
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume 3 Issue 5, August 2019 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470

@ IJTSRD | Unique Paper ID – IJTSRD26511 | Volume – 3 | Issue – 5 | July - August 2019 Page 890

Review on Algorithmic and Non-Algorithmic

Software Cost Estimation Techniques

Pa Pa Win, War War Myint, Hlaing Phyu Phyu Mon, Seint Wint Thu

Faculty of Information Science, University of Computer Studies, Meiktila, Myanmar

How to cite this paper: Pa Pa Win | War

War Myint | Hlaing Phyu Phyu Mon | Seint

Wint Thu "Review on Algorithmic and

Non-Algorithmic Software Cost

Estimation Techniques" Published in

International

Journal of Trend in

Scientific Research

and Development

(ijtsrd), ISSN: 2456-

6470, Volume-3 |

Issue-5, August

2019, pp.890-895,

https://doi.org/10.31142/ijtsrd26511

Copyright © 2019 by author(s) and

International Journal of Trend in Scientific

Research and Development Journal. This

is an Open Access article distributed

under the terms of

the Creative

Commons Attribution

License (CC BY 4.0)

(http://creativecommons.org/licenses/by

/4.0)

ABSTRACT

Effective software cost estimation is the most challenging and important

activities in software development. Developers want a simple and accurate

method of efforts estimation. Estimation of the cost before starting of work is a

prediction and prediction always not accurate. Software effort estimation is a

very critical task in the software engineering and to control quality and

efficiency a suitable estimation technique is crucial. This paper gives a review

of various available software effort estimation methods, mainly focus on the

algorithmic model and non – algorithmic model. These existing methods for

software cost estimation are illustrated and their aspect will be discussed. No

single technique is best for all situations, and thus a careful comparison of the

results of several approaches is most likely to produce realistic estimation.

This paper provides a detailed overview of existing software cost estimation

models and techniques. This paper presents the strength and weakness of

various cost estimation methods. This paper focuses on some of the relevant

reasons that cause inaccurate estimation.

KEYWORDS: Software cost estimation; Software Effort Estimation; algorithmic;

non-algorithmic

1. INTRODUCTION

Software cost estimation plays an important role in software engineering, often

determining the success or failure of contract negotiation and project execution.

The main goal of software cost and effort estimation is to scientifically estimate

the required workload and its corresponding costs in the life cycle of the

software system.

Accurate cost estimates activity is critical to developers and

customers. Accurate cost estimation is important for the

following reasons [1][2]:

� It can be used to classify and prioritize development

projects with respect to the complete business plan.

� It can help to find out what resources to commit to the

project and how well these resources will be used

� It can help to assess the impact of changes and

supporting for preplanning. Projects can be easier to

manage and control when resources are matched to real

needs.

� Customers expect accurate development costs to be in

line with estimated costs.

Software cost estimation activity historically has been a

major difficulty in software development. Several reasons

have been identified that affects the cost estimation process

such as [15]

� Cost of software development estimate is difficult. The

first steps in the estimate are to understand and define

the system to be estimated.

� A cost estimate done early in the project life cycle is

generally based on less precise inputs and less detailed

design specifications.

� Software development involves many interrelated

factors, which affect development effort and

productivity, and whose relationships are not well

understood.

� Incomplete, inaccurate or inconsistent historical

database of cost measurement.

� Lack of trained estimators.

� Software is intangible, invisible, and intractable so it is

more difficult to understand and estimate a product or

process that cannot be seen and touched.

2. BACKGROUND

Software project failure has been an important subject in the

last decade. Software projects usually don’t fail during the

implementation and the most project fails during the

implementation and most project fails are related to the

planning and estimation steps despite going to overtime and

cost, approximately between 30% and 40% of the software

projects are completed and the other fail(Molokken and

Jorgenson,2003). During the last decade, several studies

have been done in term of finding the reason for the

software project failure. Galorath and Evans(2006)

performed an intensive search between 2100 internet site

and found 5500 reasons for software project failures. Among

the found reasons, insufficient requirements engineering,

poor planning the projects, suddenly decision at the early

stages of the project and inaccurate estimations were the

most important reasons. The other researches regarding the

reason of project fail to show that inaccurate estimation is

the root factor of fail in the most software project

fails(Jones,2007; Jorgensen, 2003). Despite the indicated

statistics may be pessimistic, inaccurate estimation is a real

problem in the software product’s world which should be

solved. Presenting the efficient techniques and reliable

models seems required regarding the mentioned problems.

