
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume 3 Issue 5, August 2019 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470

@ IJTSRD | Unique Paper ID – IJTSRD26531 | Volume – 3 | Issue – 5 | July - August 2019 Page 933

A Study of Software Size Estimation with use Case Points

Aye Aye Seint

University of Computer Studies, Hinthada, Myanmar

How to cite this paper: Aye Aye Seint "A

Study of Software Size Estimation with

use Case Points" Published in

International

Journal of Trend in

Scientific Research

and Development

(ijtsrd), ISSN: 2456-

6470, Volume-3 |

Issue-5, August

2019, pp.933-936,

https://doi.org/10.31142/ijtsrd26531

Copyright © 2019 by author(s) and

International Journal of Trend in Scientific

Research and Development Journal. This

is an Open Access article distributed

under the terms of

the Creative

Commons Attribution

License (CC BY 4.0)

(http://creativecommons.org/licenses/by

/4.0)

ABSTRACT

Estimates for cost and schedule in software projects are based on a prediction

of the size of the system. Software size estimation is the most important role in

software cost estimation. Use Case Point method can provide software size

estimation at the early stage of the development process. Software size

estimation is based on the high-level speciation of Use Case. This paper

describes a simple approach to software size estimation base on use case

models; the “Use Case Points Method. This model is imported into an

estimating tool. To get software size with Use Case Point, the needed factors

are the number of use cases and their complexity, the number of actors and

their complexity, technical complexity factors (TCF), and environmental

complexity factors (ECF). The system computes unadjusted use case points

(UUCP), adjusted use case points (UPC), and the total effort in staff hours.

1. INTRODUCTION

The use case is a notional description of a system, frequently used at the earliest

stages in a project. The use case is one type of graphically oriented notation in

the Unified Modeling Language (UML), a family of notational methods used to

describe various aspects of software and its underlying structures. Use cases

have three descriptive characteristics, which can be exploited to provide sizing

information [10].

In object-oriented software production, use cases describe

functional requirements. The use case model may, therefore,

be used to predict the size of the future software system at

an early development stage. This paper describes a simple

approach for software cost estimation based on use case

models: the 'Use Case Points Method'.

Use cases provided a high-level description of the intended

function of the system. A small application might have only

one use case, while very large applications may have

hundreds. The numbers of scenarios are the potential

outcomes of the software. There is no limit on the number of

scenarios that a particular use case may have.

Actors are the “agents” that interact with the software and

so, use cases must have at least one actor. A commonly

accepted standard is one actor per use case.

In size estimating with use case point, various non-functional

requirements are an important role. They are portability,

performance, maintainability, security, easy to change and so

on, those are not written as a use case.

Cost and effort estimation is an important aspect of the

management of software development projects. Experience

shows that accurate estimation is difficult. Most methods for

estimating effort require an estimate of the size of the

software.

The basic formula for converting all of this into a single

measure, use case points, is that we will “weight” the

complexity of the use cases and actors and adjust their

combined weight to reflect the influence of the nonfunctional

and environmental factors. Then use case point can be used

to calculate the effort of the project[5].

2. SOFTWARE SIZE ESTIMATION

Software measurement is the process whereby numbers or

symbols are assigned to entities in order to describe the

entities in a meaningful way. Software size must be

measured and translated into a number that represents the

effort and duration of the project.

Software size can be defined as a set of internal attributes:

length, functionality and complexity, and can be measured

statically without executing the system. Reuse measures how

much of a product was copied or modified, and can also be

identified as an aspect of size. Length is the physical size of

the product and can be measured for the specification, the

design, and the code. Functionality measures the functions

are seen by the user. Complexity refers to both efficiency and

problem complexity [4].

Estimation may be needed for project estimation and to

assess whether processor technology improvements are

effective. These productivity estimates are usually based on

measuring some attributes of the software and dividing this

by the total effort required for the development. There are

two types of measure Size-related measures and Function-

related measures.

