
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume: 3 | Issue: 4 | May-Jun 2019 Available Online: www.ijtsrd.com e-ISSN: 2456 - 6470

@ IJTSRD | Unique Paper ID - IJTSRD23987 | Volume – 3 | Issue – 4 | May-Jun 2019 Page: 1126

Simulating Multivariate Random Normal

Data using Statistical Computing Platform R

Mehmet Turegun

Professor, Barry University, Miami Shores, Florida

How to cite this paper: Mehmet
Turegun "Simulating Multivariate
Random Normal Data using Statistical
Computing Platform R" Published in
International Journal of Trend in
Scientific Research and Development
(ijtsrd), ISSN: 2456-
6470, Volume-3 |
Issue-4, June 2019,
pp.1126-1132, URL:
https://www.ijtsrd.c
om/papers/ijtsrd23
987.pdf

Copyright © 2019 by author(s) and
International Journal of Trend in
Scientific Research and Development
Journal. This is an Open Access article
distributed under
the terms of the
Creative Commons
Attribution License (CC BY 4.0)
(http://creativecommons.org/licenses/
by/4.0)

ABSTRACT

Many faculty members, as well as students, in the area of educational research
methodology, sometimes have a need for generating data to use for simulation
and computation purposes, demonstration of multivariate analysis techniques,
or construction of student projects or assignments. As a great teaching tool,
using simulated data helps us understand the intricacies of statistical concepts
and techniques. The process of generating multivariate normal data is a
nontrivial process and practical guides without dense mathematics are limited in
the literature (Nissen and Saft, 2014). Hence, the purpose of this paper is to offer
researchers a practical guide for and a quick access to generating multivariate
random data with a given mean and variance-covariance structure. A detailed
outline of simulating multivariate normal data with a given mean and variance-
covariance matrix using Eigen (or spectral) and Cholesky decompositions is
presented and implemented in statistical computing platform R version 3.4.4 (R
Core Team, 2018).

Keywords: Cholesky decomposition, Eigen decomposition, simulation of

multivariate random normal data, variance-covariance matrix, R

1. INTRODUCTION
Many of the multivariate statistical techniques, such as multiple regression and
multiple analysis of variance, require an assumption of multivariate normality of
the continuous variables.

Although some of these techniques are robust to the
violation of the multivariate normality assumption, such
violations of multivariate normality increase the chances of
researchers committing to Type I and/or Type II errors.
Additionally, the correlations among variables can be
distorted as a result of non-normality (Courtney and Chang,
2018). Hence, a major portion of the data screening efforts
for our statistical analyses needs to focus on assessing and
correcting for non-normality.

However, in many cases it can be better to provide our
audiences with a multivariate normal data set in order for
them to understand what such data look like before they can
try to assess or identify non-normality. Furthermore, many
teachers may recall instances in which they wished that they
had a multivariate raw dat set with a specified set of means,
standard deviations and correlation matrix for the variables.
It is for these reasons, a brief discussion and an accessible
illustration of how to simulate multivariate normal data with
a given mean and variance-covariance matrix using Eigen
and Cholesky decompositions may be a necessary topic.

Generating Multivariate Normal Data

Although there are several studies reporting the generation
of multivariate normal data using various software packages
and computing platforms, the process of generating
multivariate normal data is a nontrivial process and practical
guides without dense mathematics are limited in the

literature (Demirtas, 2004; Goldman and McKenzie, 2009;
Hunt, 2001; Nissen and Saft, 2014). One can use several
different ways to decompose a given data matrix. The two
most widely used methods are the QR decomposition, which
decomposes a matrix into an orthogonal matrix and an
upper triangular matrix, and the singular value
decomposition (SVD). There are also Cholesky and Eigen
decompositions, which are special cases of the former two.
The QR and the SVD are different from the Cholesky and
Eigen decompositions because the latter approaches require
the input data to be a square matrix, whereas QR and SVD
can be applied to an m × n matrix. The Eigen and Cholesky
decompositions are the two of the most commonly used
methods.

Although the Eigen value decomposition method is more
stable, the Cholesky decomposition method is faster, but not
by a considerable amount (Venables and Ripley, 2002). The
statistical computing platform R version 3.4.4 (R Core Team,
2018) was used to implement the above mentioned
decompositions to generate several multivariate random
normal data sets.

