
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume: 3 | Issue: 4 | May-Jun 2019 Available Online: www.ijtsrd.com e-ISSN: 2456 - 6470

@ IJTSRD | Unique Paper ID – IJTSRD25070 | Volume – 3 | Issue – 4 | May-Jun 2019 Page: 1255

Authenticate Aadhar Card Picture with Current

Image using Content-Based Image Processing

Nehali M. Ghosalkar

ASM Institute of Management & Amp; Computer Studies (IMCOST), Thane, Maharashtra, India

How to cite this paper: Nehali M.
Ghosalkar "Authenticate Aadhar Card
Picture with Current Image using
Content-Based Image Processing"
Published in International Journal of
Trend in Scientific Research and
Development
(ijtsrd), ISSN: 2456-
6470, Volume-3 |
Issue-4, June 2019,
pp.1255-1260, URL:
https://www.ijtsrd.c
om/papers/ijtsrd25
070.pdf

Copyright © 2019 by author(s) and
International Journal of Trend in
Scientific Research and Development
Journal. This is an
Open Access article
distributed under
the terms of the Creative Commons
Attribution License (CC BY 4.0)
(http://creativecommons.org/licenses/
by/4.0)

ABSTRACT

This paper proposes to give review on algorithms which helps to match human
face on Aadhar card with their current image using Content based Image
Retrieval (CBIR).The concert of Content-Based Image Retrieval (CBIR) system is
depends on competent feature extraction and accurate repossession of similar
images. Content based image retrieval is the work for retrieving the images from
the large collection of database on the basis of their own visual content. This
paper express the method to obtain better retrieval efficiency from current
picture of person which will give maximum matching score with same person
Aadhar card photo.

Keywords: CBIR, FLANN, ORB, Image Processing, Image Comparison

Introduction

Image comparison is one of the essential processes in the field of image
processing. Sometimes it is necessary to compare two images to estimate the
similarity and dissimilarity between them. Often, images have to be compared, to
facilitate choices of visualization and reproduction parameters respectively.
Assessment of image similarity is an important problem of image analysis.
Procedures of similarity between two images are useful for the comparison of
algorithms dedicated to noise reduction, image matching, image coding and
reinstatement. This paper presents feature base comparison methods and tools
which are used for comparing images.

Normally there exist two approaches for penetrating and to
retrieving images. The first one is based on textual
information done manually by a human. This is called
concept-based or text-based image indexing.

[8] A human describes and valuate the images according to
the image content, the caption, or the background
information. However, the illustration of an image with text
requires significant effort and can be expensive, dreary, time
consuming. To overcome the limitations of the text-based
approach, the second approach known as Content-Based
Image Retrieval (CBIR) techniques are used. In a CBIR
system, images are mechanically indexed by visualizing their
respected features such as color, texture, and shape.[8][7]

EXISTING TECHNIQUE:

Methods:
Pixel-by-pixel comparison:

The comparison train gets the color of pixels that have the
same coordinates within the image and compares this color.
If the color of each pixel of both images coincides, Test
Complete considers the two images to be identical.[8]

1. Pixel Tolerance (Pixel Tolerance in scripting methods):
Defines the allowed number of dissimilar pixels. If the
number of different pixels is less than or equal to Pixel
Tolerance, then Test Complete considers the images to be

identical. For instance, in the image below, one bitmap
differs from another by two pixels. If the Pixel Tolerance
value were 2, Test Complete would consider these bitmaps
to be identical.[8]

2. Color Tolerance (Color Tolerance in scripting
methods):[7]

IJTSRD25070

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD25070 | Volume – 3 | Issue – 4 | May-Jun 2019 Page: 1256

specify an satisfactory color difference at which two pixels
should be treated as equal. The color difference is
represented as an integer value within the range of 0-255
that specifies an acceptable difference for each color
component (red, green and blue) of the compared pixels.If
the difference between intensities of each of their color
components does not exceed the specified value then two
pixels are considered identical. When Color Tolerance is 0,
which is the default value, the compared pixels are
considered identical only if they have exactly the same color.
When Color Tolerance is 255, pixels of any color are
considered identical.[8][13]