These are related to the size of some output from activity.

The most common size-related measures are lines of

delivered source code. Other measures which may be used

are the number of delivered object code instructions or the

number of pages of system documentation [1].

IJTSRD26531

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD26531 | Volume – 3 | Issue – 5 | July - August 2019 Page 934

Function-related measures are related to the overall

functionality of the delivered software. Productivity is

expressed in terms of the amount of useful functionality

produced in some given time [1].

3. USE CASE AND SCENARIO

Use cases and scenarios are concerned with the behavior of

the system that is visible externally; they aim to establish

what the system does from the user’s point of view, in terms

that the user can readily understand. Although they have

become associated with object-orientation, both use case

and scenarios are functional and can be used in conjunction

with any approach to system development [2],[3].

The relationship between use cases and scenarios is that of

the generic to the specific, see Figure 1. A scenario

represents one instance of a use case, describing a particular

sequence of events that may occur in trying to reach the use

case goal. The representations may list what usually happens

as follows :

� user on second-floor press lift button to descend

� lift button lights up

� lift button alerts lift to go to the second floor

� lift goes to the second floor

� lift button light goes out

Figure1. Sequence diagram for a scenario

4. HIGH-LEVEL SPECIFICATION OF USE CASE

The use cases are fundamentally a text form, although they

can be written using flow charts, sequence charts, Petri nets,

or programming language. Under normal circumstances,

they serve to communicate from one person to another,

often to people with no special training. The simple text is,

therefore, usually the best choice [6].

Many people think that the ellipses are the use cases, even

though the ellipses convey very little information. The use

case description, as a form of writing, can be put into service

to stimulate discussion within a team about an upcoming

system. They might later use the use case from the document

the actual requirements. Another team might later document

the final design with the same use case form. They might do

this for a system as large as an entire company, or as small as

a piece of a software application program [6].

The example of the high level specification of use case is;-

Use Case Name: Buy stocks over the web

Primary Actor: Personal Advisors

Level: User goal

Precondition: User already has PAF open.

Stakeholders and interests: Purchaser- wants to buy

stocks, get them added to the PAF portfolio automatically.

Stock agency- wants full purchase information.

Precondition: User already has PAF open.

Minimal guarantee: sufficient logging information that PAF

can detect that something went wrong and can ask the user

to provide details.

Success guarantee: remote web site has acknowledged the

purchase, the logs and the user’s portfolio are updated.

Main success scenario:

The user selects to buy stocks over the web PAF gets the

name of the web site to use from the user.

PAF open web connection to the site, retaining control.

User browses and buys stock from the web site.

PAF intercepts responses from the web site and updates the

user’s portfolio.

PAF shows the user the new portfolio standing.

Extensions: User wants a web site PAF does not support.

The system gets new suggestion from the user, with the

option to cancel use case.

Web failure of any sort during step: 3a1. System reports

failure to the user with advice backs up to the previous step.

The user either backs out of this use case or tries again.

Computer crashes or gets switched off during a purchase

transaction;

When the use cases document an organization’s business

process, the system under discussion is the organization

itself. The stakeholders are the company shareholders,

customers, vendors, and government regulatory agencies.

The primary actors will include the company’s customers

and perhaps their suppliers.

5. THE USE CASE POINT METHOD

An early estimate of effort based on use cases can be made

when there is some understanding of the problem domain,

system size and architecture at the stage at which the

estimate is made. The use case points method is a software

sizing and estimation method based on use case counts

called use case points [4].

5.1. Classifying Actors and Use Case

Use case points can be counted from the use case analysis of

the system. The first step is to classify the actors as simple,

average or complex. A simple actor represents another

system with a defined Application Programming Interface,

API, an average actor is another system interacting through a

protocol such as TCP/IP, and a complex actor may be a

person interacting through a GUI or a Web page. A weighting

factor is assigned to each actor type [8],[9].

