# Study and Analysis of Insulator used in Substation

### Hnin Yu Lwin, U Hla Myo Htay

Lecturer, Electrical Power Department, Technological University, Mandalay, Myanmar

How to cite this paper: Hnin Yu Lwin | U Hla Myo Htay "Study and Analysis of Insulator used in Substation" Published in

International Journal of Trend in Scientific Research Development and (ijtsrd), ISSN: 2456-6470, Volume-3 | Issue-5, August 2019, pp.1160-1163,



https://doi.org/10.31142/ijtsrd26578

Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This

is an Open Access article distributed under the terms of

(i)CC

the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by (4.0)

### 1. INTRODUCTION

Power system includes three parts such as generation, system is all of that part of an electric power system between loo connected to one or more bulk power sources at both ends. bulk power source or sources and the consumer's service switches. All types of electric utility customers such as 245 residential, commercial, institutional and industrial are heavily dependent on the availability of electric power. Distribution substation is a combination of switching, controlling and voltage step down equipment arranged to reduce sub-transmission voltage to primary distribution voltage for residential, farm, commercial and industrial loads. Electricity distribution is the final stage in the delivery of electricity to end users. Electrical power systems utilize several voltage levels using power transformers to transfer voltages and connect parts of the power system with different voltage levels. Electric power distribution systems have many unique aspects and requirements.

Distribution system can be divided into six parts, namely, sub-transmission circuits. distribution substation. distribution or primary feeders, distribution transformer, secondary circuits or secondary feeders and consumer's service connections and meter. The distribution plant occupies and important place in any electric power system. Briefly, it function is to take electric from the bulk power source or sources and distribute or deliver it to the consumer's. The effectiveness with a distribution system fulfills this function is measured in terms of voltage regulation, service continuity flexibility, efficiency and cost. These are completely depends upon sub-station design. The sub-transmission circuits extend from the bulk power sources to the various distribution sub-stations located in

#### ABSTRACT

The main purpose of this paper was that to compare design of post insulators and their performance of different post insulator the relative performance of different insulator materials used in substation as lightning arrester, current transformer and potential transformer. Insulators are used to protect from the dangerous effects of electricity flowing through conductors. This paper presents the role of post insulators are key components of most electrical substation equipment and their features and ability are changing due to the difference type of electrical power incoming line and pollution level of their rating. The peak voltage rating of each arrester at 132 kV is 118.6 kV, creepage distance is 2904 mm and maximum continuous operating voltage is 94.88 kV. The creepage distance of current transformer and potential transformer at 132 kV are 4065 mm. Therefore, in this paper, the effects of material changes, rating changes, pollution level changes of lightning arrester, current transformer and potential transformer in substation are described. Then, analysis and discussion of lightning arrester and instrument transformer are described in this paper.

**KEYWORDS:** lightning arrester, current transformer, potential transformer, substation

the local area. They may be radial circuits connected to a transmission and distribution. An electrical distribution arc bulk power source at only one end or load and ring circuits

> The sub-transmission over head open wire conductions carried on poles, or some combination of them. The subtransmission voltage is usually between 11 kV and 33 kV.

> The distribution substation must be required measuring and protected system to prevent equipment and circuits, hazards to the public and utility personal, and to maintain a high level of service by preventing power interruption. An electrical insulator is a material whose internal electric charges do not flow freely, and which therefore does not conduct an electric current, under the influence of an electric field. Insulators are used in electrical equipment to support and separate electrical conductors without allowing current through themselves. Insulators are the integral part of the power system. Among them polymeric insulators are essential for the better performance. There are many shapes and types of insulators used in power system transmission with different densities, tensile strengths and performing properties with the aim to withstand the worst conditions such as surge during lightning and switching operations which will voltage to spike. Reliability of the insulator is the most important property that must take into consideration whether it is a polymeric (composite) insulator or ceramic insulator. The good insulator should offer optimum electrical and mechanical strengths.

