Study on Distress Patterns, Causes and Maintenance of Flexible Pavement for Selected Portions

Nyein Nyein Thant¹, Soe Soe War²

¹Associate Professor, ²Lecturer

^{1,2}Department of Civil Engineering, Technological University, Mandalay, Myanmar

How to cite this paper: Nyein Nyein Thant | Soe Soe War "Study on Distress Patterns, Causes and Maintenance of Flexible Pavement for Selected Portions"

Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-3 | Issue-5, August 2019,



pp.39-44,

https://doi.org/10.31142/ijtsrd25233

Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed

under the terms of the Creative Commons Attribution License (CC

License (CC BY 4.0) (http://creativecommons.org/licenses/by /4.0)

I. INTRODUCTION

Nowadays, a good system of transportation has become a measure of a country's economic and social development. In Myanmar, many save and convenient highway roads are needed to construct. There are different types of failures in flexible pavements. Pavement deteriorations or distresses can be classified into two basic categories for all pavement types - structural distress and environmental distress. The condition of a road will deteriorate due to the effect of weather, soil, aging, material failure, design fault, construction fault and traffic wear. After knowing the causes of failures and its patterns, maintenance activities can be effectively carried out. It includes both physical maintenance activities such as patching mowing, filling joints, seal coating, overlay, etc, and traffic service activities such as pavement markings, traffic signs, etc. If the maintenance activities of road are poor, it is not only detrimental to the traffic using it

ABSTRACT

This paper presents the study on flexible pavement distresses and repair techniques in two selected road portions. It is very important to know the flexible pavement distresses and its patterns. Pavement deterioration is serious problem for road and traffic highway sector in Myanmar. Tada U-Airport road (6/0 to 8/0 mile) and Paleik-Tada U road (0/0 to 7/0 mile) portions are chosen in this study. The failure patterns are classified depending upon the visual investigation along the study areas and identify the failure patterns of the two selected road portions. Map cracking, depression, corrugation, rutting, longitudinal cracking, pothole, edge failure, crocodile cracking, delamination, raveling and bleeding are found in the selected road portions. Along the selected portions, the pavements are damaged by the effects of weather, organic growth, traffic wear and damages as well as deterioration due to aging, excessive traffic loading of heavy trucks, insufficient pavement thickness, material failure, design faults and construction faults. The required overlay thickness is calculated by using India Road Congress (IRC) formula. After calculated, Tada U-Airport road requires overlay thickness of 6 inches and Paleik-Tada U road requires overlay thickness of 5 inches.

International Journal

KEYWORDS: pavement, distresses, visual inspection, IRC, Investigation Research and

Development

but also the road itself. Therefore, this study deals with the causes of failures and maintenance procedures for roads. In flexible pavement, the load carry capacity from distribution characteristic of the layered system and load is transferred by grain to grain contact. So, each layer of flexible pavement has adequate strength and which is very important.

II. Types of Distresses

One of the major challenges facing pavement engineers is how to select the optimal repair strategy for a flexible pavement that is aging and exhibiting distresses. This selection process can be relatively straightforward if the cause of the pavement distress is known. Unfortunately, finding the cause of the distress is often complex. The different types of distress in flexible pavement are tabulated in Table1.

Table1. Types of Distresses in Flexible Pavement and Causes

Types of Distresses	Causes of Failures		
	Lack of bond between the surfacing		
Pothole	Moisture entry to base course through the cracked pavement surface		
	Loss of surface course due to traffic load		
	Repeated application of heavy loads		
	Water entry to base course through cracked portion		
Map Cracking	Load associated disintegration of base		
Map Clacking	Insufficient pavement thickness		
	Seepage of water		

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

	Inadequate pavement thickness
Crocodile Cracking	 Brittle wearing course
	Lack of pavement thickness during construction
	Inadequate stability of base surfacing
Rutting	Inadequate compaction during construction
	Repeated application of heavy loads
	Inadequate compaction during construction
Raveling	Loss of bond between aggregate and bitumen
	Insufficient drainage system and weather condition
	Due to excessive load and repeated load
Longitudinal Creating	Poor construction design
Longitudinal Cracking	Poor drainage and seepage of water
	Settlement of shoulder
	Inadequate pavement thickness
Denneggien	Poor stability of pavement materials
Depression	Poor quality subgrade and poor drainage
	Subgrade settlement resulting from inadequate compaction
	Lack of stability in bituminous mix
Corrugation	Traffic action such as starting and stopping
	Moisture content and low quality materials used in mix
Edes Estland	Poor shoulder materials to resist erosion and Poor drainage
Edge Failure	> Inadequate pavement width and lateral displacement of embankment due to traffic load
	Lack of proper rolling
Bleeding	Excess asphalt in surface layer
	Due to hot weather condition
Delevited	Inadequate tack coat and Seepage of water
Delamination	Poor compaction during construction

III. Case Study

This study was concentrated on Tada UAirport road portion (6/0 to 8/0 mile) and PaleikTada U road portion (0/0 to 7/0 mile) in Mandalay Division, Myanmar. The selected portions are shown in Figure 1 and 2.

Figure 1. Location Map of Selected Road Portion in Tada UAirport Road

A. Distresses Patterns in Tada UAirport Road

In this study, eleven types of distresses are found. They are pothole, crocodile cracking, map cracking, longitudinal cracking, rutting, raveling, depressions, corrugation, edge failure, bleeding and delamination. Some of the localized pavement failures are shown in the following figures.

Figure 3. Localized Raveling in Tada UAirport Road

Figure2. Location Map of Selected Road Portion in PaleikTada U Road

Figure4. Localized Map Cracking in Tada UAirport Road

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

Figure5. Localized Crocodile Cracking in Tada UAirport Road

Figure6. Localized Pothole in Tada UAirport Road

Figure7. Localized Depression in Tada UAirport Road

Figure8. Localized Delamination in Tada UAirport Road

Figure9. Localized Rutting in Tada UAirport Road

Table2. Number of Distresses in Tada UAirport Road Number of Percentage (%) Failures Failure Percentage Patterns Mile Mile (%) (7/0-8/0)(6/0-7/0)Pothole 10.59 % 3 6 Map 5 3 9.41 % Cracking Crocodile 8.23 % 3 4 Cracking 5 4 10.59 % Depressions 7 5 14.12 % Rutting 4 3 Raveling 8.23 % 4.72 % Corrugation 4 -Edge Failure 4 5 10.59 % Longitudinal 3 2 5.88 % Cracking Bleeding 5 3 9.41 % Delamination 3 4 8.23 % Total 49 36 100 %

In this study area, there are 85 distresses found in Tada UAirport portion. In this study, 9 potholes, 8 map cracking, 7 crocodile cracking, 9 depressions, 12 rutting, 7 raveling, 4 corrugation, 9 edge failures, 5 longitudinal cracking, 8 bleeding and 7 delamination are founded during the field survey. The number of distresses and distress percentages of pavement at proposed road are described in Table2 and Figure10.

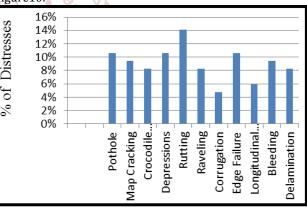


Figure 10. Distress Percentages of Tada UAirport Road

B. Distresses Patterns in PaleikTada U Road

In this study, eleven types of distresses are found. They are pothole, crocodile cracking, map cracking, longitudinal cracking, rutting, raveling, depressions, corrugation, edge failure, bleeding and delamination. Some of the localized pavement failures are shown in the following figures.

Figure11. Localized Raveling in PaleikTada U Road

International Journal of Trend in Scientific Research and Development (IJTSRD) @ <u>www.ijtsrd.com</u> eISSN: 2456-6470

Figure12. Localized Map Cracking in PaleikTada U Road

Figure15. Localized Pothole in PaleikTada U Road



Figure14. Localized Depression in PaleikTada U Road

Figure17. Localized Edge Failure in PaleikTada U Road

In this study area, there are 545 distress found in PaleikTada U road portion. This portion presents 7 miles from 0/0 to 7/0 miles. There are 91 potholes, 39 map cracking, 77 crocodile cracking, 60 depressions, 61 rutting, 82 raveling, 40 corrugation, 41 failures, 34 longitudinal cracking, 10 bleeding and 10 delamination. The number of distresses and distress percentages of pavement at proposed road are stated in Table3 and Figure18.

Feilune Detterree	Table3. Nu				
Failure Patterns	Mile (0/01/0)	Mile (1/03/0)	Mile (3/05/0)	Mile (5/07/0)	Percentage(%)
Potholes	12	30	21	28	16.70 %
Map Cracking	8	10	10	11	7.16 %
Crocodile Cracking	11	28	18	20	14.13 %
Depression	8	17	14	21	11.10 %
Rutting	4	24	21	12	11.19 %
Raveling	8	30	22	22	15.05 %
Corrugating	8	12	13	7	7.34 %
Edge Failure	7	12	9	13	7.52 %
Longitudinal Cracking	7	5	8	14	6.24 %
Bleeding	4		2	4	1.83 %
Delamination		4	6		1.83 %
Total	77	172	144	152	100 %

Table3. Number of Distresses in PaleikTada U Road

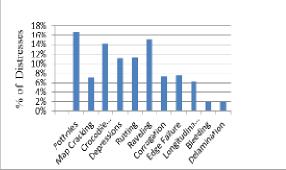


Figure 18. Distress Percentages of PaleikTada U Road

IV. Repair Method

After knowing the distress patterns and causes of pavement distresses, the suiTablemaintenance activities are carried out according to pavement distresses.

A. Repair Method of Tada U-Airport Road

The failure patterns and suiTablerepair methods of Tada U-Airport Road are shown in Table4.

Table4. Repair Method of Tada U-Airport Road Portion

Failure Patterns	Repair Methods
Pothole	Base patching
	Filling potholes with premix
	materials
Map Cracking	Removal of the cracked area
	then digging out and replacing
	the area with premix
	Overlay, Thin HMAs Overlay
Crocodile Cracking	Treatment based on the severity
	and intensity of cracks starting
	using overlay, seal coat, surface
	patching or reconstruction
Rutting	Filling the ruts using either a
	dense graded bituminous mix or
	open graded premix
	Seal Coat and Local Sealing
Raveling	Application of sanding
	Seal Coat and Local Sealing
Longitudinal	Cut and Patch
Cracking	Seal Coat, Local Sealing and overlay

Table4. Continued		
	Filling Depression, Base	
Depression	Patching	
	Overlay and Thin HMAs Overlay	
Corrugation	Seal Coat, Local Sealing	
Corrugation	Reconstruction	
	Shoulder Strengthening, rebuild	
Edge Failure	with good materials	
Euge Failure	Widen the pavement and	
	proper drainage	
Dlaading	Sanding, Seal Coat	
Bleeding	Local Sealing	
	Remove the area, clean and	
Delamination	replace	
Detainmation	Double Chip Seal, Seal Coat,	
	Overlay	

The most failure pattern is rutting in Tada UAirport road. These failures are continuous and terrible condition. And then, the failure area is large. So, this road maintenance is not enough seal coat, need to maintain overlay method. According to Transport and Road Research Laboratory (TRRL), total deflection is exceed the allowable value of 32×10^2 mm, the overlay maintenance is required for Tada UAirport Road. The various stresses and strains of road layers are calculated by using Method of Three Layered System. So, the required overlay thickness is calculated by India Road Congress. In Tada UAirport road portion, total thickness of existing pavement is 10 inches and the required overlay thickness is 6 inches after calculated.

B. Repair Method of PaleikTada U Road

The failure patterns and suiTablerepair methods of PaleikTada U Road are shown in Table5.