IJTSRD26511

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD26511 | Volume – 3 | Issue – 5 | July - August 2019 Page 891

The conditions of the software projects are not stable and

the state is continuously changing so several methods should

be presented for estimation that each method is appropriate

for a special project[9].

3. ESTIMATION TECHNIQUES

Generally, there are many methods for software cost

estimation, which are divided into four categories:

Algorithmic, Non-Algorithmic, Parametric and Machine

learning Models. All categories are required for performing

an accurate estimation. If the requirements are known

better, their performance will be better. In this section

overview of four estimation models are discussed.

A. Algorithmic Models These models work based on the

special algorithm. These model usually need data at first

and make result by using the mathematical relation.

Nowadays, many software estimation methods use these

models. Algorithm models are classified into some

different models. Each algorithmic model uses an

equation to do the estimation: Effort=f(x1,x2,……….,xn)

where (x1……xn) is the vector of the cost factor. The

differences among the existing algorithmic methods are

related to choosing the cost factor and function.

B. Non-Algorithmic Model Contrary to the Algorithmic

methods, methods of this group are based on analytical

comparisons and inferences. For using the Non

Algorithmic methods some information about the

previous projects which are similar to the

underestimate project is required and usually

estimation process in these methods is done according

to the analysis of the previous datasets. Here, three

methods have been selected for accessing because these

methods are more popular than the other None

Algorithmic methods and many papers about their uses

have been published in recent years.

C. MACHINE LEARNING METHODS Most techniques about

cost estimation use statistical methods, which are not

able to present reason and strong results. This approach

could be appropriate because they can increase the

accuracy of estimation by training rules of estimation

and repeating the run cycles. It is categorized into two

main methods, neural networks and fuzzy methods

which are :

Neural networks include several layers which each layer is

composed of several elements called neuron. Neurons, by

investigating the weights defined for inputs, produce the

outputs. Outputs will be the actual effort, which is the main

goal of estimation. Backpropagation neural network is the

best selection for software estimation problem because it

adjusts the weights by comparing the network outputs and

actual results. In addition, training is done effectively.

Majority of researches on using the neural networks for

software cost estimation are focused on modeling the

Cocomo method, for example in [5] a neural network has

been proposed for estimation of software cost according to

the following figure. Figure (1) shows the layers, inputs and

the transfer function of the mentioned neural network. Scale

Factors(SF) and effort multipliers(EM) are an input of the

neural network, pi and qj are respectively the weight of SFs

and EMs.[6]

Fuzzy Method The systems, which work based on the fuzzy

logic try to simulate human behavior and reasoning. In many

problems, where decision making is very difficult and

conditions are vague, fuzzy systems are an efficient tool in

such situations. Fuzzy technique always supports the facts

that may be ignored. Following four stages in the fuzzy

approach:

Stage 1: produce trapezoidal numbers for the linguistic

terms.

Stage 2: develop the complexity matrix by producing a new

linguistic term.

Stage 3: determine the productivity rate and the attempt for

the new linguistic terms.

Stage 4: determine the effort required to complete a task and

to compare the existing method. For example in [3] COCOMO

technique has been implemented by using the fuzzy method.

Fig (2) displays all following mentioned steps.

Step (1) fuzzification has been done by scale factors, cost

drivers and size.

Step (2) principals of COCOMO are considered.

Step (3) defuzzification is accomplished to find the effort [6].

4. The parametric-estimating method is a mathematical

representation of cost estimating relationships that provide

a logical and predictable correlation between the cost as a

dependent variable and the cost estimating factors as the

independent variables associated with the project being

estimated (Duverlie and Clastelain, 1999; Dysert, 2003;

International Society of Parametric Analysis [ISPA], 2008).

Parametric models are developed by applying regression

analysis to historical project data (obtained from past

projects).

4. ALGORITHMIC METHODS

These methods are designed to provide some mathematical

equations to perform software cost estimation. These

mathematical equations are based on research and historical

data and use some inputs for example Source Lines of Code,

a number of functions to perform, and some cost drivers like

as language, design methodology, skill-levels, risk

assessments, etc. Algorithmic methods developed many

models such as COCOMO models, Putnam model, and

function points based models [3].

