
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume: 3 | Issue: 4 | May-Jun 2019 Available Online: www.ijtsrd.com e-ISSN: 2456 - 6470

@ IJTSRD | Unique Paper ID - IJTSRD23878 | Volume – 3 | Issue – 4 | May-Jun 2019 Page: 623

An Efficient Virtual Memory using Graceful Code

Divya YA

Assistant Professor, Department of Information Science and Engineering,

GSSS Institute of Engineering and Technology for Women, Mysuru, Karnataka, India

How to cite this paper: Divya YA "An

Efficient Virtual Memory using Graceful

Code" Published in International Journal

of Trend in Scientific Research and

Development

(ijtsrd), ISSN: 2456-

6470, Volume-3 |

Issue-4, June 2019,

pp.623-626, URL:

https://www.ijtsrd.c

om/papers/ijtsrd23

878.pdf

Copyright © 2019 by author(s) and

International Journal of Trend in

Scientific Research and Development

Journal. This is an Open Access article

distributed under

the terms of the

Creative Commons

Attribution License (CC BY 4.0)

(http://creativecommons.org/licenses/

by/4.0)

ABSTRACT

Memory is hardware that is used by computer to load the operating system and

run programs. It is buildup of RAM chip that has different memory modules. The

amount of main memory in a computer is limited to the amount of RAM that has

installed. Generally memory sizes are 256 MB, 512 MB, & 1 GB, because of

computer has limited amount of RAM. When too many programs are

simultaneously it is possible to run a program out of memory. This is the concept

where virtual memory comes. Virtual memory enhance the available memory of

a computer has by enlarging the address space or place in memory where data

can be stored. Hard disk is used for additional memory allocation .However,

since secondary storage is much slower than the RAM, program which is in

Virtual Memory must be mapped back to virtual memory in order to be used. The

process of mapping data and forth between the hard disc and RAM takes longer

than accessing it directly from the memory. It means virtual memory is

increased, the more it will slow your computer down. While virtual memory

enables your computer to run more than one program it could, otherwise it is the

best way to having as main memory as possible.

Keywords: Addressing, Mapping, Swapping, Graceful code, Segmentation

I. PROBLEM DEFINITION

We are having 64 MB Main Memory and 1 GB Virtual Memory. To run a program

we need 512 MB RAM.

Here 32 MB of Main memory is reserved for operating

system and application files, so free space is 32 MB. Program

an active portion is only loaded in main memory that is 33 to

64 MB .Hence remaining program (passive portion) i.e. 512-

32 MB loaded on Virtual memory. To keep Track of this file

active and passive portion of a program GCC is coming into

this picture. Save 128 MB Active location is (128*1024) is

addressed onto the virtual memory by GCC through its

constant factor.

II. INTRODUCTION

Virtual Memory is a main factor of operating system that

provides all the facilities of a process to use RAM (memory

address space) that is completely independent of other

process running simultaneously and uses space that is larger

than the actual amount of RAM. Virtual memory combines

active RAM and inactive hard disk to form a larger range of

contiguous address. Virtual memory is a technique used to

develop for multi-tasking. Virtual memory allowing

designing a program that behaves like directly addressable

memory RAM. Virtual memory specifies each application

program easier by hiding fragmentation of main memory or

to access memory with relative addressing. Virtual memory

is generally a concept of generalization of memory

virtualization. Virtual memory used not to extend RAM, but

to make an extension as easy as possible for users to use.

Virtual memory is specialized to design to automate the

movement of data and code between secondary memory and

RAM to give the appearance of a single large store. When

program code exceeds the main

memory size, this technique is used to

simplify the programmer‟s job. Virtual memory eliminates

external fragmentation and minimizes internal

fragmentation.

III. LITERATURE REVIEW

Liang Shi et al. [1] presented the main use of flash memory is

being widely used in mobile devices and embedded system

.Flash memory is small and light weight from factor, low

power consumption and shock resistance ideal candidate in

replacing traditional hard disk as the storage device flash

memory emphasis asymmetric speed of read and write

operations .Write operation on flash memory is related with

erase operation. In Flash memory based system virtual

memory management is use to reduce the number of write

activities and improve input /output performance

traditional management strategies and virtual memory are

designed based on hard disk as storage system.