Eigen Decomposition

In the Eigen decomposition approach, given a correlation
matrix Σ, one can define a matrix V, which consists of the
product of the eigenvectors of Σ, E, and the diagonal values of
the square root of eigenvalues of Σ. One can then compute X=

IJTSRD23987

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD23987 | Volume – 3 | Issue – 4 | May-Jun 2019 Page: 1127

Z VT where the elements of Z is a random sample from a
normal distribution with mean 0 and variance 1. The partial

R script for generating the multivariate normal data for three
variables and 5,000 cases is given in Figure 1.

nobs=5000

nvars=3

corMat<-matrix(cbind(1,.2,.3,.2,1,.2,.3,.2,1),nrow=nvars)

Check to see if variance-covariance matrix is symmetric and positive definite

det(corMat)

min(eigen(corMat)$values)

ev<-eigen(corMat)

V<-ev$vectors%*%(diag(sqrt(ev$values)))

t(V)%*%V

Z<-matrix(rnorm(nobs*nvars),nrow=nobs,ncol=nvars)

Xeigen<- Z%*%t(V)

Compare the simulated correlation matrix to the original correlation matrix

cor(Xeigen)

corMat

Calculate the residuals

res<-round(corMat-cor(Xeigen),3)

Calculate the Root mean square residuals (RMSR)

sqrt(sum(res^2)/(nvars*nvars))

Means and SDs for the simulated data

Create the raw data

dataeigen<-as.data.frame(Xeigen)

names(dataeigen)<-c(“x1”,”x2”,”x3”)

Write raw data to a file and save

Figure1. Partial R script for implementing the Eigen decomposition for generating multivariate normal data

Cholesky Decomposition

Alternatively, one can generate a multivariate normal random sample by using a matrix operation called Cholesky
decomposition, which is considered to provide an efficient method for the case of a symmetric positive definite variance-
covariance matrix Σ. The probability density function, pdf, of the multivariate normal distribution for the m dimensional vector
X can be given by the following formula.

 pdf(X) = (2π*det(Σ))^(-m/2) * exp(-0.5*(X-MU)T*(Σ-1)*(X-MU))

In this equation, MU is the mean vector, and sigma, Σ, is a positive definite symmetric matrix called the variance-covariance
matrix. To create X, an m x n matrix containing n samples from this distribution, it is only necessary to create an m x n vector Z,
each of whose elements is a sample of the 1-dimensional normal distribution with mean 0 and variance 1. Then, one can
proceed to determine the upper triangular Cholesky factor A of the matrix Σ, so that Σ = AT A. As a final step in the process, one
needs to compute X = MU + AT Z.

In order to simulate from a multivariate normal distribution with a mean μ vector and variance-covariance matrix Σ, one needs
to be able to express the variance-covariance matrix as Σ=AAT for some matrix A. This is the case if and only if Σ is a positive
semi-definite or positive definite matrix, which is a symmetric matrix with non-negative eigenvalues (Golub and Van Loan,
1996). The Cholesky decomposition of Σ yields a lower triangular matrix A such that A times its transpose, AT, gives Σ back
again. This matrix is used in generating the multivariate random normal data in the following manner. If one generates a vector
Z of standard random normal numbers having a length equal to the dimensions of A, then multiplying A, which is the Cholesky
decomposition of Σ, by Z, and adding the desired mean, one ends up with a matrix of the desired random samples.

Without the detailed mathematical proofs using matrix algebra, one can reason through this process conceptually by making
the following observations. Var(AZ) = A Var(Z) AT as A is just a constant. Since the standard normal random numbers have a
variance of 1, the variance of Z is the identity matrix I. Notice that Variance(AZ) = A I AT = A AT = Σ. Hence, the random data set
generated aligns with the desired variance-covariance structure. The partial R script for generating the multivariate normal
data for three variables and 5,000 cases is given in Figure 2.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD23987 | Volume – 3 | Issue – 4 | May-Jun 2019 Page: 1128

nobs=5000

nvars=3

corMat<-matrix(cbind(1,.2,.3,.2,1,.2,.3,.2,1),nrow=nvars)

Check to see if variance-covariance matrix is symmetric and positive definite

det(corMat)

min(eigen(corMat)$values)

meanvec<-c(0,0,0)

Z<-matrix(rnorm(nobs*nvars),nobs,nvars)

X<- Z%*%chol(corMat)+t(matrix(rep(meanvec,nobs),nrow=nvars))

Compare the simulated correlation matrix to the original correlation matrix

cor(X)

corMat

Calculate the residuals

res<-round(corMat-cor(X),3)

Calculate the Root Mean Square Residuals (RMSR)

sqrt(sum(res^2)/(nvars*nvars))

Means and SDs for the simulated data

Create the raw data

datachol<-as.data.frame(X)

names(datachol)<-c(“x1”,”x2”,”x3”)

Write raw data to a file and save

Figure2. Partial R script for implementing the Cholesky decomposition for generating multivariate normal data

A comparison of the results of the multivariate normal data generated by using the Eigen and Cholesky decompositions is
summarized in Table 1. Throughout the table, the comparisons are based on a multivariate normal data set generated for 5,000
observations and three variables, x1, x2, and x3. In addition to the theoretical and empirical means, standard deviations,
correlation matrices, and residual correlation matrices, the root mean square error (RMSE) values, which are obtained by
squaring the residuals, averaging the squares, and taking the square root, are also given in Table 1. The RMSE values for the
multivariate random data generated by Eigen and Cholesky decompositions are both less than .05.