3. “Transparent” Color (Transparent in scripting
methods):

If this parameter is True (enabled), Test Complete treats the
color of the upper-left pixel of the baseline image as a
transparent color and does not compare all the pixels that
have the same coordinates in the compared image as the
transparent pixels have in the baseline image. This
parameter is similar to the way transparency is implemented
in the. [2] ICO and .GIF formats.

 For instance, if the top-left pixel is gray, then all gray pixels
of the first image will match pixels of any color that have the
same coordinates in the second image.

Feature-Based Image Comparison:

In computer vision terminologies, image feature is a
mathematical description of the raw image. Normally
speaking, comparing the image features is more efficient and
accurate than comparing raw images. Three steps are
implicated for feature-based image comparison: feature
detection, feature description, and feature matching.[13]
1. Feature detection is to detect feature points such as

corner points, from the image.
2. In SIFT (Scale Invariant Feature Transform), the feature

descriptor is a histogram of the leaning local gradient
around the key point. The bins of the histogram are
stored in a vector typically with 128 entries. In SURF
(Speeded-Up Robust Feature), the descriptor is
composed of the Haar wavelet responses with typically
64 entries.[8][18][19]

3. The third step feature matching, both SIFT and SURF use
Euclidean distance [3][18][19]

Pre-processing methods:

� Geometric Adjustments
� Radiometric/Intensity Adjustments
� Intensity Normalization
� Homomorphic Filtering
� Illumination Modeling
� Linear Transformations of Intensity
� Sudden Changes in Illumination
� Speckle Noise
� Predictive models:
� Spatial models
� Temporal model.[12][1]

ASIFT:
A New Framework for Fully Affine Invariant Image
Comparison
This method presents affine-SIFT (ASIFT), simulate all image
views accessible by varying the two camera axis orientation
parameters, namely, the latitude and the longitude angles,
left over by the SIFT method. Then it covers the SIFT method
for the other four parameters. The resulting method will be
mathematically proved to be fully affine invariant.[6][7]

Tools

ImageMagick:
ImageMagick is a free and open-source software set for
displaying, converting, and editing raster image and vector
image files. It can read and write over 200 image file formats.
ImageMagick is licensed under the Apache 2.0 license. The
software mainly consists of a number of command-line
interface utilities for manipulat images. ImageMagick does
not have a robust graphical user interface to edit images as
do Adobe Photoshop and GIMP, but does include – for Unix-
like operating systems – a basic native X Window GUI (called
IM Display) for interpretation and manipulating images and
API libraries for many programming languages. The
difference is highlighted in red color.[8]

Perceptual Diff:

Perceptual Diff is an open source command line image
comparison tool.

The package can be used in two different ways:
� per command line; just as the original project
� through a class in your code

The command-line tool can be found in the bin directory.
You can run the application with node./bin/ perceptualdiff.js
<image1> .png <image2> .png.

Use image1 and image2 as the images you want to compare.
The default options for the output file will only show a black
background with the difference painted in blue.[9][6][2]

1. Image Diff:

Image Diff is another GUI based image comparison freeware
tool which is easy. After installation, run the program, click
on the “Left” button to select the first image then clicking on
the “Right” button to select the second image. Optionally, you
can increase the threshold level if the images contain a lot of
small differences which you’d like imageDiff to ignore. Click
the Compare button and the differences can be shown in
either 4 different modes (Monochrome-Ray, Predator, and
Thermal).[7][6][8]

2. ImageJ:

ImageJ is a public domain, Java-based image processing
program. ImageJ was designed with an open architecture
that provides extensibility via Java plugins and recordable

