Printed Antenna Design and Simulation for 5G using HFSS

Mahvish1, Tanika2

1M.Tech Scholar, 2Assistant Professor
1Department of Electronics and Communication Engineering,
2Swami Vivekananda Institute of Engineering and Technology, Raminagar, Banur, Punjab, India

How to cite this paper: Mahvish | Tanika "Printed Antenna Design and Simulation for 5G using HFSS" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-3 | Issue-4, June 2019, pp.961-965, URL: https://www.ijtsrd.com/papers/ijtsrd24011.pdf

ABSTRACT

With expanding number of users, the demand for better technology also increases. The fifth Generation 5G technology would be one of the best technologies to meet the need of increased capacity demand, massive connectivity better speed by using the large amount of spectrum in the millimeter wave band, with 5G it is expected to get 80-100 Mbps speed. The need for 5G technology, methodology designing of antenna and various simulations is offered. The micro strip patch antenna is used here in 5G technology is relatively inexpensive to manufacture and design because of its simple physical geometry. Micro strip Patch Antenna shows multi-band characteristics and has a compact structure and hence has emerged as a promising candidate for handheld devices. The proposed idea is implemented by using HFSS software which is used for antenna designing.

Keywords: 4G, 5G, UHD, IP, GSM

I. Introduction

The early communication systems supported only analog voice and now provide wide range of different applications to large number of users. First origination mobile system supported voice only. Within previous minor years, we have seen continuous development of mobile telecommunications by the birth of 2G bands, 3G and 4G bands wireless networks respectively. Digital networking procedures as if modulation techniques, Frequency reuse, Packet switching and physical layer simulation etc. have appeared in this change. With the expanding appeal of smart devices; nowadays, IP based networks has grown into an essential Resultant, new multimedia applications for mobile users. Open Market is overwhelm with these applications and has opened up new deals for mobile user and service providers. The forthcoming of mobile communications is likely to be very distinct to that which we are used to today. While interest for portable broadband will drastically increase day by day, largely consumed by UHD video and better screens, we are already seeing the developing impact of the human capabilities of technology as the stuff around us become ever more linked. The approaching 5th generation network is certain to output a constant Gbps data speed experience across a wide range of user scenarios. 5G is more just a new wireless transmission technology called radio technology. It is a gate opener to new communication capabilities and used cases, many of that are still unknown to us. For the bandwidth aspects, here millimeter wave mobile communications approach is developed and a micro-strip receiver has implemented for the 5G cellular network/device. Respecting the 4G and 5G network bands, its focus is approaching smooth combination of cellular networks such as GSM and 3G, WLAN and Bluetooth. Micro-strip patch receiver (MPAs) has beautiful and boundless features due to its low profile, small size, and lightweight, low cost as well as to the fact these are very simple to construct, suited to planer and non-liner surfaces. However, their future use in definite systems is finite of their almost narrow bandwidth. For generating the excessive-frequency mm-wave electric signals, the usage of traditional electronics turns into less financially appealing; consequently, there is an excessive concern to at once generate mm-wave alerts within the optical domain. For that reason in these paintings, the photonic technology, variation and circulation of 60 GHz thickness band signals to be applied in 5G that have been recommended and established already. Basically, a photonic founded totally mm-wave is a laser beam together with two or extra coherent longitudinal modes with frequency spacing same to the wanted mm-wave. As the longitudinal method beat with each dissimilar in the photodiode, the definite electrical mm-wave can be achieved.

II. Problem Definition

The fundamental intention of this thesis is to style a micro-strip patch antenna for milli meter wave mobile communication at 38GHz frequency by exploitation the fundamental micro-strip conductor methodology and line calculation analyze from HFSS computer code. In projected style excited in its basic mode contains a most radial asymmetry within the direction perpendicular to the patch (broadside) and is 8.4316 db. during this style, input reflection coefficients or the S11 parameter for the antenna is -42 decibel at resonant frequency a pair of 8 GHz. the height Gain 8.211 decibel and therefore the most -10dB information measure of 0.056GHz are achieved in simulation of S11 parameter for center frequency a pair of 8 GHz. Another vital parameter of AN antenna is that the
information measure it covers. Most of the time solely resistance or come loss information measure is given. However, it’s vital to comprehend that many different definitions of information measure exist: radial asymmetry Bandwidth, polarization information measure and potency bandwidth. radial asymmetry and potency are usually combined to achieve information measure

III. Methodology

IV. Results
The results obtained after using the HFSS software. The HFSS is an efficient platform for designing micro strip Patch Antenna.

The methodology involves the use of theoretical analysis and the system simulation. For the simulation approach, the event simulator HFSS package tool needs to be used to investigate the number of parameters. The HFSS software package is used to design a Micro-strip Patch Antenna and the parameters investigated are Return Loss, Radiation Pattern, The Gain, VSWR, Impedance, Directivity etc.

Design micro strip Patch Antenna using HFSS.

Return Loss Plot

Radiation Pattern
The Gain Plot

VSWR Graph

Impedance Plot

Directivity Graph
Gain vs. Frequency Graph

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return Loss</td>
<td>-23 db</td>
</tr>
<tr>
<td>Resonance Frequency</td>
<td>6.76 GHz</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>200 MHz</td>
</tr>
<tr>
<td>Highest Radiation Intensity</td>
<td>2.63 db</td>
</tr>
<tr>
<td>Directivity</td>
<td>5.87 db</td>
</tr>
<tr>
<td>VSWR</td>
<td>1.28 db</td>
</tr>
</tbody>
</table>

Comparison between my base paper and my work

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>Reported design at F=2.8 GHz</th>
<th>Proposed design at F=6.5 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return Loss</td>
<td>-42 dB</td>
<td>-23 db</td>
</tr>
<tr>
<td>Resonance Frequency</td>
<td>2.76 GHz</td>
<td>6.76 GHz</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>0.0565 GHz</td>
<td>200 MHz</td>
</tr>
<tr>
<td>Highest Radiation Intensity</td>
<td>2.63 db</td>
<td>2.63 db</td>
</tr>
<tr>
<td>Directivity</td>
<td>8.48 dB</td>
<td>5.87 db</td>
</tr>
<tr>
<td>VSWR</td>
<td>Not obtained</td>
<td>1.28 db</td>
</tr>
</tbody>
</table>

V. Conclusion:
The paper explains the micro-strip patch antenna fundamentals and HFSS software. The paper explains in details the steps needed to develop a complete simulation of micro-strip patch antenna using the popular HFSS software. The results are given with parameter values and the comparison between parameters of bases paper and our proposed work.

References

[17]. Deal W., N. Kaneda, J. Sor, Y. Qian, and T. itoh, “A New Quasiyagi Antenna for Planar Active Antenna Arrays”, IEEE.