Heat Load Calculation

Junaid Hussain¹, Syed Abdul Gaffar²

¹Student, Department of Mechanical Engineering,

¹Muffakham Jah College of Engineering and Technology, Banjara Hills, Hyderabad, India

²HRO Education Director & CEO, Managing Director, KG MECH Electro - Mechanical Pvt. Ltd, Hyderabad, India

How to cite this paper: Junaid Hussain | Syed Abdul Gaffar "Heat Load Calculation"

Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-3 | Issue-5, August 2019,

2019, pp.1233-1235, https://doi.org/10.31142/ijtsrd26571

Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed

under the terms of the Creative Commons Attribution

License (CC BY 4.0) (http://creativecommons.org/licenses/by /4.0)

To produce cooling, heat must be removed from a substance by transferring the heat to another substance. Heat energy naturally flows from a higher-temperature substance to a lower temperature substance, in other words from hot to cold. Heat cannot be naturally flow from a cold substance to a hot substance.

METHODS OF HEAT TRANSFER

Heat energy is transferred from one substance to another substance by conduction, convection, or radiation. Conduction is the process of transferring heat through a solid and convection is the process of transferring heat as the result of the movement of a fluid. Convection often occurs as the result of the natural movement of air caused by temperature (density) differences. Radiation is the process of transferring heat by means of electromagnetic waves, emitted due to temperature difference between two objects.

ABSTRACT

The primary objective of this report is to provide a convenient, consistent and accurate method of calculating heating and cooling loads and to enable the designer to select systems that meet the requirement for efficient utilization and are also responsive to environmental needs. The ability to estimate loads more accurately due to changes in the calculation procedure provides a lessened margin of error. Therefore, it becomes increasingly important to survey and check more carefully the load sources, each item in the load and the effect of the system type on the load.

KEYWORDS: HVAC system, E20 program, ASHRAE standards, manual heat load calculation

INTRODUCTION:

HEATING:

Heat is a form of energy transferred from one body, region, or thermodynamic system to another due to thermal contact when the systems are at different temperatures.

PRINCIPLES OF HEAT TRANSFER

Heat energy cannot be destroyed; it can only be transferred to another substance.nd in Scientific

MEASURING HEAT QUANTITY:

The unit for measuring the quantity of heat is the British thermal unit (BTU). The Btu is defined as the quantity of heat energy required to raise the temperature of 1lb of water 1 degree Fahrenheit. In SI system, heat quantity can be expressed using the unit kilo joule (KJ). Rate of heat flow is commonly expressed in terms of Btu/hr. which says that 1 Btu of heat has transferred from one substance to another during a period of 1 hour. In the SI metric system of units, the rate of heat flow is expressed in terms of kilowatts (KW).

SOURCES OF HEAT:

- 1. External source Sun and Air
- 2. Internal sources people, lighting, and electronics.

The manner in which a load source enters a space is indicated as

- Solar radiation through transparent surface such as windows
- Heat condition through exterior walls and roofs
- Heat conduction through interior partitions ceilings and floors
- Heat generated within the space by occupants, lights, appliances, equipment and processes
- Load as a result of ventilation and infiltration of outdoor air

Fig.1.Methods of Heat Transfer

Fig.2. sources of heat

PURPOSE OF HEAT LOAD CALCULATIONS:

- Provide information for equipment selection and HVAC system design.
- Provide data for evaluation of the optimum possibilities for load reduction.
- Permit analysis of partial loads as required for system design, operation and control.

HEAT LOAD ESTIMATION

There are two types of heat gain i.e. sensible heat and latent heat. Latent heat is related to change in phase between liquids, gases, and solids. Sensible heat is related to change in temperature of a gas or object with no change in phase.

Table I: Typical Diversity Factor for Large Buildings

Type of Applications	Diversity Factor					
Type of Applications	People	Lights				
office	0.75 to 0.90	0.70 to 0.85				
Apartment, hotel	0.40 to 0.60	0.30 to 0.50				
Department storage	0.80 to 0.90	0.90 to 1.0	at			
industrial	0.85 to 0.95	0.80 to 0.90	no			

The heat load calculation is done with the basic formula i.e. $Q=U \ A \ \Delta T$

Table.2.Thermal Resistance for Building and Insulating Material

Material	K. Conductivity	Resistance		
Material	Btu/in/hr/sq. ft	1/K		
Marble Granite	20	0.05		
Concrete	12	0.08		
Brick	5	0.20		
Cement Plaster	8	0.12		
Wood	1	1		
Glass	0.8	1.25		
AC Sheet	2.7	0.37		
Water	4.2	0.24		
Fiber Glass	0.25	4.00		
Inside film coefficient	4.00	0.25		
Outside film	1.65	0.65		