A. COCOMO Model

One very widely used algorithmic cost estimation model is

the Constructive Cost Model (COCOMO) which was proposed

by Boehm [4]. The basic COCOMO model has a simple form:

MAN-MONTHS = K1* (KDLOC) K2 Where K1 and K2 are two

parameters which are dependent on the application and

development environment. Estimates from the basic

COCOMO model can be made more accurate by taking into

account other factors concerning the required

characteristics of the software to be developed, the

qualification and experience of the development team, and

the software development environment. The complexity of

the software has the following factor:

Reliability

� Database size

� Required efficiency for memory and execution time

� The capability of an analyst and programmer

� Team experience in the application area

� Experience of the team in the programming language

and computer

� Use of software engineering and tools

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD26511 | Volume – 3 | Issue – 5 | July - August 2019 Page 892

Cost models generally use some cost indicator for estimation

and notice to all specification artifacts and activities.

COCOMO 81(constructive cost model) proposed by Barry

Bohem is the most popular method which categorized in

algorithmic methods. This method uses some equations and

parameters, which have been derived from previous

experiences about software projects for estimation. There

are three forms of the constructive cost model: 1. Basic

COCOMO which gives an initial rough estimate of man-

months and development time. 2. Intermediate COCOMO

which gives a more detailed estimate for small to medium

size projects. 3. Complete COCOMO which gives a more

detailed estimate for large projects.

There are three modes of development.

1. Organic mode

* Relatively small simple software projects.

* Small team with good application experience work to a set

of less than rigid requirements.

Similar to previously developed projects.

* Relatively small and require little innovation.

2. Semi-Detached mode

* Intermediate(in size and complexity) software projects in

which team with mixed experience level must meet a mix of

rigid and less than rigid requirements.

3. An embedded mode Software project that must be

developed within a set of tight hardware software and

operational constraints.

BASIC COCOMO

Basic COCMO is an empirical estimation for estimating effort,

cost, and schedule for software projects. It was derived from

the large data set from 63 software projects ranging in size

from 200 to 100000 lines of code, and programming

languages ranging from assembly to PL/I. This data was

analyzed to discover a set of formula that was the best fit to

the observation these formula link the size of the system. In

COCOMO 81 effort is be calculated as PM= a*Size^6ΠEmi i=1

to 15 Where a & b are the domain constant in the model. It

contains 15 effort multipliers. This estimation scheme

accounts the experience and data of the past projects which is

extremely complex to understand and apply the same.

INTERMEDIATE COCMO

In 1997, an enhanced scheme for estimating the effort for

software development activities, which is called as COCOMO

II. COCOMO II has some special features which distinguish

for another one the uses of this method are very hidden and

its result usually accurate. In COCOMO II effort requirements

can be calculated as PM=a* size ^B*ΠEmi i=1 to 17 Where

E=B+0.01*ΣSFj j=1 to 5 COCOMO II is associated with 31

factors LOC measures as the estimation variable, 17 cost

drivers, 5 scale factor, 3 adaptation percentage of

modification, 3 adaptation cost drives and requirements

volatility.

The Detailed COCOMO Model

The detailed COCOMO model differs from the intermediate

model is only one major aspect. The detailed model uses

different effort multipliers for each phase of a project. These

phase-dependent effort multipliers yield better estimates

than the intermediate model[11].

B. Putnam Model

The Putnam model is an empirical effort estimation model.

Putnam used his productivity levels observations to derive

the software equation: Technical constant C= size * B1/3 *

T4/3 Total PM B=1/T4 *(size/C)3 T = Required

Development Time in years Size = estimated in LOC Where: C

= parameter dependent on the development environment

and is determined on the basis of historical data of the past

projects. Rating for C=2,000 is poor C=8000 is good

C=12,000 is excellent. This model is very sensitive to the

development time, decreasing the development time can

greatly increase the person-months needed for development

[6][12]. One significant problem with this model is that it is

based on knowing, or being able to estimate accurately, the

size of the software to be developed. There is often great

uncertainty in the software size. It may result in the

inaccuracy of estimation.

C. Function Point Analysis

The Function Point Analysis is a method of quantifying the

size and complexity of a software system in terms of the

functions that the systems deliver to the user. A number of

proprietary models for cost estimation have adapted to this

type of approach, like as ESTIMACS and SPQR/20. This is a

measurement which is based on the functionality of the

program. It was first introduced by Albrecht [1]. The total

number of FP depends on the counts of distinct in terms of

format or processing logic types. Following two steps in

counting function points:

Counting to the user functions: The raw function counts

are arrived at by considering a linear combination of five

basic software components. These components are external

inputs, external outputs, external inquiries, logic internal

files, and external interfaces, each at one of three complexity

levels: simple, average or complex. The sum of these

numbers, weighted according to the complexity level, is the

number of FC.