Table	5. Repair Methods	s of PaleikTada U Road Portion

	Failure Patterns	Repair Methods	
			Base patching
	Pothole	\triangleright	Filling potholes with premix
			materials and overlay
		\triangleright	Removal of the cracked area
	Map Cracking		then digging out and replacing
	Map Gracking		the area with premix
1	The second se	\succ	Overlay, Thin HMAs Overlay
\sim	Alle	\triangleright	Treatment based on the
)	Itific The		severity and intensity of cracks
•	Crocodile		starting using overlay, seal coat,
	Cracking		surface patching or
)n °• %. V	λ.	reconstruction
Γ		\succ	Double Chip Seal
a	Journal 🖁 🎴		Filling the ruts using either a
c	Rutting 2	N	dense graded bituminous mix
3		2	or open graded premix
cl	i and 💽 💁		Seal Coat and Local Sealing
p	ment		Overlay, Double Chip Seal, Thin
	Raveling	2	HMAs Overlay
6	-6470 - 😤 🔏	1	Seal Coat and Local Sealing
	Longitudinal		Cut and Patch
•	Cracking		Seal Coat, Local Sealing and
_			overlay
ſ		۶	
Ś	Depression		Patching
	-		Overlay and Thin HMAs Overlay
	Corrugation		Seal Coat and local sealing
			Reconstruction
			Shoulder Strengthening
	Edge Failure		Rebuild with good materials
			in aon the paromone and
			proper drainage
	Bleeding	\wedge	Sanding, Seal Coat and local
	0		sealing
			Remove the area, clean and
	Delamination		replace, Double Chip Seal, Seal
			Coat, Overlay and Treatment

The most failure pattern is pothole in PaleikTada U road. The road is used two ways and the extended each one way width is not enough to travel two vehicles as parallel. These failures are continuous and terrible condition. And then, the failure area is large. So, this road maintenance is not enough seal coat, need to maintain overlay method. According to Transport and Road Research Laboratory (TRRL), total deflection is exceed the allowable value of 32×10^2 mm, the overlay maintenance is required for PaleikTada U Road. So, the required overlay thickness is calculated by India Road

Congress. In PaleikTada U road portion, total thickness of existing pavement is 8 inches and the required overlay thickness is 5 inches.

V. Conclusion

In this study, large number of failures and same types of failure patterns are found along Tada UAirport road and PaleikTada U road. These types of failure are map cracking, depression in flexible pavements, corrugation, rutting, longitudinal cracking, pothole, bleeding, edge failure, crocodile cracking, delamination and raveling. The localized failures are caused by pavement aging, repeat growth in traffic loading and necessary of drain. After knowing the causes of defects and failures, the maintenance method required for the forming failure patterns is determined. A pavement is maintained by either visual maintenance activities or structural maintenance activities. If the wearing course of existing road has not achieved compaction, loose binding action is found. The existing road should be maintained by structural maintenance such as overlay. In Tada UAirport road portion, the existing pavement total thickness is 10 inches and the required overlay thickness is 6 inches after calculated. In PaleikTada U portion, the road width is needed to extend and the subgrade of the existing pavement has not achieved compaction and stable, localized road failure occur. Moreover, the road is used two ways and the extended each one way width is not enough to travel two

vehicles as parallel. So the existing road condition is poor. The existing road should be maintained by structural maintenance such as overlay maintenance. In PaleikTada U road portion, the existing pavement total thickness is 8 inches and the required overlay thickness is 5 inches.

REFERENCES

- S. K. Khanna and Justo, *Highway Engineering*, 1st edition, New Delhi: Satya Prakashan Co, (1997)
- [2] Ann Johnson. P.E, *Handbook on Asphalt Pavement Maintenance*, Department of Transportation, Minnesota, (2000)
- [3] ROGER L. Brockenbrough, *Highway Engineering HandBook*, 2nd edition: New York,(2003)
- [4] MA KHAING SU TIN, Identification on Failure and Maintenance Proposal of Flexible Pavement (YangonPatheinMawtinsoun Road) Portion (2011)
- [5] Lee Chee Soon, *Study on Flexible Pavement Failures in Soft Soil Tropical Regions,* University of Malaysia, (2015)
- [6] Magdi M.E, Zumrawi, Investigation Causes of Pavement Deterioration In Khartoum State, University of Khartioum, (2016)