The U-factor for each of the type of wall is calculated according to the thickness of the wall and its thermal resistance value of each material by $U=1/\Sigma R$

Where,

 $\sum\!R$ is the sum of all resistance of material inbuilt in the wall structure

1. Heat gained through radiation:

- Glass= Area * ΔT glass * U glass {value changes with direction}
- Wall= Area * ΔT wall * U wall {value changes with direction}
- ➢ Roof= Area * ∆T roof * U roof

2. Heat gained through conduction:

- Glass= Total area of all glasses * ΔT glass * U glass (ΔT=110 - 76°F)
- Partition/ceiling/floor= Area * ΔT * U (ΔT=110 76°F 5°F)

3. Heat gained through infiltration:

- > Infiltration = Infiltration cfm * Δ T * 1.08
- Outside air= ventilation cfm * ΔT * BF * 1.08

cie 4. Internal heat gained- sensible heat:

- People= no of people * sensible heat
- Light= Area * 2.5w * 3.41
- Appliances= W * 3.41

5.

Total effective room sensible heat = sum of 1+2+3+4.

Internal heat gained- latent heat:

Infiltration = infiltration cfm * sp. Humidity*0.68

Outside air = ventilation cfm * sp. Humidity * BF * 0.68

People= no of people * latent heat

Total effective room latent heat= sum of 5

Sensible heat = ventilation cfm * temperature diference
* (1 - BF) * 1.08

7. Latent heat = ventilation cfm * sp.humidity * (1 – BF) * 0.68

- **8.** Total outside air heat = sum of 6+7
- 9. Grand total heat= sum of total effective room sensible heat + total effective room latent heat + total outside air heat
- **10. Room_tonnage** = grand total heat/12000