### 2. LITERATURE REVIEW

The transition from transmission to distribution happens in a power substation, which has the following functions:

### International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

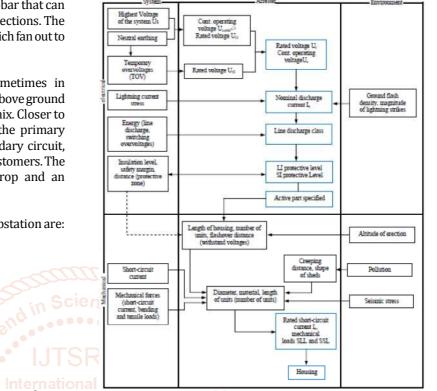
- 1. Circuit breakers and switches enable the substation to be disconnected from the transmission grid or for distribution lines to be disconnected.
- 2. Transformers step down transmission voltages, 35 kV or more, down to primary distribution voltages. These are medium voltage circuits, usually 600-35,000 V.
- 3. From the transformer, power goes to the bus-bar that can split the distribution power off in multiple directions. The bus distributes power to distribution lines, which fan out to customers.

Urban distribution is mainly underground, sometimes in common utility ducts. Rural distribution is mostly above ground with utility poles, and suburban distribution is a mix. Closer to the customer, a distribution transformer steps the primary distribution power down to a low-voltage secondary circuit, usually 240 volts in the Myanmar for residential customers. The power comes to the customer via a service drop and an electricity meter.

The main components of electrical distribution substation are:

- 1. Lightning Arrester
- 2. Capacitive Voltage Transformer
- 3. Disconnecting Switch With Earth
- 4. Gas Circuit Breaker
- 5. Disconnecting Switch
- 6. Current Transformer
- 7. Potential Transformer
- 8. Power Transformer

### 3. Sizing of Lightning Arrester Rating


Choose of Surge Arresters are required by two paths as followings, Performance of Choosing Arrester

## 4. RESULT DATA OF LIGHTNING ARRESTER, CURRENT TRANSFORMER AND POTENTIAL TRANSFORMER

| Table 4.1 IEC Standard of Lightning Arrester 💋 |                                                                                                                           |                                     |        |          |        |  |  |  |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------|----------|--------|--|--|--|
| NO.                                            | DESCRIPTION                                                                                                               | TECHNICAL PARAMETERS                |        |          |        |  |  |  |
|                                                |                                                                                                                           |                                     |        |          |        |  |  |  |
| а                                              | Nominal system voltage (kV)                                                                                               | 400                                 | 220    | 132      | 33     |  |  |  |
| b                                              | Highest system voltage (kV) 🛛 🔨 🥙 📥 🗼 🛶 🖇                                                                                 | 420                                 | 245    | 145      | 36     |  |  |  |
| С                                              | BIL of transformers (kVp)                                                                                                 | 1300                                | 900    | 550      | 170    |  |  |  |
| d                                              | System fault level (kA) for 3 sec.                                                                                        | 50 for                              | 40 for | 31.5 for | 25 for |  |  |  |
| u                                              |                                                                                                                           | 1 sec.                              | 3 sec. | 3 sec.   | 3 sec. |  |  |  |
| е                                              | Lightning Impulse withstand voltage for arrester housing (kVp)                                                            | 1425                                | 1050   | 650      | 170    |  |  |  |
| f                                              | Rated Voltage (kV)                                                                                                        | 360 or as specified in the schedule | 198    | 120      | 42     |  |  |  |
| g                                              | Maxm. Continuous operating voltage (kVrms)                                                                                | 306                                 | 168    | 102      | 36     |  |  |  |
| h                                              | Nominal Discharge Current (kAp) of 8/20 micro second wave                                                                 | 10//20                              | 10     | 10       | 10     |  |  |  |
| i                                              | Line discharge class                                                                                                      | 3                                   | 3      | 3        | 2      |  |  |  |
| j                                              | Minimum Energy Discharge capability (kJ/kV) at rated voltage                                                              | 10                                  | 7.5    | 7.5      | 5      |  |  |  |
| k                                              | Temporary over voltage withstand capability (kVrms) for 10.0 secs                                                         | 360 or as specified in the schedule | 198    | 120      | 42     |  |  |  |
| 1                                              | Insulation Housing withstand voltages<br>i) Lightning Impulse (Dry)<br>ii) Power frequency (wet)<br>for 10 kA<br>for 5 kA | As per IEC 60099-4                  |        |          |        |  |  |  |
| m                                              | Minimum Creepage Distance (mm)                                                                                            | 10500                               | 6125   | 3625     | 900    |  |  |  |
| n                                              | Pressure Relief Class                                                                                                     | <b>←</b> A                          | ·      | •        |        |  |  |  |
| 0                                              | (Minimum) High Current Impulse withstand (4/10 micro second wave) kA (peak)                                               | 100                                 | 100    | 100      | 100    |  |  |  |

- 1. Electrical characteristics and
- 2. Mechanical characteristics.