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD25070 | Volume – 3 | Issue – 4 | May-Jun 2019 Page: 1257

macros. Analysis and processing plugins can be developed
using ImageJ's built-in editor and a Java compiler. ImageJ can
exhibit, edit, analyze, process, save, and print 8-bit color and
grayscale, 16-bit integer, and 32-bit floating point images. It
can read many image file formats, including TIFF, PNG, GIF,
JPEG, BMP, DICOM, and FITS, as well as raw formats.[3][5][2]

3. OpenCV:

OpenCV (Open Source Computer Vision) is a library used for
real-time computer vision. This is cross-platform and free for
use under the open-source BSD license. OpenCV's
application areas include:[9][11][2]
� 2D and 3D feature toolkits
� Ego motion estimation
� Facial recognition system
� Gesture recognition
� Human–computer interaction (HCI)
� Mobile robotics
� Motion understanding
� Object identification
� Segmentation and recognition
� Stereopsis stereo vision: depth perception from 2

cameras
� Structure from motion (SFM)
� Motion tracking
� Augmented reality

To support some of the above areas, OpenCV includes a
statistical machine learning library that contains:
� Boosting (meta-algorithm)
� Decision tree learning
� Gradient boosting trees
� Expectation-maximization algorithm
� k-nearest neighbor algorithm
� Naive Bayes classifier
� Artificial neural networks
� Random forest
� Support vector machine (SVM)[7]

PROBLEM STATEMENT:

As all over above cases we need to match size of Images then
only it will be compare accurately in this procedure we can
say that text, shape ,color of two images should match.

The Diagonal and vertical of images position get distract if
they are not in proper position, that means if image is in
rotation format it will generate an mismatch result then you
should put it in straight to match there all diagonal points
exactly.

Feature comparison technique like SURF,SIFT,BREF
performed poorly with Rotation and also SURF and STIF
required license.

If the extention of Image not get matched then also it will
create an error that is, JPG-PNG,JPEG-TIFF etc different types
of images will not carry forward with their properties to
match with onther one so here it will generate Wrong output

PROPOSED METHODOLOGY:

As per research shows OpenCv library providing huge
support to Image Processing. I will try to expose them which
will help to compare face and get their percentage or marks
of matching.

We will use here OpenCv Feature Based image comparison
technique with FLANN which one of Kmatcher. Here we are
following step by considering some inbuilt libraries which
helps us to reached our goal.[11]

Steps That can Follow:

Step 1: First allow correspondence libraries to work on like,
OpenCV , Matplotlib, sys , os, numpy, imutils[23]

Step 2: We are applying haarcascad xml file for detecting a
face and eye. The Haar Cascade is trained by superimposing
the positive image over a set of negative images. The training
is generally done on a server and on various stages. Better
results are obtained by using high quality images and
increasing the amount of stages for which the classifier is
trained.[11]

OpenCV already contains many pre-trained classifiers for
face, eyes, smile etc. Those XML files are stored in [22][23]
opencv/data/haarcascades/ folder some of them are as
follow:

~/OpenCV/opencv/data/haarcascades$ ls
haarcascade_eye.xml [14]

haarcascade_frontalface_default.xml [15]

Step3: We will use ORB descriptor. This algorithm was
brought up by Ethan Rublee, Vincent Rabaud, Kurt Konolige
and Gary R. Bradski in their paper ORB: An efficient option to
SIFT or SURF in 2011. As the title says, it is a good
alternative to SIFT and SURF in computation cost, matching
performance and mainly the patents.