Adjusting for environmental processing complexity: The

final function points are arrived at by multiplying function

count by an adjustment factor that is determined by

considering 14 aspects of processing complexity. This

adjustment factor allows the function count to be modified

by at most 35% or -35%.

D. Linear Models Commonly these models have the

simple structure and trace a clear equation as

below:

EFFORT = a0 +Σ n ai xi i=0 Where, a1, a2 ,an are selected

according to the information of project, only allowed values

for xi are -1, 0, +1.[16]

E. Seer-sem Models

This model has been proposed in 1980 by Galorath Inc[9].

Most parameters in seer-sem are commercial and, business

projects usually use seer-sem as their main cost estimation

method. Size of the software is the most important feature in

seer-sem method and a parameter namely Se is defined as

effective size. Se is computed by determining the five

indicators: new size, existing size, ramp redesign and retest

as below:

Se=new size + existing Size(0.4 redesign + 0.25 reimp +

0.35 retest) After computing the Se the estimated effort is

calculated as below: EFFORT= td = D - 0.2 × (Se / Cte)0.4

Where D = relevant to the staffing aspects It is determined

based on the complexity degree in staffs structure. Cte is

computed according to the productivity and efficiency of the

project method. It is used widely in a commercial project. [7]

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD26511 | Volume – 3 | Issue – 5 | July - August 2019 Page 893

5. NON ALGORITHMIC METHODS

Non Algorithmic methods use some information about the

previous projects which are similar to the underestimate

project is required and usually cost estimation process in

these methods is done according to the analysis of the

previous datasets.

A. Expert Judgment Method Expert judgment techniques

involve consulting with cost estimation expert or a group of

the estimation experts to use their experience and

understanding of the proposed project to arrive at an

estimate of its cost. It is the most used methods for cost

estimation. Most companies used expert judgment method

for generating the cost of the product [4] [12]. This method

using the following estimating steps: a. Project leader

presents each expert with a specification and an estimation

form. b. The experts fill out forms anonymously. c. Project

leader calls a group meeting in which the experts discuss

cost estimation issues with the project leader and each other.

d. Project leader prepares and distributes a summary of the

cost estimation on an iteration form. e. Again experts fill out

forms, anonymously. f. Steps d and step e are iterated for as

many rounds as appropriate.

Estimation based on Expert Judgment is done by getting

advice from experts who have extensive experiences in

similar projects. This method is usually used when there is a

limitation in finding data and gathering requirements.

Consultation is the basic issue in this method. One of the

most common methods which work according to this

technique in Delphi. Delphi arranges an especial meeting

among the project experts and tries to achieve the true

information about the project from there debates. Delphi

includes some steps:

� The coordinator gives an estimation from each expert.

� Each expert presents his own estimation

� The coordinator gathers all forms and sums up them on

a form and ask experts to start another iteration.

� Steps (ii-iii) are repeated until approval is gained.

A. Estimating by Analogy

Cost estimating by analogy means comparing the proposed

project to previously completed similar project where the

project development information is known. Actual data from

the completed projects are extrapolated to cost estimate the

proposed project. Analogy method can be used either at the

system level or at the component level [12]. This method

using the following estimating steps: a. Find out the

necessary characteristics of the proposed project. b. Choose

the most similar completed projects whose characteristics

have been stored in the historical database. c. Find the

estimate for the proposed project from the most similar

completed project by analogy.

It means creating estimates for new projects by comparing

the new projects to similar projects from the part. In this

method, several similar completed software projects are

noticed and estimation of effort and cost are done according

to their actual cost and effort. As the Algorithmic technique

have a disadvantage of the need to calibrate the model. So

the alternative approach is ‘Analogy by Estimation’.

Estimation based on analogy is accomplished at the total

system levels and subsystem levels. By accessing the result

of previous actual projects. We can estimate the cost and

effort of a similar project. The steps of this method are

considered as 1. Choosing analogy 2. Investigating

similarities and differences 3. Examining of analogy quality.

4. providing the estimation.

B. Parkinson’s Law

Using Parkinson‟s Law “Work expands to fill the available

volume”[8], the cost is determined by the available resources

rather than based on an objective assessment., If the

software has to be delivered in 20 months and 4 people are

available, the effort is estimated to be 80 PM. Although it

sometimes gives a good estimation, this method is not

recommended as it may provide very unrealistic estimates.

Parkinson‟s Law does not promote good software

engineering practice [2]. E. Price-to-win The cost is

estimated to be the best price to win the project. The cost

estimation is based on the customer's budget instead of the

software functionality. For example, if a reasonable

estimation for a project costs 100 PM but the customer can

only effort 60 PM. It is common that the estimator is asked to

modify the estimation to fit 60 PM effort in order to win the

project. This is again not a good practice since it is very likely

to cause a bad delay of delivery or force the estimation team

to work overtime[10][2].

C. Top-Down Estimating Method

The top-down estimating method is known as Macro Model.

Using this estimating method, overall cost estimation for the

project is derived from the global properties of the software

project, and then the project is partitioned into various low-

level mechanism or components. The method of using this

approach is the Putnam model. The top-down method is

more applicable to early cost estimation when only global

properties are known. In the early phase of the software cost

estimation, top-down is very useful because there is no

detailed information available [4].

D. Bottom-up Estimating Method

Using a bottom-up cost estimating method, the cost of each

software component is estimated and then combines the

results to arrive at an estimated cost of the overall project.

The bottom-up method aims at constructing the estimate of

a system from the knowledge accumulated about the small

software components and their interactions. The method of

using this approach is COCOMO's detailed model [4].

6. The Strength and Weakness of Algorithmic and Non-

Algorithmic Software Cost Estimation Techniques

According to the study of software cost estimation

techniques, it is evident that no one method is necessarily

better or worse than the other, in fact, their advantage and

disadvantage are often complementary to each other. The

algorithmic methods are based on mathematics and some

experimental equations. They are usually hard to learn and

they need much data about the current project state. But if

enough data is available, these methods present reliable

results. On the other hand for non-algorithmic methods, it is

necessary to have enough information about the similar type

of previous projects, because these methods perform the

cost estimation by analysis of the historical data. They are

easy to learn because they follow human behavior.

According to the estimation experience, it is recommended

that a combination of models and expert judgment

estimation methods are useful to get reliable, accurate cost

estimation for software development. We should use expert

judgment method or analogy method for known projects and

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD26511 | Volume – 3 | Issue – 5 | July - August 2019 Page 894

projects parts if the similarities of them can be got since it is

fast and under this circumstance, reliable. For large, lesser-

known projects, it is better to use algorithmic methods. In

this case, many researchers recommend the estimation

models that do not require a source line of code as an input.

If we approach cost estimation by parts, we may use expert

judgment for some known parts. In this way, we can take

advantage of both the rigor of models and the speed of

expert judgment method or analogy. Because the advantages

and disadvantages of each technique are complementary, a

combination will reduce the weakness of anyone technique,

augment their individual strengths and help to cross-check

one technique against another.

Table1. The Strength of Algorithm and Non-Algorithmic Software Cost Estimation Techniques

Sr. No Method Type Strength

1 COCOMO Algorithmic Clear results, it’s very common

2 LOC Algorithmic Very easy in implementation to estimate the size of the software

3 Putnam model Algorithmic A Probabilistic model, it‟s used in a very large project

4
Seer-Sem

model
Algorithmic Used in very large projects

5 Linear model Algorithmic
It‟s the best method of prediction using a linear regression

technique

6 Analogy Non-Algorithmic
Works based on actual experience and especial expert is not

important

7
Expert

judgment
Non-Algorithmic Fast prediction, adapt for special projects

8 Parkinson Non-Algorithmic Correlates with some experience

9 Price to win Non-Algorithmic It‟s often gets the contract

10 Top-down Non-Algorithmic
Requires minimal project detail, usually faster and easier to

implement and system-level focus

11 Bottom-down Non-Algorithmic
More detailed basis, more stable and encourage individual

commitment

Table2. The Weakness of Algorithm and Non-Algorithmic Software Cost Estimation Techniques

Sr. No Method Type Weakness

1 COCOMO Algorithmic A lot of data is required, It is not suitable for any project

3 LOC Algorithmic
Prediction of the line is tough in the early stages, not good for a

very large project and language-dependent.

4 Putnam model Algorithmic For only use large projects

5
Seer-Sem model Algorithmic

it‟s required 50 input parameters which are increases the

complexity and uncertainty

6 Linear model Algorithmic
Little difference between actual and predicted results and error

is also needed to calculate.

