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ABSTRACT 

Many faculty members, as well as students, in the area of educational research 
methodology, sometimes have a need for generating data to use for simulation 
and computation purposes, demonstration of multivariate analysis techniques, 
or construction of student projects or assignments. As a great teaching tool, 
using simulated data helps us understand the intricacies of statistical concepts 
and techniques. The process of generating multivariate normal data is a 
nontrivial process and practical guides without dense mathematics are limited in 
the literature (Nissen and Saft, 2014). Hence, the purpose of this paper is to offer 
researchers a practical guide for and a quick access to generating multivariate 
random data with a given mean and variance-covariance structure. A detailed 
outline of simulating multivariate normal data with a given mean and variance-
covariance matrix using Eigen (or spectral) and Cholesky decompositions is 
presented and implemented in statistical computing platform R version 3.4.4 (R 
Core Team, 2018).  
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1. INTRODUCTION 
Many of the multivariate statistical techniques, such as multiple regression and 
multiple analysis of variance, require an assumption of multivariate normality of 
the continuous variables. 
 

Although some of these techniques are robust to the 
violation of the multivariate normality assumption, such 
violations of multivariate normality increase the chances of 
researchers committing to Type I and/or Type II errors. 
Additionally, the correlations among variables can be 
distorted as a result of non-normality (Courtney and Chang, 
2018). Hence, a major portion of the data screening efforts 
for our statistical analyses needs to focus on assessing and 
correcting for non-normality.  
 
However, in many cases it can be better to provide our 
audiences with a multivariate normal data set in order for 
them to understand what such data look like before they can 
try to assess or identify non-normality. Furthermore, many 
teachers may recall instances in which they wished that they 
had a multivariate raw dat set with a specified set of means, 
standard deviations and correlation matrix for the variables. 
It is for these reasons, a brief discussion and an accessible 
illustration of how to simulate multivariate normal data with 
a given mean and variance-covariance matrix using Eigen 
and Cholesky decompositions may be a necessary topic.  
 
Generating Multivariate Normal Data 

Although there are several studies reporting the generation 
of multivariate normal data using various software packages 
and computing platforms, the process of generating 
multivariate normal data is a nontrivial process and practical 
guides without dense mathematics are limited in the 

literature (Demirtas, 2004; Goldman and McKenzie, 2009; 
Hunt, 2001; Nissen and Saft, 2014). One can use several 
different ways to decompose a given data matrix. The two 
most widely used methods are the QR decomposition, which 
decomposes a matrix into an orthogonal matrix and an 
upper triangular matrix, and the singular value 
decomposition (SVD). There are also Cholesky and Eigen 
decompositions, which are special cases of the former two. 
The QR and the SVD are different from the Cholesky and 
Eigen decompositions because the latter approaches require 
the input data to be a square matrix, whereas QR and SVD 
can be applied to an m × n matrix. The Eigen and Cholesky 
decompositions are the two of the most commonly used 
methods.  
 
Although the Eigen value decomposition method is more 
stable, the Cholesky decomposition method is faster, but not 
by a considerable amount (Venables and Ripley, 2002). The 
statistical computing platform R version 3.4.4 (R Core Team, 
2018) was used to implement the above mentioned 
decompositions to generate several multivariate random 
normal data sets. 
 
Eigen Decomposition 

In the Eigen decomposition approach, given a correlation 
matrix Σ, one can define a matrix V, which consists of the 
product of the eigenvectors of Σ, E, and the diagonal values of 
the square root of eigenvalues of Σ. One can then compute X= 
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Z VT where the elements of Z is a random sample from a 
normal distribution with mean 0 and variance 1. The partial 

R script for generating the multivariate normal data for three 
variables and 5,000 cases is given in Figure 1. 