ORB is basically a fusion of FAST keypoint detector and
BRIEF descriptor with many modifications to enhance the
performance. First it use FAST to find keypoints, then apply
Harris corner measure to find top N points among them. It
also use pyramid to produce multiscale-features.[11]

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD25070 | Volume – 3 | Issue – 4 | May-Jun 2019 Page: 1258

Step 4: We now match two image descriptor with KNN(Key
Nearest Neighbor) matcher which is FLANN .
cv::FlannBasedMatcher interface in order to perform a quick
and efficient matching by using the Clustering and Search in
Multi-Dimensional Spaces module.[10]
FLANN stands for Fast Library for Approximate Nearest
Neighbors. It contains a collection of algorithms optimized
for fast nearest neighbor search in large datasets and for
high dimensional features. It works faster than BFMatcher
for large datasets. We will see the second instance with
FLANN based matcher.

For FLANN based matcher, we need to pass two dictionaries
which specifies the algorithm to be used, its related
parameters etc. First one is IndexParams. For various
algorithms, the information to be passed is explained in
FLANN docs. As a summary, for algorithms like SIFT, SURF
etc. you can pass following:

FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm = FLANN_INDEX_KDTREE,
trees = 5)
While using ORB, you can pass the following. The
commented values are recommended as per the docs, but it
didn't provide required results in some cases. Other values
worked fine.:

FLANN_INDEX_LSH = 6
index_params= dict(algorithm = FLANN_INDEX_LSH,

table_number = 6, # 12
key_size = 12, # 20
multi_probe_level = 1) #2

Second dictionary is the SearchParams. It specifies the
number of times the trees in the index should be recursively
traversed. Higher values gives better precision, but also
takes more time. If you want to change the value, pass
search_params = dict(checks=100).[16][17][22]

PROPOSED ALGORITHM:

ORB (Oriented FAST and Rotated BRIEF)[11]
A. FAST (Features from Accelerated Segment Test)

This algorithm was projected by Edward Rosten and Tom
Drummond in their paper “Machine learning for high-speed
corner detection” in 2006 (Later revised it in 2010).

Feature Detection using FAST

1. Select a pixel p in the image which is to be identified as
an interest point or not. Let its intensity be Ip.

2. Select appropriate threshold value t.
3. Consider a circle of 16 pixels around the pixel under

test. (See the image below)

4. Now the pixel p is a corner if there exists a set of n

contiguous pixels in the circle (of 16 pixels) which are all

brighter than I_p + t, or all darker than I_p − t. (Shown as
white dash lines in the above image). n was chosen to be
12.

5. A high-speed test was planned to prohibit a large
number of non-corners. This test examines only the four
pixels at 1, 9, 5 and 13 (First 1 and 9 are tested if they
are too brighter or darker. If so, then checks 5 and 13). If
p is a corner, then at least three of these must all be
brighter than I_p + t or darker than I_p − t. If neither of
these is the case, then p cannot be a corner. The full
segment test criterion can then be applied to the passed
candidates by examining all pixels in the circle. This
detector in itself exhibits high performance, but there
are several weaknesses:[20][21]
� It does not reject as many candidates for n < 12.
� The choice of pixels is not optimal because its

efficiency depends on ordering of the questions and
distribution of corner appearances.

� Results of high-speed tests are thrown away.
� Multiple features are detected adjacent to one

another.

First 3 points are addressed with a machine learning
approach. Last one is addressed using non-maximal
suppression.

Machine Learning a Corner Detector

1. Select a set of images for training (preferably from the
target application domain)

2. Run FAST algorithm in every images to find feature
points.

3. For every feature point, store the 16 pixels around it as a
vector. Do it for all the images to get feature vector P.

4. Each pixel (say x) in these 16 pixels can have one of the
following three states:

5. Depending on these states, the feature vector P is

subdivided into 3 subsets, Pd, Ps, Pb.
6. Define a new boolean variable, Kp, which is true if p is a

corner and false otherwise.
7. Use the ID3 algorithm (decision tree classifier) to query

each subset using the variable Kp for the knowledge
about the true class. It selects the x which yields the
most information about whether the candidate pixel is a
corner, measured by the entropy of Kp.