Flash memory can reduce the page swapping cost

significantly, Flash memory is a good device for use as swap

space in virtual memory .Flash memory supports read, write

and erase commands. A flash memory page if it is already

been written It cannot be overwritten, and the

corresponding block should be erased before data is written

to the page. These constraint are known as „erase- before-

write‟ constraint proposed in Seunggu Ji et al. [2] In order to

reduce the execution cost of a program, a data segmented

program and program‟s code is to be rearranged in virtual

IJTSRD23878

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD23878 | Volume – 3 | Issue – 4 | May-Jun 2019 Page: 624

address space, this technique is called as program

restructuring. Virtual memory is used to increase the

capabilities and, makes potential computer system, and is

divided into two parts hierarchical organization built up of

small, fast primary memory and large slow secondary

memory. In Paged virtual memory system, a program‟s or

user application‟s virtual address space divided into

matching size page and main memory is divided into equal

size chunks called page frames. The main object of program

restructuring increases page memory utilization decrease

the number of page faults and space time execution cost of

executing program. A static program restructuring is

accomplished at before loading time, information collected

by interpreter described in Stephen J. Hartley et al. [3].

Steven P.Smith & John Kuban et al. [4] describe the

performance of page based virtual memory system is

influenced by page fault frequency. Now inestimable energy

has gone to decrease the hit ratio of virtual to physical

address mapping. Imaginary memory is typically divides into

pages of equal size, and transfers from disk into physical

memory has made in units of pages. When a virtual address

referenced which is not currently in physical memory, a page

replacement algorithm is used to determine which page

currently in main memory is replaced by referenced page.

Simulation references behavior is quantified through

analysis of address traces taken from APOLLO then address

traces were collected using I.M.S (integrated measurement

system) .The address traces were used in virtual memory

system using the LRU replacement algorithm. Through

software modeling approach page size and physical memory

capacity can be easily varied to access the effect on overall

performance.

Rafal Kolanski et al. [5] Presented Virtual memory or

Imaginary memory is a concept of secondary memory, it is

treated as primary memory. Virtual memory is used to

complete the process when RAM is not enough to run the

process that time we requires secondary memory that

becomes primary memory until the process is not

completed, called virtual memory.

Bensoussan, R. C. Daley et al. [6] presented Multics emphasis

direct to hardware addressing by user and application and

system programs of all information, that is independent of its

physical storage. A no. of techniques is being used by 2.6

Linux kernel that improves the large amount of memory

.This article emphasis on some important changes includes

reverse mapping that includes for page reclaim, large

memory pages, storage of page table entries in memory.

Memory which is used by kernel increases efficiency,

flexibility and stability of memory manager. In the earlier

system it has been a need for more memory than exist

physically in a system. To overcome this drawback, a

successful aspect we get that is virtual memory. Kernel is

used to write the contents of currently unused block of

memory to the hard disk .so the memory can be used for

some purpose presented in Hartley S.J. [7].

The early days of computing, Accounting to the size of

program, the limited amount of physical memory posed the

evaluation of Virtual Memory. The management of physical

memory got hidden inside the operating system, and an

address space backed by physical memory and secondary

storage in which the programs were placed. Paging a concept

of memory can be used to free by the application, if it is

involved in physical memory. Most of the applications use

algorithms that are use a as elastic in terms of their ability

the usage of other resources. Database and web browsers

maintain the memory cache of disk can increase

performance by enlarging the cache. A useful extension

model of this preferences uses page replacement algorithm,

so that real time applications only when only when memory

pressure is secured, and daemons becomes alternative users

for page eviction presented in Sita

ram lyer [8]. Yousef A.Khalidi et al. [9] presents an

Implementation of Virtual Memory in current system such as

SUNOS, VMS, NT, MACH and CHORUS share two concept

regarding Main Memory Management. There is one page

size, each size may be multiple of Main Memory Unit page

size, each page size range can be 512 – 8k bytes. Physical

Memory is not very large. Somewhere like the range o0f 4M-

256 M bytes. Main Memory Replacement algorithm are

normally turned for the common size. TLB (Translation look

aside) buffer is a cache of virtual to physical address

translations. It is typically used to reduce the average

address translation time. When required Translation is not

in TLB a software and a hardware miss handler is executed

to enter the translation in TLB.

In embedded system virtual memory has been known as

elegant mechanism for transparent hardware resources

sharing and utilization. The address space accessed by the

program is referred to as virtual address space and that is

divided into equally size virtual page, which are converted

into actual physical page .Each and every virtual page is

identified by a set of significant virtual address bits also

known as virtual page number i. similarly virtual pages are

identified by their physical corresponding physical page

number .Many contemporary high ended processor such

ARM9 & X scale ,offers a hardware that supports for virtual

memory in the form of main memory unit which captures

the most frequent address translation. System software

usually maintain a data structure which provides the

mapping between virtual pages in the application address

space and frames in the physical memory. This page table is

treated as data structure, is always used in tabular form

which occupies a signify memory and traverse hardware

.Main Memory Unit cannot Provide the physical address

when it is missed presented in X.Zhou and P Petrov [10].