              

nobs=5000 

nvars=3 

corMat<-matrix(cbind(1,.2,.3,.2,1,.2,.3,.2,1),nrow=nvars) 

# Check to see if variance-covariance matrix is symmetric and positive definite 

det(corMat) 

min(eigen(corMat)$values) 

ev<-eigen(corMat) 

V<-ev$vectors%*%(diag(sqrt(ev$values))) 

t(V)%*%V 

Z<-matrix(rnorm(nobs*nvars),nrow=nobs,ncol=nvars) 

Xeigen<- Z%*%t(V) 

# Compare the simulated correlation matrix to the original correlation matrix 

cor(Xeigen) 

corMat 

# Calculate the residuals 

res<-round(corMat-cor(Xeigen),3) 

# Calculate the Root mean square residuals (RMSR) 

sqrt(sum(res^2)/(nvars*nvars)) 

# Means and SDs for the simulated data 

# Create the raw data  

dataeigen<-as.data.frame(Xeigen) 

names(dataeigen)<-c(“x1”,”x2”,”x3”) 

# Write raw data to a file and save          

Figure1. Partial R script for implementing the Eigen decomposition for generating multivariate normal data 
 

Cholesky Decomposition 

Alternatively, one can generate a multivariate normal random sample by using a matrix operation called Cholesky 
decomposition, which is considered to provide an efficient method for the case of a symmetric positive definite variance-
covariance matrix Σ. The probability density function, pdf, of the multivariate normal distribution for the m dimensional vector 
X can be given by the following formula. 
 
   pdf(X) = (2π*det(Σ))^(-m/2) * exp(-0.5*(X-MU)T*(Σ-1)*(X-MU)) 
 
In this equation, MU is the mean vector, and sigma, Σ, is a positive definite symmetric matrix called the variance-covariance 
matrix. To create X, an m x n matrix containing n samples from this distribution, it is only necessary to create an m x n vector Z, 
each of whose elements is a sample of the 1-dimensional normal distribution with mean 0 and variance 1. Then, one can 
proceed to determine the upper triangular Cholesky factor A of the matrix Σ, so that Σ = AT A. As a final step in the process, one 
needs to compute X = MU + AT Z. 
 
In order to simulate from a multivariate normal distribution with a mean μ vector and variance-covariance matrix Σ, one needs 
to be able to express the variance-covariance matrix as Σ=AAT for some matrix A. This is the case if and only if Σ is a positive 
semi-definite or positive definite matrix, which is a symmetric matrix with non-negative eigenvalues (Golub and Van Loan, 
1996). The Cholesky decomposition of Σ yields a lower triangular matrix A such that A times its transpose, AT, gives Σ back 
again. This matrix is used in generating the multivariate random normal data in the following manner. If one generates a vector 
Z of standard random normal numbers having a length equal to the dimensions of A, then multiplying A, which is the Cholesky 
decomposition of Σ, by Z, and adding the desired mean, one ends up with a matrix of the desired random samples.  
 
Without the detailed mathematical proofs using matrix algebra, one can reason through this process conceptually by making 
the following observations. Var(AZ) = A Var(Z) AT as A is just a constant. Since the standard normal random numbers have a 
variance of 1, the variance of Z is the identity matrix I. Notice that Variance(AZ) = A I AT = A AT = Σ. Hence, the random data set 
generated aligns with the desired variance-covariance structure. The partial R script for generating the multivariate normal 
data for three variables and 5,000 cases is given in Figure 2. 
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nobs=5000 

nvars=3 

corMat<-matrix(cbind(1,.2,.3,.2,1,.2,.3,.2,1),nrow=nvars) 

# Check to see if variance-covariance matrix is symmetric and positive definite 

det(corMat) 

min(eigen(corMat)$values) 

meanvec<-c(0,0,0) 

Z<-matrix(rnorm(nobs*nvars),nobs,nvars) 

X<- Z%*%chol(corMat)+t(matrix(rep(meanvec,nobs),nrow=nvars)) 

# Compare the simulated correlation matrix to the original correlation matrix 

cor(X) 

corMat 

# Calculate the residuals 

res<-round(corMat-cor(X),3) 

# Calculate the Root Mean Square Residuals (RMSR) 

sqrt(sum(res^2)/(nvars*nvars)) 

# Means and SDs for the simulated data 

# Create the raw data  

datachol<-as.data.frame(X) 

names(datachol)<-c(“x1”,”x2”,”x3”) 

# Write raw data to a file and save          

Figure2. Partial R script for implementing the Cholesky decomposition for generating multivariate normal data 
 

A comparison of the results of the multivariate normal data generated by using the Eigen and Cholesky decompositions is 
summarized in Table 1. Throughout the table, the comparisons are based on a multivariate normal data set generated for 5,000 
observations and three variables, x1, x2, and x3. In addition to the theoretical and empirical means, standard deviations, 
correlation matrices, and residual correlation matrices, the root mean square error (RMSE) values, which are obtained by 
squaring the residuals, averaging the squares, and taking the square root, are also given in Table 1. The RMSE values for the 
multivariate random data generated by Eigen and Cholesky decompositions are both less than .05. 
 