8. This is recursively applied to all the subsets until its
entropy is zero.

9. The decision tree so created is used for fast detection in
other images.

Non-maximal Suppression

Detecting multiple interest points in adjacent locations is
another problem. It is solved by using Non-maximum
Suppression.
1. Compute a score function, V for all the detected feature

points. V is the sum of absolute difference between p
and 16 surrounding pixels values.

2. Consider two adjacent keypoints and compute their V
values.

3. Discard the one with lower V value.[20][8][16]

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD25070 | Volume – 3 | Issue – 4 | May-Jun 2019 Page: 1259

B. BREIF(Binary Robust Independent Elementary

Features)

SIFT uses 128-dim vector for descriptors. Since it is using
floating point numbers, it takes basically 512 bytes. Similarly
SURF also takes minimum of 256 bytes (for 64-dim).
Creating such a vector for thousands of features takes a lot of
memory which are not feasible for resouce-constraint
applications especially for embedded systems. Larger the
memory, longer the time it takes for matching.

SIFT descriptors provides better speed-up because finding
hamming distance is just applying XOR and bit count, which
are very fast in modern CPUs with SSE instructions. But here,
we need to find the descriptors first, then only we can apply
hashing, which doesn’t solve our initial problem on memory.
BRIEF comes into picture at this moment. It provides a
shortcut to find the binary strings directly without finding
descriptors. It takes smoothened image patch and selects a
set of n_d (x,y) location pairs in an unique way (explained in
paper). Then some pixel intensity comparisons are done on
these location pairs. For eg, let first location pairs be p and q.
If I(p) < I(q), then its result is 1, else it is 0. This is applied for
all the n_d location pairs to get a n_d-dimensional bitstring.
This n_d can be 128, 256 or 512. OpenCV supports all of
these, but by default, it would be 256 (OpenCV represents it
in bytes. So the values will be 16, 32 and 64). So once you get
this, you can use Hamming Distance to match these
descriptors.

Now for descriptors, ORB use BRIEF descriptors. But we
have already seen that BRIEF performs poorly with rotation.
So what ORB does is to “steer” BRIEF according to the
orientation of keypoints. For any feature set of n binary tests
at location (x_i, y_i), define a 2 \times n matrix, S which
contains the coordinates of these pixels. Then using the
orientation of patch, \theta, its rotation matrix is found and
rotates the S to get steered(rotated) version S_\theta.

ORB discretize the angle to increments of 2 \pi /30 (12
degrees), and construct a lookup table of precomputed
BRIEF patterns. As long as the keypoint orientation \theta is
consistent across views, the correct set of points S_\theta
will be used to compute its descriptor.[21][19]

RESULT & PERFORMANCE ANALYSIS:

� Though all the process of Proposed Methodology. In
haarcascade_eye.xml ,
haarcascade_frontalface_default.xml we get an output
like this:

face_cascade
=cv2.CascadeClassifier('D:\\path_to_haarface\\haarcasc
ade_frontalface_default.xml')

eye_cascade
=cv2.CascadeClassifier('D:\\path_to_eyedetect\\haarcas
cade_eye.xml')

� ORB will detect the points to match and FLANN matcher

will match all coordinates which is found by ORB.

� We will get Maximum Matching point count to identify

whether face are matching or not.

Like; 8/10 mathching point will say images are somehow
same.

CONCLUSION & FUTURE WORK:

Our proposed CBIR system was evaluated by different
images query. The execution results presented the success of
the proposed method in retrieving and matching similar
images from the images database and outperformed the
other CBIR systems in terms of average precision and recall
rates. This can be represented from the precision and recall
values calculated from the results of retrieval where the
average precision and recall rates were 0.882 and 0.7002
respectively. In the future, filtering techniques will be
employed to get more accurate results in the content based
image retrieval system.