Hung-Wei Tseng et al. [11] presented the effects of the

subpaging method and storage cache management. A full

page is written back to the secondary storage on a page fault

in the traditional virtual memory system. M. Huang et al. [12]

describes an energy-management framework that challenges

both energy efficiency and temperature control in a unified

manner. This approach is called Dynamic Energy Efficiency

and Temperature Management (DEETM). Framework

combines several energy-management techniques and can

activate them groups or individually in a fine-grained

manner according to a given rule.

R.M. Jones [14] compares results that have been attained for

several virtual memory swapping algorithms. Algorithms

were tested as software components of a multiple computer

on-line system. C. Park et al. [15] present energy-aware

demand paging technique to decrease the energy

consumption of embedded systems seeing the

characteristics of interactive embedded applications with

large memory footprints. And also describes a page

replacement policy which can decrease the number of write

and erase operations in NAND flash memory.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD23878 | Volume – 3 | Issue – 4 | May-Jun 2019 Page: 625

Hiroshi Tezuka et al. [16] illustrate pin-down cache

technique for zero-copy message communication. It reclaims

the pinned-down area to decline the amount of calls to pin-

down and free primary one. This technique applied in the

low-level communication library on the RWC PC Cluster II.

Giuseppe Psaila [17] presents a Virtual DOM which is a Java

package provides an effective representation technique for

large XML documents. It accepts a specifically designed

virtual memory technique- memory blocks allotted to denote

the document are exchanged by skipping the operating

system swapping mechanism. Actual main memory needs

are under control, the thrashing phenomenon is avoided

even for large documents.

IV. ADDRESS MAPPING AND TRANSLATION

Virtual Memory mapping using graceful code is the diversity

of communication model .It provides concurrent access the

active portion of a program which is in main memory, and

provides a way to run the program successfully with the help

of virtual memory.

Another feature of address space is mapping and

translations, often consist of number of layers. It means that

higher level must be translated to lower level ones in some

way. For example: on a logical disc file system operates

linear sector numbers, which have to be translated. Address

Mapping maps logical address to physical address presented

in Dr. Vivek Chaplot [18]. CPU scrutinizes any virtual address

which classify the address into three fields

 0 11 12 21 22 31

Offset into Page

Frame

Index into Page

Table

Index into Page

Directory

1. Page Frame- This field occupies 12 bits. It provides

offset to one of 4096 bytes in Page frame

2. Page Table -This field occupies 10 bits. It selects one of

1024 array entries in page table

3. Page Directory This field occupies 10 bits. It selects one

of 1024 array entries in page directory

Address in virtual memory consists of logical_page, offset and

page_size. Logical_page denotes page number within the

logical address space, offset defines the offset into that page

and page_size means the size of the page (which is a multiple

of 2).

In Figure 1. P defines Page Number, O denotes Page offset

and F means Page Frame. There are two types of Virtual

address translation

1. Virtual Address Translation Using TLBs

When a program makes a memory reference, the virtual

address directed to the TLB to determine if it contains a

translation for the address presented in Yaman Cakmakci et

al. [19]. For TLB hit, returns the physical address of the data,

and the memory reference continues. For TLB miss, system

searches the page table for the translation.

2. Virtual address translation using page registers
Register in each frame comprising three bits. Residence bit

shows whether or not the frame is occupied, Occupier

defines page number of the page occupying and Protection

bits described in Hanna Alam et al. [20]

Figure1. Maps Virtual address to Physical address

V. SOLUTION METHODOLOGY

Virtual address space is memory mapping mechanism

available in operating system, which provides a relationship

between physical memory and virtual memory presented in

Andon coleman et al. [22].

It provides security through process isolation. An address

generated by process is called logical address (virtual

address) and is mapped virtual address space.

Address space defines a range of discrete addresses, each of

which may correspond a network host, peripheral device,

disk sector or logical and physical entity presented in

Pinchas Weisberg et al. [21].

In the below figure we are having 64 MB Main Memory and 1

GB main memory. Here our program length is 512 length. To

run a program we need 512 RAM. But here available RAM is

only 64 MB. Where 32 MB is reserved for operating system

and application files. And remaining space is lifted of 32 MB.

So current program‟s active portion is only loaded in main

memory that is 33 to 64 MB. Hence remaining current

program„s passive portion is (512-32) MB loaded on virtual

memory. Active and passive portion of current program is

completely divided in maim memory and virtual memory

respectively. To keep track of active and passive portion of a

program, we use graceful code.

Figure2. Virtual memory mapping using graceful code

To find the actual address of an instruction using formula:

Actual address of an instruction = