
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume 4 Issue 3, April 2020 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470

@ IJTSRD | Unique Paper ID – IJTSRD25102 | Volume – 4 | Issue – 3 | March-April 2020 Page 797

Introduction to Software Testing

Durgesh Raghuvanshi

B Tech, Department of Computer Science,

IILM Academy of Higher Learning, Greater Noida, Uttar Pradesh, India

ABSTRACT

In this era of computing, the ideas and techniques of software testing have

become essential knowledge for all software developers. A software developer

can expect to use the concepts presented in this book many times during his or

her career. This chapter introduces the subject of software testing by

describing the activities of a test engineer, defining a number of key terms, and

then explaining the central notion of test coverage. Software is a key

ingredient in many of the devices and systems that pervade our society.

Software defines the behavior of network routers, financial networks,

telephone switching networks, the Web, and other infrastructure of modern

life. Software is an essential component of embedded applications that control

exotic applications such as airplanes, spaceships, and air traffic control

systems, as well as mundane appliances. This paper provides an introduction

to fundamental concepts of software testing and software product should only

be released after it has gone through a proper process of development, testing

and bug fixing. Testing looks at areas such as performance, stability and error

handling by setting up test scenarios under controlled conditions and

assessing the results. This is why exactly any software has to be tested. It is

important to note that software is mainly tested to see that it meets the

customers’ needs and that it conforms to the standards. It is the usual norm

that software is considered of good quality if it meets the user requirements.

KEYWORDS: automation, test engineer, software activity, infeasibility,

subsumption, bugs, etc

How to cite this paper: Durgesh

Raghuvanshi "Introduction to Software

Testing" Published

in International

Journal of Trend in

Scientific Research

and Development

(ijtsrd), ISSN: 2456-

6470, Volume-4 |

Issue-3, April 2020,

pp.797-800, URL:

www.ijtsrd.com/papers/ijtsrd25102.pdf

Copyright © 2020 by author(s) and

International Journal of Trend in Scientific

Research and Development Journal. This

is an Open Access article distributed

under the terms of

the Creative

Commons Attribution

License (CC BY 4.0)

(http://creativecommons.org/licenses/by

/4.0)

INTRODUCTION

Software is a series of instructions for the computer that

perform a particular task, called a program; the two major

categories of software are system software and application

software. The system software is made up of control

programs. Application software is any program that

processes data for the user (spreadsheet, word processor,

payroll, etc.).

A software product should only be released after it has gone

through a proper process of development, testing and bug

fixing. Testing looks at areas such as performance, stability

and error handling by setting up test scenarios under

controlled conditions and assessing the results. This is why

exactly any software has to be tested. It is important to note

that software is mainly tested to see that it meets the

customers’ needs and that it conforms to the standards. It is

the usual norm that software is considered of good quality if

it meets the user requirements. All software problems can be

termed as bugs. A software bug usually occurs when the

software does not do what it is intended to do or does

something that it is not intended to do. Flaws in

specifications, design, code or other reasons can cause these

bugs. Identifying and fixing bugs in the early stages of the

software is very important as the cost of fixing bugs grows

over time. So, the goal of a software tester is to find bugs and

find them as early as possible and make sure they are fixed.

Testing is context-based and risk-driven. It requires a

methodical and disciplined approach to finding bugs. A good

software tester needs to build credibility and possess the

attitude to be explorative, troubleshooting, relentless,

creative, diplomatic and persuasive.

As against the perception that testing starts only after the

completion of the coding phase, it actually begins even

before the first line of code can be written. In the life cycle of

the conventional software product, testing begins at the

stage when the specifications are written, i.e. from testing

the product specifications or product spec. Finding bugs at

this stage can save huge amounts of time and money.

Once the specifications are well understood, you are

required to design and execute the test cases. Selecting the

appropriate technique that reduces the number of tests that

cover a feature is one of the most important things that you

need to take into consideration while designing these test

cases. Test cases need to be designed to cover all aspects of

the software, i.e. security, database, functionality (critical

and general) and the user interface. Bugs originate when the

test cases are executed. As a tester you might have to

perform testing under different circumstances, i.e. the

application could be in the initial stages or undergoing rapid

changes, you have less than enough time to test, the product

might be developed using a life cycle model that does not

support much of formal testing or retesting. Further, testing

using different operating systems, browsers and the

configurations are to be taken care of.

IJTSRD25102

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD25102 | Volume – 4 | Issue – 3 | March-April 2020 Page 798

Reporting a bug may be the most important and sometimes

the most difficult task that you as a software tester will

perform. By using various tools and clearly communicating

to the developer, you can ensure that the bugs you find are

fixed.

Using automated tools to execute tests, run scripts and

tracking bugs improves the efficiency and effectiveness of

your tests. Also, keeping pace with the latest developments

in the field will augment your career as a software test

engineer.

Objectives and important terms of Software Testing

The objective of testing is to discover the residual design

errors before delivering to the customer.

� Bug: A software bug may be defined as a coding error

that causes an unexpected defect, fault or flaw. In other

words, if a program does not perform as intended, it is

most likely a bug.

� Error: A mismatch between the program and its

specification is an error in the program.

� Defect: Defect is the variance from the desired product

attribute (it can be a wrong, missing or extra data). It

can be of two types – Defect from the product or

variance from customer/user expectations. It is a flaw in

the software system and has no impact until it affects

the user/customer and operational system. 90% of all

the defects can be caused by process problems.

� Failure: A defect that causes an error in operation or

negatively impacts a user/ customer.

� Quality Assurance: Is oriented towards preventing

defects. Quality Assurance ensures all parties concerned

with the project adhere to the process and procedures,

standards and templates and test readiness reviews.

� Quality Control: quality control or quality engineering is

a set of measures taken to ensure that defective

products or services are not produced and that the

design meets performance requirements.

� Verification: Verification ensures the product is

designed to deliver all functionality to the customer; it

typically involves reviews and meetings to evaluate

documents, plans, code, requirement, and specifications;

this can be done with checklists, issues lists,

walkthrough, and inspection meetings.

� Validation: Validation ensures that functionality, as

defined in requirements, is the intended behavior of the

product; validation typically involves actual testing and

takes place after verifications are completed.

� Software Reliability Estimation: The objective of testing

is to discover the residual design errors before

delivering to the customer. The failure data during the

testing process are taken in down to estimate the

software reliability. The testing process may function

with regular feedback from the reliability analysis to the

testers and designers.

Most common errors in the software

� User Interface Errors: Missing/Wrong Functions Doesn’t

do what the user expects, Missing information,

Misleading, Confusing information, Wrong content in

Help text, Inappropriate error messages. Performance

issues - Poor responsiveness, Can't redirect output,

Inappropriate use of keyboard

� Error Handling: Inadequate - protection against

corrupted data, tests of user input, version control;

Ignores – overflow, data comparison, Error recovery –

aborting errors, recovery from hardware problems.

� Boundary related errors: Boundaries in loop, space,

time, memory, mishandling of cases outside the

boundary.

� Calculation errors: Bad Logic, Bad Arithmetic, Outdated

constants, Calculation errors, incorrect conversion from

one data representation to another, Wrong formula,

incorrect approximation.

� Initial and Later states: Failure to - set data item to zero,

to initialize a loop control variable, or re-initialize a

pointer, to clear a string or flag, Incorrect initialization.

� Control flow errors: Wrong returning state assumed,

Exception handling based exits, Stack

underflow/overflow, Failure to block or unblock

interrupts, Comparison sometimes yields the wrong

result, Missing/wrong default, and Data Type errors.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD25102 | Volume – 4 | Issue – 3 | March-April 2020 Page 799

� Errors in Handling or Interpreting Data: Un-terminated

null strings, overwriting a file after an error exit or user

abort.

� Race Conditions: Assumption that one event or task

finished before another begins, Resource races, Tasks

starts before its prerequisites are met, Messages cross

or don't arrive in the order sent.

� Load Conditions: Required resources are not available,

No available large memory area, Low priority tasks not

put off, doesn’t erase old files from mass storage, and

doesn’t return unused memory.

� Hardware: Wrong Device, Device unavailable,

Underutilizing device intelligence, Misunderstood status

or return code, Wrong operation or instruction codes.

� Source, Version and ID Control: No Title or version ID,

Failure to update multiple copies of data or program

files.

� Testing Errors: Failure to notice/report a problem,

Failure to use the most promising test case, corrupted

data files, Misinterpreted specifications or

documentation, Failure to make it clear how to

reproduce the problem, Failure to check for unresolved

problems just before release, Failure to verify fixes,

Failure to provide summary report.

Testing levels based on software activity

Tests can be derived from requirements and specifications,

design artifacts, or the source code. A different level of

testing accompanies each distinct software development

activity: Acceptance Testing – assess software with respect

to requirements. System Testing – assess software with

respect to architectural design. Integration Testing – assess

software with respect to subsystem design. Module Testing –

assess software with respect to detailed design. Unit Testing

– assess software with respect to implementation. A typical

scenario for testing levels and how they relate to software

development activities by isolating each step. Information

for each test level is typically derived from the associated

development activity. Indeed, the standard advice is to

design the tests concurrently with each development

activity, even though the software will not be in an

executable form until the implementation phase. The reason

for this advice is that the mere process of explicitly

articulating tests can identify defects in design decisions that

otherwise appear reasonable. Early identification of defects

is by far the best means of reducing their ultimate cost. Note

that this diagram is not intended to imply a waterfall

process. The synthesis and analysis activities generically

apply to any development process. The requirements

analysis phase of software development captures the

customer’s needs. Acceptance testing is designed to

determine whether the completed software, in fact, meets

these needs. In other words, acceptance testing probes

whether the software does what the users want. Acceptance

testing must involve users or other individuals who have

strong domain knowledge. The architectural design phase of

software development chooses components and connectors

that together realize a system whose specification is

intended to meet the previously identified requirements

System testing is designed to determine whether the

assembled system meets its specifications. It assumes that

the pieces work individually, and asks if the system works as

a whole. This level of testing usually looks for design and

specification problems. It is a very expensive place to find

lower-level faults and is usually not done by the

programmers, but by a separate testing team. The subsystem

design phase of software development specifies the

structure and behavior of subsystems, each of which is

intended to satisfy some function in the overall architecture.

Often, the subsystems are adaptations of the previously

developed software. Integration testing is designed to assess

whether the interfaces between modules(defined below)in a

given subsystem have consistent assumptions and

communicate correctly. Integration testing must assume that

modules work correctly. Some testing literature uses the

terms integration testing and system testing

interchangeably; in this book, integration testing does not

refer to testing the integrated system or subsystem.

Integration testing is usually the responsibility of members

of the development team.

