Design of Ice Manufacturing Plant (2000 lb)

Khaing Zar Nyunt, Hnin Yu Yu Kyaw, Ei Cho Cho Theik

Department of Mechanical Engineering, Technological University (Toungoo), Toungoo, Myanmar

ABSTRACT

Ice has been used for hundreds of years for short time preservation of food and still it is used to preserve cool drinks and food for short period. There are many types of ice manufacturing plants. They are divided by thickness and shape of ice. The ice plant consists of four main components: condenser, compressor, evaporator and freezing tank containing sodium chloride brine, bring agitator and can with water.

In this paper 2000 lb per day block ice manufacturing plant is designed. The temperature of water is 27°C and to reduce it to -7.2°C. Based on this requirement, the design consideration and calculation have done.

Keywords: Ice plant, condenser, compressor, evaporator and freezing tank

I. INTRODUCTION

Nowadays, human being is face with global warming effect according to the ozone depletion. So ambient air temperature rises and a result human being suffer from it last summer even some were die. For the rich, they will use freezer or refrigerator but not for lower level people because they will try to fulfill their institution for a day. That’s why they need to use ice for their goods or something to be last longer. Myanmar is a developing country so ices are being used in commercially as a result the demand is high.

Hence there are;

1. Block ice manufacturing plants
2. Flake ice manufacturing plants
3. Tube ice manufacturing plants
4. Slice or Plate ice manufacturing plants and so on.

Ice plants may be further subdivided into those that make dry or wet ice. Dry ice here means ice at a temperature low enough to prevent the particles becoming moist; the term does not refer in this note to solid carbon dioxide. In general, dry sub cooled ice is made in plants that mechanically remove the ice from the cooling surface; most flake ice plants are of this type. When the cooling surface of an icemaker is warmed by a defrost mechanism to release the ice, the surface of the ice is wet and, unless the ice is then sub cooled below 0°C, remains wet in storage; tube ice and plate ice plants are of this type.

In this paper, the proposed concept is to make an ice block. The ice plant is the one that converts water to ice together with associated refrigeration machinery, storage equipment and building. Power and refrigeration requirements are discussed, and the main types of ice manufacturing plants are described.

II. ICE Manufacturing Plant

A. Refrigeration System

All refrigeration systems are based on reversed Carnot cycle. Refrigeration is constructed with four basic components. They are compressor, condenser, expansion device and evaporator
The compressor is considered as they are of refrigeration system because it pumps the refrigerant through the system similar to the heart which pumps the blood through the body. Compressing the gas requires that work should be done upon it, it will be clear that compressor must be driven by some form of prime mover. The reciprocating compressor used in this paper. For a reciprocating compressor the displacement is fixed by the dimensions and the rpm of the compressor. The reciprocating compressor is commonly used in, refrigeration and air conditioning plants.

The condenser is a heat exchange device similar to the evaporator; it rejects the heat from the system absorbed by the evaporator. This heat is rejected from a hot superheated vapor in the first passes of the condenser. The middle of the condenser rejects latent heat from the saturated vapor, which is in the process of phase changing to a saturated liquid. The last passes of the condenser reject heat from subcooled liquid. This further sub-cools the liquid to below its condensing temperature. In fact, the three functions of a normal condenser are to de-superheat, condense, and subcool the refrigerant. When heat is being absorbed into the system, it is at the point of change of state (liquid to a vapor) of the refrigerant where the greatest amount of heat is absorbed. The same thing, in reverse, is true in the condenser. The point where the change of state (vapor to a liquid) occurs is where the greatest amount of heat is rejected. The condenser is operated at higher pressures and temperatures than the evaporator and is often located outside. The same principles apply to heat exchange in the condenser as in the evaporator. The materials a condenser is made of and the medium used to transfer heat make a difference in the efficiency of the heat exchanger.

The evaporator in a refrigeration system is responsible for absorbing heat into the system from whatever medium is to be cooled. This heat-absorbing process is accomplished by maintaining the evaporator coil at a lower temperature than the medium to be cooled.

The expansion device, often called the metering device, is the fourth component necessary for the compression refrigeration cycle to function. The expansion device is not as visible as the evaporator, the condenser, or the compressor. Generally, the device is concealed inside the evaporator cabinet and not obvious to the casual observer. It can be either a valve or a fixed-bore device.

B. Refrigerant R22
Refrigerant R22 is a (HCFC) has less effect on ozone layer. It has one hydrogen atom in its compound and not all the hydrogen atoms from it are replaced by the halocarbons as it happens in chlorofluorohydrocarbons (CFCs). The halocarbons have high detrimental effect to the ozone layer of environment. Since R22 is HCFC it has lesser ozone destruction capability. The ozone destruction potential of R22 is only 5% of refrigerant R11, which has the highest ozone destruction potential. Greater water absorbing capacity:

Refrigerant R22 has greater water absorbing capacity than R12. This is very important in low temperature applications since the water in refrigerant R22 would have less troubling effects on the refrigeration system. Anyways, even minor amount of water in the refrigeration system is undesirable. In developed countries R22 is being replaced in the phase manner. No new equipment using Refrigerant R22 would be available from January 2010. Thereafter R22 would be available only for servicing the old systems. By the year 2021, complete production of refrigerant R22 would stop. Some of the available alternatives for R22 are: R-134a, R-507, and R-407c.

III. Design Theory
A. Determination of Cooling Capacity of Evaporator
Before starting the design of compressor, heat rejected from water to make ice is firstly considered. In this ice manufacturing plant, temperature of water to make ice is 27°C. Cooling capacity of evaporator must also be known. Operating condition such as evaporating temperature and condensing temperature must also be known.

Heat rejected from water can be calculated by following equation:

\[Q_{\text{w}} = m_{\text{w}} C_{p_{\text{w}}} \Delta t_{\text{w}} + m_{\text{w}} h_{\text{w}} + (m_{\text{w}} C_{p_{\text{w}}} \Delta t_{\text{w}}) \]

Where,

- \(Q_{\text{w}} \) = Heat rejected from water, kW
- \(m_{\text{w}} \) = Total weight of ice, kg/day
- \(C_{p_{\text{w}}} \) = Specific heat of water, 4.187 kJ/kg
- \(\Delta t_{\text{w}} \) = Temperature difference, K
- \(H \) = Latent heat of fusion of ice, 335 kJ/kg

B. Determination of Compressor size
The speed of rotation of crankshaft is one of the factors of compressor displacement. In an effect to reduce the size and weight of the compressor, the compressor design is towards higher speeds. Rotational speeds are between 50 to 55 rpm (for slow speed compressor) and between 250 to 3400 rpm (for modern compressor). In this paper, the motor with 2850 rpm, 220 volt and frequency of 50 Hertz is used.

The bore and stroke are two fundamental parts of a compressing unit required for determination of the capacity of the compressor. The relationship between bore and stroke differs somewhat with the individual compressor. The dimension of bore may be less than that of the stroke. The general trend in high speed compressor is towards a large bore and short stroke. The piston velocity (m/sec) that is a function of compressor speed limits the length of stroke.

\[\text{Piston Speed} = \frac{2 \times \text{L} \times \text{rpm}}{60} \]

Where, \(L \) = Length of stroke (m)

The maximum relative speed of crankshaft (r.p.m) and the maximum piston speed give the approximately value of
length of stroke by using equation. Then length of stroke can be obtained. Most of hermetic type reciprocating compressors are produced by various manufacturers provide the stroke about 0.8 times the bore (D). Therefore this paper also assumed the stroke as (L = 0.8 D).

The quantity of heat that each unit mass of refrigerant absorbs from the refrigerated is known as refrigerating effect.

Refrigerating Effect (R.E) = h₁ - h₄ kJ/kg

The refrigerant flow to the evaporator is regulated with a hand expansion valve on the suction line after the evaporator.

Qevap = mₑc'(h₁ - h₄)

The volume of vapor that must be remove each minute can be calculated per minute by the specific volume (v₁) that can be found in the saturated table after vaporizing temperature is known.

vₑ = mₑc' × v₁

The piston displacement of a compressor is the volume displaced by the piston as it moves from one end of its stroke to the other, multiplied by the number of cylinder.

Piston displacement = \(\frac{\pi}{4} \times D^2 \times L \times N \times n \)

Where,

\[N = \text{number of revolution per minute (rpm)} \]
\[n = \text{number of cylinder} \]

The actual volume of suction vapor removed from the suction line per unit time is the actual displacement of the compressor. The ratio of the actual displacement of the compressor to its piston displacement is known as the total or real volumetric efficiency of the compressor.

Volumetric efficiency = \(\frac{\text{actual intake volume}}{\text{theoretical piston displacement}} \)

Where \(V_{\text{suction}} \) is the specific volume of vapor entering the compressor and \(V_{\text{discharge}} \) is the specific volume of the vapor after isentropic compression to \(P_e \). The values of specific volumes can be read of the p-h chart from the table.

\[\eta_v = 1 + c - c \left(\frac{V_{\text{suction}}}{V_{\text{discharge}}} \right) \]

This clearance volumetric efficiency has a maker effect upon the compressor piston displacement required per ton of refrigeration developed. The effect becomes more marked as the compression ratio or the spread between condenser and evaporator pressure increases.

C. Determination of Evaporator Tube Length

In this ice making plant, bar-tube coil type evaporator is used. Before starting the design of evaporator, cooling capacity, evaporating temperature, initial temperature of brine, Final temperature of brine must be known. To determine evaporator tube length, the following equation is used.

\[Q_{\text{evap}} = U A \Delta t \]

Where,
\(Q_{\text{evap}} = \) Heat absorbed by evaporator coil, kW
\(U = \) Heat transfer coefficient, W/m²K
\(A_e = \) Effective surface area of evaporator coil, m²
\(\Delta t = \) Log mean temperature of difference, K

\[\Delta t = \frac{GTD_e - LTD_e}{\ln \frac{GTD_e}{LTD_e}} \]

Where,

\(GTD_e = \) Greater temperature difference evaporator, K or °F
\(LTD_e = \) Lower temperature difference evaporator, K or °F
\(A_e = \pi D_e L_e \)

Where,

\(D_e = \) Diameter of the evaporator coil
\(L_e = \) Length of the evaporator coil

To obtain the effective surface area, heat transfer coefficient should be known.

For sodium chloride brine, \(U \) can be obtained from chart. If calcium chloride brine is used, \(U \) can used obtained chart.

To calculation \(U \), many effects may be considered to get value of \(U \).

\[\text{COP (theo)} = \frac{h_4 - h_3}{h_2 - h_1} \]

Where,
\(\text{COP (theo)} = \) Coefficient of performance theoretical
\(h = \) enthalpy

\[\text{COP (act)} = \frac{\text{Refrigeration effect}}{\text{Energy input}} \]

Where,
\(\text{COP (act)} = \) Coefficient of performance actual
\(\text{Energy input} = \frac{W_{\text{comp}}}{\eta_m \times \eta_e} \)

Where,

\(W_{\text{comp}} = \) Compressor work done, kW
\(\eta_m = \) Mechanical efficiency
\(\eta_e = \) Electrical efficiency

D. Determination of Condenser Tube Length

To calculate condenser tube length, required surface area of condenser coil is firstly considered. The surface area of condenser coil is calculated by the following equation.

\[Q_{\text{air}} = h_{\text{wet}} \times C_f \times A_s \times (T_{ab} - T_{db}) \]

Where,

\(Q_{\text{air}} = \) amount of heat rejected by air, Btu/hr
\(h_{\text{wet}} = \) Heat transfer coefficient of wet surface, Btu/hr·ft²·F
\(C_f = \) Coil surface efficiency or contact factor of coil surface
\(A_s = \) Effective surface area of condenser coil, ft²
\(T_{ab} = \) Entering temperature of air or DB, °F
\(T_{db} = \) Dew point temperature of entering air, °F

In evaporative condenser, there must be combination type of heat disposing into air and water. So, the amount of heat removed by water must be firstly considered in order to determine the amount of heat removed by air.

\[Q_{\text{bleed water}} = \rho V_o C_p (T_1 - T_2) \]
Where,
- \(Q_{\text{bleed water}} \) = Heat removal load due to cooling water, kW
- \(\rho \) = Density of water, kg/m\(^3\)
- \(v^* \) = Volume flow rate of cooling water, m\(^3\)/sec
- \(C_p \) = Specific heat capacity of water, 4.187 kJ/kg
- \(T_2 \) = after passing through the water temperature of condenser, °C
- \(T_1 \) = before passing through the water temperature of condenser, °C
- \(Q_{\text{cond}} \) = \(m_r^o (h_2 - h_3) \)

Where,
- \(Q_{\text{cond}} \) = Amount of heat rejected by condenser coil, kW
- \(m_r^o \) = Mass flow rate of refrigerant, kg/sec
- \(h_2 \) = Enthalpy of refrigerant at entrance of condenser, kJ/kg
- \(h_3 \) = Enthalpy of refrigerant at leaving of condenser, kJ/kg

According to the cooling tower evaporation rule of Thumb, the seasonal average in your area may be 75% of evaporative cooling.

\[V_i^e = 0.75 \times Q_{\text{cond}} \]

In this condenser, the amount of heat removed by air can be determined by summing of sensible heat and latent heat of air. Entering air temperature and leaving temperature must be known.

Sensible heat can be calculated by this equation,

\[Q_{\text{sensible}} = 1.1 \times \text{cfm} \times (T_2 - T_1) \]

Latent heat can be found out by following equation

\[Q_{\text{latent}} = 0.68 \times \text{cfm} \times (W_2 - W_1) \]

Where,
- \(Q_{\text{sensible}} \) = Sensible Heat transfer, Btu/hr
- \(Q_{\text{latent}} \) = Latent Heat transfer, Btu/hr
- \(T_2 \) = Leaving temperature of air, °C
- \(T_1 \) = Entering temperature of air, °C
- \(W_2 \) = Specific humidity of leaving, grain/lb
- \(W_1 \) = Specific humidity of entering, grain/lb
- \(Q_{\text{air}} \) = \(Q_{\text{sensible}} + Q_{\text{latent}} \)

Where,
- \(Q_{\text{air}} \) = Heat removal load due to air, Btu/hr

From this, volume flow rate of air (cfm) passing through the condenser can be calculated.

Following equation can compute fan break horse power,

\[\text{Fan BHP} = \text{cfm} \times \text{pressure drop in inch of water} \]

And

\[\text{Fan motor} = \frac{\text{Fan BHP}}{\text{electrical efficiency}} \]

And the velocity of fan is given by,

\[v = \sqrt{\frac{\text{BHP} \times \eta_m \times 550 \times g}{m_a}} \]

Where,
- \(v \) = fan flow velocity, ft/sec
- \(g \) = Gravitational acceleration, 32.2 ft/sec\(^2\)
- \(m_a \) = mass flow rate of air, lb/sec
- \(\eta_m \) = Mechanical Efficiency

V. Input Data

In this thesis, required data are as follow;

- Hermetic type reciprocating compressor
- Condensing temperature = 54.4°C
- Evaporating temperature = -7.2°C
- Outside diameter of condenser coil = 3/4 inch
- Mass flow rate of refrigerant = 0.0346 kg/sec
- Evaporating temperature = -7°C
- Type of refrigerant = R 22
- Type of material = Bar-tube Evaporator
- Diameter of coil tube = 0.0254 m = 1in
- Initial temperature of Brine = -3°C = 26.6 °F
- Final temperature of Brine = -5° C = 23 °F

IV. Result Data

Table 1. Design Result Data for Ice Manufacturing Plant (Compressor)

<table>
<thead>
<tr>
<th>No</th>
<th>Description</th>
<th>Symbol</th>
<th>Result Data</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Refrigerant flow rate</td>
<td>(m_r^o)</td>
<td>0.0364</td>
<td>kg/s</td>
</tr>
<tr>
<td>2</td>
<td>Actual intake volume</td>
<td>(v^o_R)</td>
<td>2,2938 x 10(^{-3})</td>
<td>m(^3)/s</td>
</tr>
<tr>
<td>3</td>
<td>bore</td>
<td>D</td>
<td>43</td>
<td>mm</td>
</tr>
<tr>
<td>4</td>
<td>length</td>
<td>L</td>
<td>34</td>
<td>mm</td>
</tr>
<tr>
<td>5</td>
<td>Volumetric efficiency</td>
<td>(\eta_v)</td>
<td>98</td>
<td>%</td>
</tr>
<tr>
<td>6</td>
<td>Compressor work done</td>
<td>(W_{\text{comp}})</td>
<td>1712</td>
<td>W</td>
</tr>
<tr>
<td>7</td>
<td>Coefficient of performance</td>
<td>(\text{COP}_R)</td>
<td>2.978</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Compressor motor power</td>
<td>(P_{\text{motor}})</td>
<td>2377</td>
<td>W</td>
</tr>
</tbody>
</table>

Table 2. Design Result Data for Ice Manufacturing Plant (Condenser)