Table1. Comparison of Eigen and Cholesky decompositions for generating multivariate normal data consisting three 
variables, x1, x2, and x3 for 5,000 observations 

Comparison Eigen Decomposition Cholesky Decomposition 

Theoretical means (.0, .0, .0) (.0, .0, .0) 

Empirical means (.010, .002, .006) (.020, -.005, .015) 

Theoretical SDs (1.0, 1.0, 1.0) (1.0, 1.0, 1.0) 

Empirical SDs (.993, 1.002, 1.000) (1.016, .9999, 1.015) 

Theoretical 
Correlation 
Matrices 

(1, .2, .3) 
(.2, 1, .2) 
(.3,. 2, 1) 

(1, .2, .3) 
(.2, 1, .2) 
(.3,. 2, 1) 

Empirical 
Correlation 
Matrices 

(1.000, .225, .275) 
(.225, 1.000, .192) 
(.275, .192, 1.000) 

(1.000, .195, .299) 
(.195, 1.000, .222) 
(.299, .222, 1.000) 

Residual 
Correlation 
Matrices 
Root Mean Square 

(.000, -.025, .025) 
(-.025, .000, .008) 
(.025, .008, .000) 
 

(.000, .005, .001) 
(.005, .000, -.022) 
(.001, -.022, .000) 
 

Errors (RMSE) 0.017 0.011 

 

Another comparison of the multivariate normal data generated by Eigen and Cholesky decompositions can be made based on 
the results of the multivariate normality tests for the simulated data. The multivariate normality test is based on the mvn() 
function of the R package MVN. The mvn() function uses the Mardia test for multivariate outlier detection and normality, which 
is tested based on skewness and kurtosis values. Additional univariate normality tests are conducted using the Anderson-
Darling (A-D) test. Table 2 displays a summary of the results. 
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Table2. Comparison of the descriptive statistics, univariate and multivariate normality tests for the data generated by 
using Eigen and Cholesky decompositions 

Comparisons Eigen Decomposition Cholesky Decomposition 

Means 
x1=.010 
x2=.002 
x3=.006 

x1=.020 
x2=-.005 
x3=.015 

SDs 
x1=.993 

x2=1.002 
x3=1.000 

x1=1.016 
x2=.999 

x3=1.015 

A-D 
test 

p-values 

x1: p=.577 
x2: p=.304 
x3: p=.658 

x1: p=.476 
x2: p=.199 
x3: p=.169 

Mardia Skewness tests p=.713 p=.304 

Mardia Kurtosis tests p=.776 p=.149 

Multivariate Normality Yes Yes 

 
As presented in Table 2, the results of the A-D test for univariate normality revealed that each of the variables, x1, x2, and x3 
generated by either Eigen or Cholesky decompositions follows a normal distribution. Additionally, Mardia multivariate 
normality test results confirm that the simulated data generated by both decompositions satisfy the multivariate normality 
assumption. 
 
A generic algorithm 

A generic algorithm for simulating a multivariate normal distribution with a given mean and variance-covariance structure can 
be described as a six-step algorithm.  
1. Calculate the Eigen decomposition of the variance covariance matrix, Σ. 
2. Check that Σ is positive definite or semi-positive by inspecting the eigenvalues. 
3. Reset the negative eigenvalues within tolerance to 0. 
4. Create the respective scaling matrix, S, based on either Eigen or Cholesky decomposition.  
5. Create a matrix, X, of random standard normal values. 
6. Multiply the random standard normal matrix, X, by the respective scaling matrix, S. 
 
It is worth mentioning that the ability to tolerate positive semi-definite variance-covariance matrices may be hugely beneficial 
in avoiding crashes. It may be advisable to revise the variance-covariance matrices by eliminating linearly dependent columns 
when it is necessary to address potential singularity issues. 
 