Table1. Comparison of Eigen and Cholesky decompositions for generating multivariate normal data consisting three
variables, x1, x2, and x3 for 5,000 observations

Comparison Eigen Decomposition Cholesky Decomposition

Theoretical means (.0, .0, .0) (.0, .0, .0)

Empirical means (.010, .002, .006) (.020, -.005, .015)

Theoretical SDs (1.0, 1.0, 1.0) (1.0, 1.0, 1.0)

Empirical SDs (.993, 1.002, 1.000) (1.016, .9999, 1.015)

Theoretical
Correlation
Matrices

(1, .2, .3)
(.2, 1, .2)
(.3,. 2, 1)

(1, .2, .3)
(.2, 1, .2)
(.3,. 2, 1)

Empirical
Correlation
Matrices

(1.000, .225, .275)
(.225, 1.000, .192)
(.275, .192, 1.000)

(1.000, .195, .299)
(.195, 1.000, .222)
(.299, .222, 1.000)

Residual
Correlation
Matrices
Root Mean Square

(.000, -.025, .025)
(-.025, .000, .008)
(.025, .008, .000)

(.000, .005, .001)
(.005, .000, -.022)
(.001, -.022, .000)

Errors (RMSE) 0.017 0.011

Another comparison of the multivariate normal data generated by Eigen and Cholesky decompositions can be made based on
the results of the multivariate normality tests for the simulated data. The multivariate normality test is based on the mvn()
function of the R package MVN. The mvn() function uses the Mardia test for multivariate outlier detection and normality, which
is tested based on skewness and kurtosis values. Additional univariate normality tests are conducted using the Anderson-
Darling (A-D) test. Table 2 displays a summary of the results.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD23987 | Volume – 3 | Issue – 4 | May-Jun 2019 Page: 1129

Table2. Comparison of the descriptive statistics, univariate and multivariate normality tests for the data generated by
using Eigen and Cholesky decompositions

Comparisons Eigen Decomposition Cholesky Decomposition

Means
x1=.010
x2=.002
x3=.006

x1=.020
x2=-.005
x3=.015

SDs
x1=.993

x2=1.002
x3=1.000

x1=1.016
x2=.999

x3=1.015

A-D
test

p-values

x1: p=.577
x2: p=.304
x3: p=.658

x1: p=.476
x2: p=.199
x3: p=.169

Mardia Skewness tests p=.713 p=.304

Mardia Kurtosis tests p=.776 p=.149

Multivariate Normality Yes Yes

As presented in Table 2, the results of the A-D test for univariate normality revealed that each of the variables, x1, x2, and x3
generated by either Eigen or Cholesky decompositions follows a normal distribution. Additionally, Mardia multivariate
normality test results confirm that the simulated data generated by both decompositions satisfy the multivariate normality
assumption.

A generic algorithm

A generic algorithm for simulating a multivariate normal distribution with a given mean and variance-covariance structure can
be described as a six-step algorithm.
1. Calculate the Eigen decomposition of the variance covariance matrix, Σ.
2. Check that Σ is positive definite or semi-positive by inspecting the eigenvalues.
3. Reset the negative eigenvalues within tolerance to 0.
4. Create the respective scaling matrix, S, based on either Eigen or Cholesky decomposition.
5. Create a matrix, X, of random standard normal values.
6. Multiply the random standard normal matrix, X, by the respective scaling matrix, S.

It is worth mentioning that the ability to tolerate positive semi-definite variance-covariance matrices may be hugely beneficial
in avoiding crashes. It may be advisable to revise the variance-covariance matrices by eliminating linearly dependent columns
when it is necessary to address potential singularity issues.

Using functions in R packages

Another way to generate multivariate normal data is to take advantage of the currently available functions in various R
packages. Since Demirtas (2004) provided some R scripts for generating pseudo-random numbers from different multivariate
distributions in the absence of R packages and functions, several R functions in R various packages has become available to
simulate multivariate normal data. Only two of such packages and functions within those two packages are considered and
illustrated here.