Choose of electrical characteristics and mechanical characteristics are calculated as step by step as following figure.



International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

| р      | Maxm. Lightning Impulse (8/20 micro-second Wave)<br>residual voltage (kVp)<br>5 kA<br>10 kA                                                                                                                 | 800<br>850          | 517<br>550    | 320<br>340     | 112<br>120    |  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|----------------|---------------|--|
| q      | Maxm. switching surge (30/60 micro-second wave)<br>protective level (kVp)<br>500 Amps<br>1000 Amps<br>2000 Amps                                                                                             | -<br>-<br>750       | -<br>455<br>- | -<br>280<br>-  | 98<br>-<br>-  |  |
| r      | Maxm. Steep Impulse (1/20 MS impulse) residual voltage at 10 kA (kVp)                                                                                                                                       | 1050                | 600           | 372            | 130           |  |
| S      | Partial Discharge (pico-coulomb) when energized at 1.05 times its continuous operating voltage                                                                                                              | Not exceeding 10 PC |               |                |               |  |
| t      | Rated Frequency (Hz)                                                                                                                                                                                        | 50                  |               |                |               |  |
| u      | Minm. visible corona discharge voltage (kVrms)                                                                                                                                                              | 320                 | -             | -              | -             |  |
| v      | Min. Bending load (kgm)                                                                                                                                                                                     | 1000                | 1000          | 500            | 500           |  |
|        |                                                                                                                                                                                                             | 1000                |               |                |               |  |
| w      | 1 min. p.f. withstand (kVrms) voltage (dry & wet) for arrestor housing                                                                                                                                      | 630                 | 460           | 275            | 70            |  |
| w<br>x | 1 min. p.f. withstand (kVrms) voltage (dry & wet) for arrestor                                                                                                                                              |                     |               | 275<br>-       | 70<br>-       |  |
|        | 1 min. p.f. withstand (kVrms) voltage (dry & wet) for arrestor<br>housing<br>Switching Impulse withstand voltage (250/2500 micro                                                                            | 630                 | 460           | 275<br>-<br>40 | 70<br>-<br>40 |  |
| x      | 1 min. p.f. withstand (kVrms) voltage (dry & wet) for arrestor<br>housing<br>Switching Impulse withstand voltage (250/2500 micro<br>second) dry & wet for arrestor housing (kVp)<br>Pressure relief Current | 630<br>± 1050       | 460<br>-      | -              | -             |  |

Table 4.2 Analysis of Calculation Results for Post Insulator in LA

| System Voltage (kV)            | 132              | 33             |
|--------------------------------|------------------|----------------|
| Nominal Creepage Distance (mm) | 2904             | 726            |
| Shed Number 💿 🗾 🔵              | Big 30, small 29 | Big 9, small 8 |

### Table 4.3 IEC Standard of Post Insulator (110 kV - 145 kV) for CT and PT

| Catalog No                        |                   | 2814 | of 2819 d in    | Scier2820       | 2821            | 2831 |                            |  |
|-----------------------------------|-------------------|------|-----------------|-----------------|-----------------|------|----------------------------|--|
| Rated Voltage (kV)                |                   | 110  | 110searc        | h and 110 🥛 💈 🤹 | <b>110</b>      | 110  |                            |  |
| Nominal Creepage<br>Distance (mm) |                   | 2650 | 3150/elop       | men 3150        | 3200            | 2016 |                            |  |
| Mechanical                        | Bending (kN)      |      | 16              | IS6N: 245       | 6470 10         | 20   | Mechanic-al Load<br>(min.) |  |
| Load (min)                        | Torsion (kN.m)    |      | 6.0             | 3.0             | 4.0             | 6.0  |                            |  |
| Withstand                         | Lightning Impulse |      | 450             | 450             | 450             | 450  | Withstand Voltage<br>(kV)  |  |
| Voltage                           | Power             | Dry  | 245             | 245             | 245             |      | Power Frequency            |  |
| (kV)                              | Frequency         | Wet  | 185             | 185             | 185             |      |                            |  |
| Shed Number                       |                   | 23   | big 12 small 12 | big 12 small 12 | big 12 small 12 | 16   |                            |  |
| Weight (kg)                       |                   | 93   | 77              | 87              | 102             | 50   |                            |  |