Using functions in R packages 

Another way to generate multivariate normal data is to take advantage of the currently available functions in various R 
packages. Since Demirtas (2004) provided some R scripts for generating pseudo-random numbers from different multivariate 
distributions in the absence of R packages and functions, several R functions in R various packages has become available to 
simulate multivariate normal data. Only two of such packages and functions within those two packages are considered and 
illustrated here. 
 
In R, one can use the mvrnorm() function from the MASS package to produce one or more samples from a specified multivariate 
normal distribution. The usage of the mvrnorm() function is based on the user provided arguments, such as the number of 
samples, a vector for the means of the variables, a variance-covariance matrix for the variables, and a tolerance value for the 
lack of positive definiteness. Based on the source code, the mvrnorm() function uses eigenvectors to generate the multivariate 
random normal samples. The partial R script used to simulate a multivariate normal data for three variables and 5,000 cases 
using the mvrnorm() function is given in Figure 3. 

 
# Generating multivariate normal distribution using mvrnorm() function from MASS package 

nobs=5000 

nvars=3 

meanvec<-c(0,0,0) 

corMat<-matrix(cbind(1,.2,.3,.2,1,.2,.3,.2,1),nrow=nvars) 

# Generate the multivariate normal data 

X<-mvrnorm(nobs,meanvec,corMat) 

# Create the raw data  

data<-as.data.frame(X) 

names(data)<-c("x1","x2","x3") 
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# Means and SDs for the simulated data 

apply(X,2,mean) 

apply(X,2,sd) 

# Compare the correlations 

corMat 

round(cor(X),3) 

# Calculate the residuals 

res<-round(corMat-cor(X),3) 

# Calculate the Root mean square residuals (RMSR) 

sqrt(sum(res^2)/(nvars*nvars)) 

# Multivariate normality test 

mvn(data=data[1:3],mvnTest="mardia",desc=T,univariateTest="AD")  

# Write raw data to a file and save          

Figure3. Partial R script for generating multivariate normal data using the mvrnorm() function from MASS package 
 

In addition to using the mvrnorm() function from the MASS package, rmvnorm() function from the mvtnorm package can be 
used to generate multivariate normal data. The usage of the rmvnorm() function is based on the user provided arguments, such 
as the number of observations, a vector for the means of the variables, a variance-covariance matrix for the variables, and a 
choice for the method. The method argument of the rmvnorm() function has three options for the generation algorithms. These 
generation algorithms are Eigen value, Cholesky, and singular value decompositions, with the eigen, chol, and svd choices for 
the method argument, respectively. The partial R script used to simulate a multivariate normal data for three variables and 
5,000 cases using the rmvnorm() function is given in Figure 4. 
 
# Generating multivariate normal distribution using rmvnorm() function from mvtnorm package 

nobs=5000 

nvars=3 

meanvec<-c(0,0,0) 

corMat<-matrix(cbind(1,.2,.3,.2,1,.2,.3,.2,1),nrow=nvars) 

# Generate the multivariate normal data 

X<- X<-rmvnorm(n=nobs,meanvec,corMat,method="eigen") 

# Create the raw data  

data<-as.data.frame(X) 

names(data)<-c("x1","x2","x3") 

# Means and SDs for the simulated data 

apply(X,2,mean) 

apply(X,2,sd) 

# Compare the correlations 

corMat 

round(cor(X),3) 

# Calculate the residuals 

res<-round(corMat-cor(X),3) 

# Calculate the Root mean square residuals (RMSR) 

sqrt(sum(res^2)/(nvars*nvars)) 

# Multivariate normality test 

mvn(data=data[1:3],mvnTest="mardia",desc=T,univariateTest="AD")  

# Write raw data to a file and save          

Figure4. Partial R script for generating multivariate normal data using the rmvnorm() function from mvtnorm package 
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A comparative summary of the results of the multivariate normal data generated by the mvrnorm() and rmvnorm() functions 
from the R packages MASS and mvtnorm, respectively, is presented in Table 3. Throughout the table, the comparisons are based 
on a multivariate normal data set generated for 5,000 observations and three variables, x1, x2, and x3. In addition to the 
theoretical and empirical means, standard deviations, correlation matrices, residual correlation matrices, and the RMSE values, 
the results of the multivariate normality tests for the simulated data are also given in Table 3. The RMSE values for the 
multivariate random data generated by the mvrnorm() and rmvnorm() functions are both less than .01.  
 