In R, one can use the mvrnorm() function from the MASS package to produce one or more samples from a specified multivariate
normal distribution. The usage of the mvrnorm() function is based on the user provided arguments, such as the number of
samples, a vector for the means of the variables, a variance-covariance matrix for the variables, and a tolerance value for the
lack of positive definiteness. Based on the source code, the mvrnorm() function uses eigenvectors to generate the multivariate
random normal samples. The partial R script used to simulate a multivariate normal data for three variables and 5,000 cases
using the mvrnorm() function is given in Figure 3.

Generating multivariate normal distribution using mvrnorm() function from MASS package

nobs=5000

nvars=3

meanvec<-c(0,0,0)

corMat<-matrix(cbind(1,.2,.3,.2,1,.2,.3,.2,1),nrow=nvars)

Generate the multivariate normal data

X<-mvrnorm(nobs,meanvec,corMat)

Create the raw data

data<-as.data.frame(X)

names(data)<-c("x1","x2","x3")

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD23987 | Volume – 3 | Issue – 4 | May-Jun 2019 Page: 1130

Means and SDs for the simulated data

apply(X,2,mean)

apply(X,2,sd)

Compare the correlations

corMat

round(cor(X),3)

Calculate the residuals

res<-round(corMat-cor(X),3)

Calculate the Root mean square residuals (RMSR)

sqrt(sum(res^2)/(nvars*nvars))

Multivariate normality test

mvn(data=data[1:3],mvnTest="mardia",desc=T,univariateTest="AD")

Write raw data to a file and save

Figure3. Partial R script for generating multivariate normal data using the mvrnorm() function from MASS package

In addition to using the mvrnorm() function from the MASS package, rmvnorm() function from the mvtnorm package can be
used to generate multivariate normal data. The usage of the rmvnorm() function is based on the user provided arguments, such
as the number of observations, a vector for the means of the variables, a variance-covariance matrix for the variables, and a
choice for the method. The method argument of the rmvnorm() function has three options for the generation algorithms. These
generation algorithms are Eigen value, Cholesky, and singular value decompositions, with the eigen, chol, and svd choices for
the method argument, respectively. The partial R script used to simulate a multivariate normal data for three variables and
5,000 cases using the rmvnorm() function is given in Figure 4.

Generating multivariate normal distribution using rmvnorm() function from mvtnorm package

nobs=5000

nvars=3

meanvec<-c(0,0,0)

corMat<-matrix(cbind(1,.2,.3,.2,1,.2,.3,.2,1),nrow=nvars)

Generate the multivariate normal data

X<- X<-rmvnorm(n=nobs,meanvec,corMat,method="eigen")

Create the raw data

data<-as.data.frame(X)

names(data)<-c("x1","x2","x3")

Means and SDs for the simulated data

apply(X,2,mean)

apply(X,2,sd)

Compare the correlations

corMat

round(cor(X),3)

Calculate the residuals

res<-round(corMat-cor(X),3)

Calculate the Root mean square residuals (RMSR)

sqrt(sum(res^2)/(nvars*nvars))

Multivariate normality test

mvn(data=data[1:3],mvnTest="mardia",desc=T,univariateTest="AD")

Write raw data to a file and save

Figure4. Partial R script for generating multivariate normal data using the rmvnorm() function from mvtnorm package

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD23987 | Volume – 3 | Issue – 4 | May-Jun 2019 Page: 1131

A comparative summary of the results of the multivariate normal data generated by the mvrnorm() and rmvnorm() functions
from the R packages MASS and mvtnorm, respectively, is presented in Table 3. Throughout the table, the comparisons are based
on a multivariate normal data set generated for 5,000 observations and three variables, x1, x2, and x3. In addition to the
theoretical and empirical means, standard deviations, correlation matrices, residual correlation matrices, and the RMSE values,
the results of the multivariate normality tests for the simulated data are also given in Table 3. The RMSE values for the
multivariate random data generated by the mvrnorm() and rmvnorm() functions are both less than .01.