Actor type: Simple, weighting factor 1

Actor type: Average, weighting factor 2

Actor type: Complex, weighting factor 3

The total unadjusted actor weights (UAW) is calculated by

counting how many actors there are of each kind (by the

degree of complexity), multiplying each total by its weighting

factor, and adding up the products.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD26531 | Volume – 3 | Issue – 5 | July - August 2019 Page 935

Each use case is then defined as simple, average or complex,

depending on a number of transactions in the use case

description, including secondary scenarios. A transaction is a

set of activities, which is either performed entirely or not at

all. Counting number of transactions can be done by counting

the use case steps. Use case complexity is then defined and

weighted in the following manner:

Simple: 3 or fewer transactions, weighting factor 5

Average: 4 to7 transactions, weighting factor 10

Complex: More than 7 transactions, weighting factor 15.

Another mechanism for measuring use case complexity is

counting analysis classes, which can be used in place of

transactions once it has been determined which classes

implement a specific use case. A simple use case is

implemented by 5 or fewer classes, an average use case by 5

to 10 classes, and a complex use case by more than ten

classes. The weights areas before. Each type of use case is

then multiplied by the weighting factor, and the products are

added up to get the unadjusted use case weights (UUCW)[5].

The UAW is added to the UUCW to get the unadjusted use

case points (UUPC):

UAW+UUCW=UUCP

5.2. Technical and Environmental Factors

The application of use case modeling for analyzing the

functional requirements of a system. Because it focuses on

how the system delivers or should deliver those functions, a

use case model is developed in the analysis phase of the

object-oriented system development life cycle

The method also employs a technical factors multiplier

corresponding to the Technical Complexity Adjustment

factor of the FPA method, and an environmental factors

multiplier in order to quantify non-functional requirements

such as ease of use and programmer motivation [7],[8].

Various factors influencing productivity are associated with

weights, and values are assigned to each factor, depending

on the degree of influence. 0 means no influence, 3 is

average, and 5 means strong influence throughout. See Table

1 and Table 2.

The adjustment factors are multiplied by the unadjusted use

case points to produce the adjusted use case points, yielding

an estimate of the size of the software.

The Technical Complexity Factor (TCF) is calculated by

multiplying the value of each factor (T1- T13) by its weight

and then adding all these numbers to get the sum called the

TFactor. The following formula is applied:

TCF=0.6 + (0.01 * TFactor)

The Environmental Factor (EF) is calculated by multiplying

the value of each factor (F1-F8) by its weight and adding the

products to get the sum called the EFactor. The following

formula is applied:

EF= 1.4 + (-0.03 * EFactor)

The adjusted use case points (UPC) are calculated as

follows:

UPC= UUCP*TCF*EF

Table1. Technical complexity factor

Factor Description Weight

T1 Distributed system 2

T2 Performance objectives 2

T3 End-user efficiency 1

T4 Complex processing 1

T5 Reusable code 1

T6 Easy to install 0.5

T7 Easy to use 0.5

T8 Portable 2

T9 Easy to change 1

T10 Concurrent use 1

T11 Security 1

T12 Access for third parties 1

T13 Training needs 1

Table2. Environmental factor

Factor Description Weight

E1
Familiar with the development

process
1.5

E2 Application experience 0.5

E3 Object-oriented experience 1

E4 Lead analyst capability 0.5

E5 Motivation 1

E6 Stable requirements 2

E7 Part-time staff -1

E8 Difficult programming language -1

6. STUDY OF PROJECT

Cost and effort estimation is an important aspect of the

management of software development projects. Experience

shows that accurate estimation is difficult. Most methods for

estimating effort require an estimate of the size of the

software.

Once a size estimate is available, models can be used that

relate size to effort. Most cost estimation models attempt to

generate an effort estimate, which can then be converted

into the project duration and cost. Although effort and cost

are closely related, they are not necessarily related by a

simple transformation function.

Cost and effort estimation is an important aspect of the

management of software development projects [9].

