

precise manner given as under.

Table 1: Comparison of sorting algorithms

Sort
Time

Stable In place
Avg Best Worst

Bubble sort O(n2) O(n) O(n2) Yes Yes

Selection sort O(n2) O(n2) O(n2) No Yes

Insertion sort O(n2) O(n) O(n2) Yes Yes

Merge sort O(n logn) O(n logn) O(n logn) Yes No

Quick sort O(n logn) O(n logn) O(n2) No Yes

Heap sort O(n logn) O(n logn) O(n logn) No Yes

4. CONCLUSIONS

This paper discusses well-known sorting algorithms, their

pseudo-code and running time. In the previous work section,

people have done a comparative study of sorting algorithms.

Nowadays, some of them compared the running time of

algorithms on real computers on a different number of

inputs which is not much use because the diversity of

computing devices is very high.

This paper compares the running time of their algorithms as

a mathematical entity and tried to analyze as an abstract

point of view. This paper describes six well-known sorting

algorithms and their running time which is given in the

above table. To determine the good sorting algorithm, the

time complexity is the main consideration but other factors

include handling various data type, consistency of

performance and complexity of code, etc. From the above

discussion, every sorting algorithm has some advantages and

disadvantages and the programmer must choose according

to his or her requirement of sorting algorithms.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD26575 | Volume – 3 | Issue – 5 | July - August 2019 Page 1053

References

[1] Amity Dev Mistral & Deepak Garg. (2008, DEC).

"Selection of Best Sorting Algorithm", International

Journal of intelligent information Processing, pp.363-

368.

[2] A.Levitin, "Introduction to the Design & Analysis of

Algorithms", Addison–Wesley Longman, 2007, pp.98-

100.

[3] C.Cook, D.Kim. "Best sorting algorithm for nearly

sorted lists". Commun. ACM, 23(11), pp.620-624.

[4] http://corewar.co.uk/assembly/insertion.htm

[5] https:// en.wikipedia.org/wiki/Seymour_Lipschutz

[6] http://en.wikipedia.org/wiki/Insertion_sort

[7] http://en.wikipedia.org/wiki/Merge_sort

[8] https://en.wikipedia.org/wiki/quick_sort

[9] http://linux.wku.edu/~lamonml/algor/sort/sort.html

[10] http://www.hackerearth.com/sorting

[11] Kazim Ali. (2017 FEB). "A Comparative Study of Well-

Known Sorting Algorithms", International Journal of

Advanced Research in Computer Science, pp.5-6.

[12] Kronrod, M. A. (1969). "Optimal ordering algorithm

without operational field", Soviet Mathematics -

Doklady (10), pp.744.

[13] M. Goodrich and R. Tamassia, "Data Structures and

Algorithms in Java", Johnwiley& sons 4th edition,

2010, pp.241-243.

[14] M. Sipser, "Introduction to the Theory of

Computation", Thomson, 1996, pp.177-190.

[15] P. Adhikari, Review on Sorting Algorithms, "A

comparative study on two sorting algorithms",

Mississippi state university, 2007.

[16] R. Sedgewick, "Algorithms in C++", Addison-Wesley

Longman, 1998, pp.273-274.

[17] R. Sedgewick and K. Wayne, "Algorithms", Pearson

Education, 4th Edition, 2011, pp.248-249.

[18] SCHAUM LIPSCHUTZ. "Data Structures", pp.73-74.

[19] S. Jadoon, S. Solehria, S. Rehman and H. Jan.(2011,

FEB). "Design and Analysis of Optimized Selection Sort

Algorithm", pp.16-21.

[20] T. H. Cormen, C. E. Lieserson, R. L. Rivest and S. Clifford,

"Introduction to Algorithms", 3rd ed., the MIT Press

Cambridge, Massachusetts London, England 2009.

[21] Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, "The

Design and Analysis of Computer Algorithms", 1976,

pp.66

[22] Williams, J. W. J. (1964), "Algorithm 232 - Heapsort",

Communications of the ACM, 7(6), pp.347-348.