Table3. Comparison of the descriptive statistics, univariate and multivariate normality tests for the data generated by 
using mvrnorm() and rmvnorm() functions 

Comparison mvrnorm() function rmvnorm() function 

Means 
x1=.020 
x2=-.002 
x3=.023 

x1=-.012 
x2=-.019 
x3=.016 

SDs 
x1=.992 
x2=.998 
x3=.991 

x1=1.005 
x2=1.022 
x3=.992 

Theoretical 
Correlation 

Matrices 

(1, .2, .3) 
(.2, 1, .2) 
(.3,. 2, 1) 

(1, .2, .3) 
(.2, 1, .2) 
(.3,. 2, 1) 

Empirical 
Correlation 

Matrices 

(1.000, .180, .297) 
(.180, 1, .198) 

(.297, .198, 1.000) 

(1.000, .206, .298) 
(.206, 1.000, .197) 
(.298, .197, 1.000) 

   

Residual 
Correlation 

Matrices 

(.000, .020, .003) 
(.020, .000, .002) 
(.003, .002, .000) 

(.000, -.006, .002) 
(-.006, .000, .003) 
(.002, .003, .000) 

RMSEs 0.009 0.003 

A-D 
test 

p-values 

x1: p=.067 
x2: p=.320 
x3: p=.128 

x1: p=.683 
x2: p=.357 
x3: p=.989 

Mardia Skewness tests p=.124 p=.895 

Mardia Kurtosis tests p=.803 p=.966 

Multivariate Normality Yes Yes 

 
The multivariate normality test is based on the mvn() function of the R package MVN. The mvn() function uses the Mardia test 
for multivariate outlier detection and normality, which is tested based on skewness and kurtosis values. Additional univariate 
normality tests are conducted using the Anderson-Darling (A-D) test. As displayed in Table 3, the results of the A-D test for 
univariate normality revealed that each of the variables, x1, x2, and x3 generated by either mvrnorm() or rmvnorm() functions 
follows a normal distribution. Additionally, Mardia multivariate normality test results confirm that the simulated data 
generated by both R functions satisfy the multivariate normality assumption. 
 
Conclusions and Discussion 

In this paper, I illustrated several different approaches to 
generating or simulating multivariate normal samples with 
detailed comparisons of two decomposition techniques, 
Eigen and Cholesky, and of two functions, mvrnorm() and 
rmvnorm(), from two R packages, MASS and mvtnorm, 
respectively. A six-step algorithm is presented and 
implemented in R to simulate data from a multivariate 
normal distribution. Even though there are various functions 
in several R packages, not every software package offers 
multivariate data generators. Hence, an understanding of the 
algorithm presented here might be helpful to some readers. 
 
The results of these simulations can possibly be used in a 
number of different ways. First, one can create raw data 
when one has access to only summarized results from 
published journal articles or textbook exercises in which 
only summarized data are provided. The simulated raw data 
sets can then be used to assess the assumptions graphically, 
numerically, and inferentially for such results and exercises. 
Second, one may create their own exercise problems with a 
set of specified characteristics, or a specific set of outcomes  
 

 
such as, a data set for which a null hypothesis is rejected or 
failed to be rejected at a given significance level.  
 
Additionally, these simulations may provide instructors with 
a fairly straightforward procedure to generate different data 
sets for different students for the purpose of integrity of 
exams, quizzes or homework assignments or 
demonstrations for lectures. But, one needs to understand 
that simulated data are not real data and should not be 
presented as such. It is more appropriate to view simulated 
data as realistic look-alikes for the real data in a given 
context. 
 
Finally, a word of caution is in order. The six-step algorithm 
and the procedures presented here may not be the most 
efficient implementations of the two decompositions, Eigen 
and Cholesky. It may be possible to create or find more 
efficient implementations elsewhere. Also, one needs to keep 
in mind that the ultimate outcome in simulating data is 
within the quality of in-built random number generation 
process of the respective piece of software. 
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