Experience shows that accurate estimation is difficult.

Accurate software cost estimates are critical to both

developers and customers.

This paper describes the use case point method applied to

the project. Estimation results are computed for ten small

projects with the use case point method and compared to

estimates with actual effort. The main goal of the

investigations is to determine the appropriate level of detail

in use case descriptions written for estimation purposes and

how different actual and estimate effort result.

As seen from the results present in Table 3, use cases must

be written at a user goal level of detail if they are to be used

effectively for estimation purposes. If descriptions are

lacking in detail, and there is a doubt as to if all the

functionality has been correctly described.

The results show that as opposed to the technical complexity

factors, the environmental factors play a significant part in

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD26531 | Volume – 3 | Issue – 5 | July - August 2019 Page 936

the estimates. Setting the scores too high leads to

underestimation.

The number of environmental factors in F1 through F6 that

are above 3 are counted and added to the number of factors

in F7 through F8 that is below 3. If the total is 2 or less, they

propose 20 staff hours per UCP; if the total is 3 or 4, the

value is 28 staff hours per UCP.

Table3. The comparison result of projects

Project

No

Estimate

Effort(Hour)

Actual Effort

(Hour)

1 418 420

2 282 298

3 197 212

4 335 341

5 394 420

6 519 500

7 132 143

8 605 595

9 610 598

10 520 499

When the total exceeds 4, it is recommended that changes

should be made to the project so that the value can be

adjusted.

0

100

200

300

400

500

600

700

Software Size

1 2 3 4 5 6 7 8 9 10

Projects

Estimate Effort

Actual Effort

Figure2. Compare the result of estimate effort and

actual effort (staff hour)

7. CONCLUSION

The system is calculated on applying a method for estimating

software development effort based on use cases, the use case

points method. The results indicate that this method can be

used successfully since the use case estimates were close to

the expert estimates. It is, therefore, our impression that the

method may support expert knowledge. This system intends

to further study the precision of the use case point method

compared with expert estimates. The system will conduct a

study where the estimators have different levels of

experience.

The trouble with sizing use cases that are lacking in textual

detail became evident. Sizing becomes time-consuming, and

there that the functionality is not expressed well enough, and

that the system will be underestimated.

This paper also would be useful to investigate how the use

case points method, which provides top-down estimates

based on a measure of size, can be combined with other

methods that provide bottom-up estimates. The purpose of

using the estimation method investigated in this paper is to

provide a complete estimate for all the activities in the

project.

REFERENCES

[1] Ian Sommerville, Software Engineering, eighth Editions,

Addison Wesley, 2009

[2] Grady Booch, James Rumbaugh, Ivan Jacobson, the

Unified Modeling Language User Guide, May 2003.

[3] Carol Britton (University of Hertfordshire) Jill Docke

(Angli Polytechnic University), Object-Oriented System

Development, McGraw-HILL INTERNATIONAL

EDITION, 2001.

[4] Kirsten Ribu, Estimating Object-Oriented Software

Projects With Use Case, The University of Oslo, 7th

November 2001.

[5] Schneider and Winters, “Applying use Cases”. Addison-

Wesley, 1998

[6] Alistair Cockburn, Writing Effective Use Cases, 21st

February 2000

[7] Bente Anda, “Effort Estimation of Use Case for

Incremental Large-Scale software Development”,

Norwegian University of Science and Technology

(NTNU)

[8] Bente Anda, HegenDreiem, Dag I.K Sjoberg and Magne

Jorgensen, “Estimating Software Development Effort

based on Use Cases Experiences from Industry”,

Department of Informatics, University of Oslo.

NORWAY.

[9] Gautam Banerjee, “Use Case Points An Estimation

Approach”, August 2001.

[10] J. Kammelar, “A Sizing Approach for OO-environments”.

In forth International ECOOP Workshop on

Quantitative Approaches in Object-Oriented Software

Engineering, Cannes, 2000.