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

Item	Ar	Area or Quantity		Sun Gain or			Factor	Btu/Hour	w	Estimate for	Summer					
	Qu			Te	emp. Diff.		1 de tor	Drariour		Design Conditions	DB (F)		WB (F)	RH (%)	SH Gr/Lt	
		ROOI	ИН	EAT						Ambient	106	5	78	28	100	
ROOM SENSIBL	E HEA	Ī								Room	76		63.5	50	68	
Solar Gain - Glas	SS									Difference	30		14.5	-22	32	
Glass - N		SqFt	х	23	F	х	0.59	0								
Glass - NE		SqFt	х	138	F	Х	0.59	0		1						
Glass - E		SqFt	х	163	F	Х	0.59	0		By Pass Factor (BF)					= 0.20	
Glass - SE		SqFt	Х	85	F	Х	0.59	0		Contact Factor (CF =	1 - BF)				= 0.80	
Glass - S		SqFt	х	14	F	Х	0.59	0		CFM Ventilation						
Glass - SW		SqFt	Х	85	F	Х	0.59	0	1	CFM Per Person	2	No	=	20	= 40	
Glass - W	24	SqFt	Х	163	F	Х	0.59	2308		CFM Per SqFt	162	Sqf	t x	0.33	= 53	
Glass - NW		SqFt	х	138	F	х	0.59	0		Air Change Per Hour (CFM)		=			
Skylight		SqFt	х		F	х	0.59	0		CFM Cu.ft	1,944	x	1.5	x 1/60	= 49	
Solar & Transmission Gain - Walls & Roof									CFM Infiltration							
Wall - N		SaFt	х	15	F	x	0.38	0		Swinging		х	10	c fm/door	= -	
Wall - NE		SaFt	x	21	F	x	0.38	0		Revolving Doors (Peor	ole)	x	6.4	c fm/door	= -	
Wall - E		SaFt	х	29	F	x	0.38	0	1	Open Doors	1	x	12	c fm/door	= _	
Wall - SF		SaFt	х	29	F.	x	0.38	0	1	Crack (feet)	20	x	0.53	cfm/ft	= 10.60	
Wall - S		SaFt	X	27	F.	X	0.38	0 0		(,		-	0.00	5 mm/ ft	10.60	
Wall - SW		SaEt	x	25	F	Y	0.38	0		Sui	nniv CE	Mfr	om Mac	hine		
Wall W	144	SaEt	v	23	F	v	0.30	1250	<u> </u>	Effective Doom Sensit	No Heat	Fac	tor -	anne		
Wall - NW	144	SaEt	× ×	17	F	× ×	0.30	0		Effective Room Sensit	hle Heat	/FffJ	Room To	tal Heat	= 0.9083	
Poof		SaEt	-	43		÷	0.30	0		A pr	aratus	Dev	(Boint (- 0.9000	
Transmission Os		Sqi t	^	4.J	'	^	0.00	0			alatus	LIEW	Font	AUP)	-	
	24			20	E	v	0.50	4.95								
All Glass	24	SqFt	~	30	F	A	0.59	420	ATT	Selected ADF ("F)	Delaum	. Latia	iiad Dies		- 55.0	
Partition		SqFt	X	20	F	X	0.54	0			Denum	lian	ied Rise	2	40.00	
Ceiling		SqFt Orr⊑t	X		+	X	$\mathbf{P}_{\mathbf{v}}$	e e e	entiri	(Room DB - ADP) x C	}-	-			= 16.80	
Floor		SqFt	Х		F	X	~d'	0		DEHUMIDIFIED AIR C	JUANII	IY				
INFIL IRA IION A	NDBY	PASSE	:D7	AIR			<u>(</u> 0)			Effective Room Sensit	ole Heat		=	501	CFM	
Intitration	11	CFM	х	30	I. DIT	X	1.08	343		Denumidified Rise X 1	.08					
Ventillation	53	CFM	Х	30	T.Diff	X	BF x 1.08	346	KD							
Internal Heat										- 3 V	= 235 L/s				L/s	
People	2	Nos.	Х	245	Btu/Hour	Per	Person	n 4900 r	al Jo	TOTAL HEAT CAPAC	YTI					
Lighting	162	SqFt	х	2.5	W/SqFt	X	3.41	1381	Scie	Grand Total Heat			=	1.03	TR	
Lighting & S. P.		SqFt	Х		W/SqFt	Х	3.41			•						
Equipment	0.50	КW	Х	3410	27		r	(C1705-	icn an							
			Sut	o Total	15-0			8257	pmer							
			Fac	tor	S N		5-10%	826			2					
			Eff€	ecti ve	Room Ser	isib	le Heat	9083	56-647	SENSIBLE HEAT CAL	PACITY					
ROOM LATENT	HEAT					8				Grand Sensible Heat			=	1.03	TR	
Inflitration	11	CFM	Х	32	Gr/Lb	X	0.68	231		12000						
Outside Air	53	CFM	Х	32	Gr/Lb	X	BFx 0.68	233		Nº B			=		MBH	
People	2	Nos.	Х	205	Btu/Hour	Per	Person	410	\leq							
			Sut	o Total			an	873		\sim						
			Fac	tor			2.5 - 5%	44	$\overline{\mathcal{O}}$				=		kW	
			Effe	ecti ve	Room Lat	ent	Heat	917		Check Figures:						
EFFECTIVE ROOM TOTAL HEAT						10000		SqFt Per TR			=	158				
OUTSIDE AIR HEAT								Btu/Hour Per SqFt			=	12000				
Sensible	53	CFM	Х	30	F(TD)	x	CF x 1.08	1386	1	Dehumidified CFM Pe	r SqFt		=	3.09		
Latent	53	CFM	Х	32	Gr/Lb	Х	CF x 0.68	931	1	Dehumidified CFM Pe	r TR		=	488		
OUTSIDE AIR T	OTAL H	EAT						2316	1			-				
		GRAN	ND 1	TOTAL	HEAT			12316	1	KG MECH	Electro	o-M	echan	ical Pvt. L	td.	
			Sut	o Total		-				FCILL	SANTH	OSH	NAGAR	MASAB TA	ANK	
						+			1	Loic	Hyderba	nd, A	P. IND	A		
TONS=GRAND	TOTAL	HEAT/	1200	00		+		1.03		E-mail: info @kg	mech.c	om	URL: W	vww.kamea	h.com	
				-	1	1		1	1							

Fig.3. Heat Load Calculation using E20 sheet

CONCLUSION

- 1. Heat gained through radiation changes with direction.
- 2. Radiated heat doesn't heat the air between the
- sources and the object it contacts; it only heats the object itself.
- 3. Considering the roof till its false ceiling while calculating the heat load decreases the load on machines.
- 4. E20 program reduces human errors and provides accurate heat loads.
- 5. Ducted return air duct reducdes the load on machines

REFERENCES

- [1] W. Larsen angel (2011) HVAC Design Sourcebook, Hill Education; First edition.
- [2] Mcquiston, parker, spitler (2011) Heating, Ventilation and Air Conditioning: Analysis and Design, Wiley; Sixth edition.
- [3] Arora (2017) Refrigeration and Air Conditioning McGraw Hill Education; 3 editions.