Table3. Comparison of the descriptive statistics, univariate and multivariate normality tests for the data generated by
using mvrnorm() and rmvnorm() functions

Comparison mvrnorm() function rmvnorm() function

Means
x1=.020
x2=-.002
x3=.023

x1=-.012
x2=-.019
x3=.016

SDs
x1=.992
x2=.998
x3=.991

x1=1.005
x2=1.022
x3=.992

Theoretical
Correlation

Matrices

(1, .2, .3)
(.2, 1, .2)
(.3,. 2, 1)

(1, .2, .3)
(.2, 1, .2)
(.3,. 2, 1)

Empirical
Correlation

Matrices

(1.000, .180, .297)
(.180, 1, .198)

(.297, .198, 1.000)

(1.000, .206, .298)
(.206, 1.000, .197)
(.298, .197, 1.000)

Residual
Correlation

Matrices

(.000, .020, .003)
(.020, .000, .002)
(.003, .002, .000)

(.000, -.006, .002)
(-.006, .000, .003)
(.002, .003, .000)

RMSEs 0.009 0.003

A-D
test

p-values

x1: p=.067
x2: p=.320
x3: p=.128

x1: p=.683
x2: p=.357
x3: p=.989

Mardia Skewness tests p=.124 p=.895

Mardia Kurtosis tests p=.803 p=.966

Multivariate Normality Yes Yes

The multivariate normality test is based on the mvn() function of the R package MVN. The mvn() function uses the Mardia test
for multivariate outlier detection and normality, which is tested based on skewness and kurtosis values. Additional univariate
normality tests are conducted using the Anderson-Darling (A-D) test. As displayed in Table 3, the results of the A-D test for
univariate normality revealed that each of the variables, x1, x2, and x3 generated by either mvrnorm() or rmvnorm() functions
follows a normal distribution. Additionally, Mardia multivariate normality test results confirm that the simulated data
generated by both R functions satisfy the multivariate normality assumption.

Conclusions and Discussion

In this paper, I illustrated several different approaches to
generating or simulating multivariate normal samples with
detailed comparisons of two decomposition techniques,
Eigen and Cholesky, and of two functions, mvrnorm() and
rmvnorm(), from two R packages, MASS and mvtnorm,
respectively. A six-step algorithm is presented and
implemented in R to simulate data from a multivariate
normal distribution. Even though there are various functions
in several R packages, not every software package offers
multivariate data generators. Hence, an understanding of the
algorithm presented here might be helpful to some readers.

The results of these simulations can possibly be used in a
number of different ways. First, one can create raw data
when one has access to only summarized results from
published journal articles or textbook exercises in which
only summarized data are provided. The simulated raw data
sets can then be used to assess the assumptions graphically,
numerically, and inferentially for such results and exercises.
Second, one may create their own exercise problems with a
set of specified characteristics, or a specific set of outcomes

such as, a data set for which a null hypothesis is rejected or
failed to be rejected at a given significance level.

Additionally, these simulations may provide instructors with
a fairly straightforward procedure to generate different data
sets for different students for the purpose of integrity of
exams, quizzes or homework assignments or
demonstrations for lectures. But, one needs to understand
that simulated data are not real data and should not be
presented as such. It is more appropriate to view simulated
data as realistic look-alikes for the real data in a given
context.

Finally, a word of caution is in order. The six-step algorithm
and the procedures presented here may not be the most
efficient implementations of the two decompositions, Eigen
and Cholesky. It may be possible to create or find more
efficient implementations elsewhere. Also, one needs to keep
in mind that the ultimate outcome in simulating data is
within the quality of in-built random number generation
process of the respective piece of software.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD23987 | Volume – 3 | Issue – 4 | May-Jun 2019 Page: 1132

References

[1] Courtney, M.G.R., and Chang, K. C. (2018). Dealing with
non-normality: an introduction and step-by-step guide
using R. Teaching Statistics, 40(2), 51–59.

[2] Demirtas, H. (2004). Pseudo-random number
generation in R for commonly used multivariate
distributions. Journal of Modern Applied Statistical
Methods, 3(2), 485-497.

[3] Goldman, R. N., and McKenzie Jr., J. D. (2009).

Creating realistic data sets with specified properties via

simulation, Teaching Statistics, 31(1), 7-11.

[4] Golub, G. H., and Van Loan, C. F. (1996). Matrix
computations. Johns Hopkins studies in the
mathematical sciences. Baltimore: Johns Hopkins
University Press, 3rd ed.

[5] Hunt, N. (2001). Generating multivariate normal data
in Excel. Teaching Statistics, 23(2), 58–59.

[6] Nissen, V., and Saft, D. (2014). A practical guide for the
creation of random number sequences from
aggregated correlation data for multi-agent
simulations, Journal of Artificial Societies and Social
Simulation 17(4).

[7] R Core Team (2018). R: A language and environment
for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. URL https://www.R-
project.org/.

[8] Venables, W. N., and Ripley, B. D. (2002). Modern
Applied Statistics with S. New York: Springer, 4th ed.
ISBN 0-387-95457-0.