Automation of Test Activities

Software testing is expensive and labor intensive. Software

testing requires up to 50% of software development costs,

and even more for safety-critical applications. One of the

goals of software testing is to automate as much as possible

thereby significantly reducing its cost, minimizing human

error, and making regression testing easier. Software

engineers sometimes distinguish revenue tasks, which

contribute directly to the solution of a problem, from excise

tasks, which do not. For example, compiling a Java class is a

classic excise task because, although necessary for the class

to become executable, compilation contributes nothing to

the particular behavior of that class. In contrast, determining

which methods are appropriate to define a given data

abstraction as a Java class is a revenue task. Excise tasks are

candidates for automation; revenue tasks are not. Software

testing probably has more excise tasks than any other aspect

of software development. Maintaining test scripts, rerunning

tests, and comparing expected results with actual results are

all common excise tasks that routinely consume large chunks

of test engineer’s time. Automating excise task serves the

test engineer in many ways First eliminating excise tasks

eliminate drudgery, thereby making the test engineers job

more satisfying. Second, automation free suptimeto focus on

the fun and challenging parts of testing, namely the revenue

tasks. Third, automation can help eliminate errors of

omission, such as failing to update all the relevant files with

the new set of expected results. Fourth, automation

eliminates some of the variances in test quality caused by

differences in individual’s abilities. Many testing tasks that

defied automation in the pastare now candidates for such

treatment due to advances in technology. For example,

generating test cases that satisfy the given test requirement

is typically a hard problem that requires intervention from

the test engineer. However, there are tools, both research,

and commercial, that automate this task to varying degrees.

Software testing limitations and terminology

One of the most important limitations of software testing is

that testing can show only the presence of failures, not their

absence. This is a fundamental, theoretical limitation;

generally speaking, the problem of finding all failures in a

program is undecidable. Testers often call a successful (or

effective) test one that finds an error. While this is an

example of level 2 thinking, it is also a characterization that

is often useful and that we will use later in this book. There

to f this section presents a number of terms that are

importations of ware testing and that will be used later in

this book. Most of these are taken from standards

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD25102 | Volume – 4 | Issue – 3 | March-April 2020 Page 800

documents, and although the phrasing is ours, we try to be

consistent with the standards. Useful standards for reading

in more detail are the IEEE Standard Glossary of Software

Engineering Terminology, DOD-STD-2167A andMIL-STD-

498 from the US Department of Defense, and the British

Computer Society’s Standard for Software Component

Testing. One of the most important distinctions to make is

between validation and verification.

� Validation: The process of evaluating software at the

end of software development to ensure compliance with

intended usage.

� Verification: The process of determining whether the

products of a given phase of the software development

process fulfill the requirements established during the

previous phase.

Verification is usually a more technical activity that uses

knowledge about individual software artifacts,

requirements, and specifications. Validation usually depends

on domain knowledge; that is, knowledge of the application

for which the software is written. For example, validation of

software for an airplane requires knowledge from aerospace

engineers and pilots.

CONCLUSION

Software testability is an important notion distinct from

software testing. In general, software testability is an

estimate or measurement of a conditional probability,

namely, assuming that a given software artifact contains a

fault, how likely is it that testing will reveal that fault. We are

all familiar with software development projects where,

despite extensive testing, faults continue to be found.

Testability gets to the core of how easy or hard it is for faults

to escape detection – even from well-chosen test suites.

Testing for emergent properties presents special challenges.

This section offers high-level guidance for engineers faced

with testing systems where safety and/or security play an

important role. Emergent properties arise as a result of

collecting components together into a single system. They do

not exist independently in any particular component. Safety

and security are classic emergent properties in system

design. For example, the overall safety of an airplane is not

determined by the control software by itself, or the engines

themselves, or by any other component by itself. Certainly,

the individual behavior of a given component may be

extremely important with respect to overall safety but, even

so, the overall safety is determined by the interaction so fall

of these components when assembled into a complete

airplane. In other words, an airplane engine is neither safe

nor unsafe considered by itself because an airplane engine

doesn’t fly by itself. Only complete airplanes can fly, and

hence only complete airplanes can be considered safe or

unsafe with respect to flying. Likewise, the security of a web

application is not determined by the security of a back-end

database server by itself, or by a proxy server by itself, or by

the cryptographic systems used by themselves, but by the

interactions of all of these components.

REFERENCE

[1] CSCI 5828: Foundations of Software Engineering

Lecture 05 — 01/31/2012

[2] Pressman Robert software engineering and

practitioner approach 5th edition mc graw hill,2000

[3] IEEE software, www.computer.org/software/

[4] Communications of the ACM, www.acm.org

[5] Borland cooperation: www.borland .com

[6] Royce, Walker, software project management: a unified

approach, Australia