PUBLICATIONS & REFERENCES:

[1] An efficient similarity measure for content based image
retrieval using memetic algorithm, Mutasem K.
Alsmadi, Egyptian Journal of Basic and Applied
Sciences 4 (2017) 112–122

[2] A review on various approaches for content based
image retrieval based on shape, texture and color
features Ankur Gupta. International Journal of
Academic Research and Development ISSN: 2455-4197
Impact Factor: RJIF 5.22 www.academicsjournal.com
Volume 3; Issue 1; January 2018; Page No. 177-180

[3] Classification of biomedical images using content based
image retrieval systems. [Zhang et. al., Vol.5 (Iss.2):
February, 2018], ISSN: 2454-1907 DOI:
10.5281/zenodo.1186565

[4] A Conceptual Study on Image Matching Techniques.
Global Journal of Computer Science and Technology
Vol. 10 Issue 12 (Ver. 1.0) October 2010 Page.

[5] Image Quantification Learning Technique through
Content based Image Retrieval Dr. R. Usha Rani#1

[6] Rotation Invariant Content Based Image Retrieval
System for Medical Images. International Journal on
Future Revolution in Computer Science &
Communication Engineering ISSN: 2454-4248 Volume:
4 Issue: 3

[7] [7] Various Approaches of Content Based Image
Retrieval Process: A Review agan Madaan.
International Journal of Scientific Research in
Computer Science, Engineering and Information
Technology © 2018 IJSRCSEIT | Volume 3 | Issue 1 |
ISSN : 2456-3307

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD25070 | Volume – 3 | Issue – 4 | May-Jun 2019 Page: 1260

[8] A Review on Different Categories of CBIR Methods
Latha1, Dr. Y. Jacob Vetha Raj2. International Journal of
Scientific Research in Computer Science, Engineering
and Information Technology © 2018 IJSRCSEIT |
Volume 3 | Issue1 | ISSN : 2456-3307

[9] Image Comparison Methods & Tools: A Review. 1st
National Conference on, EMERGING TRENDS IN
INFORMATION TECHNOLOGY[ETIT], 28th -29th
December 2015 pg 35-42

[10] How-To: Python Compare Two Images by Adrian
Rosebrock on September 15, 2014 in Image Processing,
Tutorials.

[11] k-NN classifier for image classification by Adrian
Rosebrock on August 8, 2016 in Machine Learning,
Tutorials.

[12] https://opencv-python-
tutroals.readthedocs.io//lenatest/py_tutorials/py_feat
ure2d/py_orb/py_orb.html

[13] https://www.igi-global.com/dictionary/content-
based-image-retrieval-cbir/5587.

[14] Cattle Identication using Muzzle Print Images based on
Texture Features Approach Conference Paper · January
2014 DOI: 10.13140/2.1.3685.1202

[15] https://github.com/opencv/opencv/blob/master/data
/haarcascades/haarcascade_eye.xml

[16] https://github.com/opencv/opencv/blob/master/data
/haarcascades/haarcascade_frontalface_default.xml

[17] https://docs.opencv.org/3.0-
beta/doc/py_tutorials/py_feature2d/py_matcher/py_
matcher.html

[18] https://docs.opencv.org/3.4/d5/d6f/tutorial_feature_f
lann_matcher.html

[19] https://opencv-python-
tutroals.readthedocs.io/en/latest/py_tutorials/py_feat
ure2d/py_sift_intro/py_sift_intro.html#sift-intro

[20] https://opencv-python-
tutroals.readthedocs.io/en/latest/py_tutorials/py_feat
ure2d/py_surf_intro/py_surf_intro.html

[21] https://opencv-python-
tutroals.readthedocs.io/en/latest/py_tutorials/py_feat
ure2d/py_fast/py_fast.html

[22] https://opencv-python-
tutroals.readthedocs.io/en/latest/py_tutorials/py_feat
ure2d/py_brief/py_brief.html

[23] https://opencv-python-
tutroals.readthedocs.io/en/latest/py_tutorials/py_feat
ure2d/py_matcher/py_matcher.html