7 Analogy Non-Algorithmic
Much information about past projects is required in some

situations there are no similar project

8 Expert judgment Non-Algorithmic Success depends on expert, usually is done incomplete

9 Parkinson Non-Algorithmic Reinforces poor practice

10 Price to win Non-Algorithmic Generally produces large overruns

11 Top-down Non-Algorithmic Less detailed basis and less stable

12 Bottom -down Non-Algorithmic
May overlook system-level costs, requires more effort, a lot of

time-consuming

7. ACKNOWLEDGMENTS

I would like to express my special thanks to all my teachers

who gave me their time and guidance, and all my friends

who helped in the task of developing this paper. Finally, I

would like especially to thank my parents for their

continuous support and encouragement throughout my

whole life.

8. CONCLUSION

In this paper, we have discussed a comparative study of

different types of software cost estimation techniques and

also described the advantages and disadvantages of these

techniques. This paper presents some of the relevant

reasons that cause inaccurate estimation. To produce a

meaningful and reliable cost estimate, we must improve our

understanding of software project attributes and their causal

relationships. It has been seen that all cost estimation

methods are specific for some specific type of projects. It is

very difficult to decide which method is better than to all

other methods because every method or model has its own

significance or importance. Finding the most important

reason for the software project failure has been the object of

many researchers in the last decade. According to the result

of this paper, the root causes for software project failure is

inaccurate estimation in stages of the project. To decrease

the project failures software project managers are used to

select the best estimation method based on the different

conditions and status of the project and also describe

comparing the estimation technique. There is no estimation

method which could present the best estimates in all various

situation and technique can be suitable in the special project.

To improve the performance of the existing method and

introducing the new methods for estimation based on

today’s software project requirements can be the future

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD26511 | Volume – 3 | Issue – 5 | July - August 2019 Page 895

works in this area. The future work is to study the new

software cost estimation technique that can help us to easily

understand the software cost estimation process.

References

[1] Leungh, Zhangf,‗”Software cost estimation” in

Handbook of software engineering and knowledge

engineering„ (World Scientific Pub. Co, River Edge, NJ,

2001)

[2] Sweta Kumari and Shashank Pushkar,” Performance

Analysis of the Software Cost Estimation Methods”,

International Journal of Advanced Computer Science

and Applications, Vol. 3, 2013.

[3] Oscar Marbán, Antonio de Amescua, Juan J. Cuadrado,

Luis García “A cost model to estimate the effort of data

mining projects”, Universidad Carlos III de Madri

(UC3M), Volume33, Issue 1, pp.133-150, March, 2008 .

[4] B. W. Boehm”, Software Engineering Economics”

Prentice-Hall, Englewood Cliffs, NJ, USA, 1981.

[5] Attarzadeh, I. Siew Hock Ow, “Proposing a New

Software Cost Estimation Model Based on Artificial

Neural Networks”, IEEE International Conference on

Computer Engineering and Technology (ICCET),

Volume: 3, Page(s): V3-487 - V3-491 2010.

[6] Sikka, G., A. Kaur, et al. “ Estimating function points:

Using machine learning and regression models”.

Education Technology and Computer (ICETC), 2nd

International Conference on, 2010.

[7] Li, J,J. Lin, et al. “ Development of the Decision Support

System for Software Project cost Estimation

Information Science and Engineering “. 2008. ISIS ’08.

International Symposium on, 2008.

[8] G.N. Parkinson” Parkinson„s Law and Other Studies in

Administration” Houghton-Mifflin, Boston, 1957.

[9] Galorath, D. D., & Evans, M. W. “ Software sizing,

estimation, and risk management: When performance

is measured performance improves”. Boca Raton, FL:

Auerbach,2006.

[10] Maged A. Yahya, Rodina Ahmad, Sai Peck Lee, “ Effects

of Software Process Maturity on COCOMO II’s Effort

Estimation from CMMI perspective”, 978-1-4244-2379-

8/08 IEEE (c),2008

[11] Leungh, Zhangf,‗” Software cost estimation” in

Handbook of software engineering and knowledge

engineering„ (World Scientific Pub. Co, River Edge, NJ,

2001)

[12] Yahya, M. A., R. Ahmad et al. “ Effects of software

process maturity on COCOMO II’s effort

estimation from CMMI perspective “. Research

Innovation and vision for the future, RIVF. IEEE

International Conference on, 2008.