<table>
<thead>
<tr>
<th>No</th>
<th>Description</th>
<th>Symbol</th>
<th>Result Data</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mass flow rate of refrigerant</td>
<td>(m_r^o)</td>
<td>0.0364</td>
<td>kg/sec</td>
</tr>
<tr>
<td>2</td>
<td>Amount of heat rejected by condenser coil</td>
<td>(Q_{\text{cond}})</td>
<td>6.8</td>
<td>kW</td>
</tr>
<tr>
<td>3</td>
<td>volume flow rate of cooling water</td>
<td>(V_i)</td>
<td>1.42 x 10(^{-6})</td>
<td>m(^3)/sec</td>
</tr>
<tr>
<td>4</td>
<td>Heat removal load due to cooling water</td>
<td>(Q_{\text{bleed water}})</td>
<td>0.01189</td>
<td>kW</td>
</tr>
<tr>
<td>5</td>
<td>Amount of heat rejected by air</td>
<td>(Q_{\text{air}})</td>
<td>23161.98</td>
<td>Btu/hr</td>
</tr>
<tr>
<td>6</td>
<td>Amount of heat rejected by fan air</td>
<td>(Q_{\text{f}})</td>
<td>849.67</td>
<td>Ft(^3)/min</td>
</tr>
<tr>
<td>7</td>
<td>Fan break horse power</td>
<td>BHP</td>
<td>0.0984</td>
<td>hp</td>
</tr>
<tr>
<td>8</td>
<td>Fan motor break horse power</td>
<td>BHP</td>
<td>0.1231</td>
<td>hp</td>
</tr>
<tr>
<td>9</td>
<td>Mass flow rate of air</td>
<td>(m)</td>
<td>0.9699</td>
<td>lb/sec</td>
</tr>
<tr>
<td>10</td>
<td>Fan air flow velocity</td>
<td>(V)</td>
<td>11.56</td>
<td>m/sec</td>
</tr>
</tbody>
</table>
Table 3. Design Result Data for Ice Manufacturing Plant (Evaporator)

<table>
<thead>
<tr>
<th>No</th>
<th>Description</th>
<th>Symbol</th>
<th>Results</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Greater Temperature Diff</td>
<td>GTD_e</td>
<td>4, 7.2</td>
<td>°C, °F</td>
</tr>
<tr>
<td>2</td>
<td>Lower Temperature Diff</td>
<td>LTD_e</td>
<td>2, 3.6</td>
<td>°C, °F</td>
</tr>
<tr>
<td>3</td>
<td>Log mean Temperature Diff</td>
<td>Δt_m</td>
<td>2.88, 5.19</td>
<td>°C, °F</td>
</tr>
<tr>
<td>4</td>
<td>Heat transfer coefficient in brine</td>
<td>U</td>
<td>95, 540</td>
<td>btu/hrft²°F, W/m²k</td>
</tr>
<tr>
<td>5</td>
<td>Effective surface area evp; coil</td>
<td>A_e</td>
<td>3.35</td>
<td>m²</td>
</tr>
<tr>
<td>6</td>
<td>(Brine) Effective surface area evp; coil</td>
<td>A_e(brine)</td>
<td>3.217</td>
<td>m²</td>
</tr>
<tr>
<td>7</td>
<td>Length of evaporator coil</td>
<td>L_e</td>
<td>137.72</td>
<td>ft</td>
</tr>
<tr>
<td>8</td>
<td>Length of evaporator coil (brine)</td>
<td>L_e(brine)</td>
<td>132.25</td>
<td>ft</td>
</tr>
<tr>
<td>9</td>
<td>Energy Input, Motor power</td>
<td>P_motor</td>
<td>2.71</td>
<td>kW</td>
</tr>
<tr>
<td>10</td>
<td>Theoretical Coefficient of performance</td>
<td>COP_theo</td>
<td>2.97</td>
<td>_</td>
</tr>
<tr>
<td>11</td>
<td>Actual Coefficient of performance</td>
<td>COP_act</td>
<td>1.29</td>
<td>_</td>
</tr>
</tbody>
</table>

V. Conclusion
Firstly, it is important to understand concept of refrigeration which is related with Carnot cycle, Thermodynamic heat transfer and energy conservation when study the refrigeration system.

In this paper, hermetic type of single cylinder reciprocating refrigeration compressor is designed. The compressor work done from calculation is 1712 Watts and bore and stroke is 43mm and 34mm respectively. The compressor motor is 2377 Watts. The motor with 2850 rpm, 220 volt, and a frequency of 50 Hertz is used. Volumetric efficiency is 98%. Coefficient of performance is 2.978. This design based on refrigeration load 5100 Watt. Refrigerant flow rate is 0.0346 kg/sec is used in evaporative condenser. The condenser must reject amount of heat 6.8 kW. So the area might be 16.48 ft² and length be 84 ft. If vertical type of shell and tube condenser is used, we will need 20 tubes that might be 1 inch diameter, 45 ft. should be long and shell diameter 28 inches. In the evaporator coil of diameters are 0.0127m² and 0.01905m².

ACKNOWLEDGEMENT
Firstly, the author would like to thank my parents for their best wish to join the master course at MTU. The author greatly expresses her thanks to all persons whom will concern to support in preparing this paper.

REFERENCE