### Table 4.4 IEC Standard of Post Insulator (20 kV - 35 kV) for CT and PT

| Catalog No                     |                   |     |     | 2200 | 2204 | 2206          | 2209 | 2213 |
|--------------------------------|-------------------|-----|-----|------|------|---------------|------|------|
| Rated Voltage (kV)             |                   |     |     | 35   | 35   | 35            | 35   | 35   |
| Nominal Creepage Distance (mm) |                   |     | 400 | 648  | 625  | 648           | 650  | 1260 |
| Mechanical Load (min)          | Bending (kN)      |     | 20  | 6    | 8    | 4             | 4    | 4    |
| Mechanical Load (mm)           | Torsion (kN.m)    |     | -   | 3.0  | 2.0  | 1.2           | 1.2  | 1.8  |
| With stored Voltogo            | Lightning Impulse |     | 150 | 185  | 185  | 185           | 200  | 250  |
| Withstand Voltage<br>(kV)      | Power Frequ-ency  | Dry | 75  | 100  | 100  | 100           | 110  | 135  |
| (KV)                           |                   | Wet | 50  | 80   | 80   | 80            | 70   | 95   |
| Shed                           | 4                 | 7   | 6   | 7    | 7    | big 5 small 4 |      |      |
| Weight (kg)                    |                   |     |     | 17   | 16   | 12            | 15   | 27   |

### 5. CONCLUSIONS

Electrical power distribution is the final stage in the delivery of electric power, it carries electricity from the transmission system to individual consumers. Insulators are the integral part of the power system. The insulators are subjected to the environmental stresses such as humidity, temperature and pollution. Therefore, it has dual functions as electrical and mechanical function in power system networks. Insulators are made from dielectric materials such as ceramic and nonceramic insulating materials. Lightning arrester is made with non-ceramic insulating materials and current transformer and potential transformer are made with ceramic insulating material.

### International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

Lightning arrester and instrument transformers (CT and PT) are equipped at the incoming line and outgoing line of substation. Without equipping the instrument transformers, the substation may be damaged because of overcurrent and overvoltage. So, it is important to have right current and voltage rating of CT and PT for different lines.

Numbers of shed, minimum creepage distance, dry arcing distance and diameter are differ according to its rating. In this paper, the efficiency and design of LA, the peak voltage rating of each arrester at 132 kV is 118.6 kV, creepage distance is 2904 mm and maximum continuous operating voltage is 94.88 kV. The creepage distance of current transformer and potential transformer at 132 kV are 4065 mm.

### 6. ACKNOWLEDGEMENTS

The author deeply wants to express special appreciation and heart-left thanks to Dr. Yadana Aung, Professor and Head the Department of Electrical Power Engineering, Technological University (Mandalay) for her willingness to share her ideas and helpful suggestions on this paper writing.

### 7. REFERENCES

- [1] [15 Tun] Tun Naing, "Potential Transformer and Surge Arrester", 2015.
- [2] [14 Ano] IEC, "Potential Post Insulators", 2014.

- [3] [14 Lig] Ligong Gan, P-Eng Transmission Engineering (AESO), "Insulation coordination in the Alberta Interconnected Electric System", 2014.
- [4] [13 Koo] Koos Holtzhyousen and Dr WL Vosloo, "High Voltage Engineering Practice and Theory", 2013.
- [5] [12 Ano] Anony mous, "3Fl Silicons long Rod Insulators for Transmission Lines 69-500 kv", 2012.
- [6] [12 Ank] AnkaRa Seramik, "Outdoor Solid Core Post Insulator", 2012.
- [7] [00 Zae] Zaengl, W.S and E-kuttel, "High Voltage Engineering Fundamentals", 2<sup>nd</sup> [Ed] J.kuttel (2000).
- [8] [95 Fun] Funchiron, "Overvoltages and insulation coordination in MV and HV", 1995.
- [9] [93 IEC] IEC, "Station Post Insulators", 1993.
- [10] [92 IEC] IEC, "Composite Insulators for AC Overhead Lines With Nominal Voltages Larger Thon 1000 V -Annexure C", 1992.
- [11] [88 Loo] Looms, J.S.T, "Insulators for High Voltages", Peter Peregriness, London, 1988.

[12] [86 IEC] IEC, "Guide for the Selection of Insulators in Respect of Polluted Conditions", IEC Recommendations Publication 815, 1986.

IJTSRD International Journal of Trend in Scientific Research and Development ISSN: 2456-6470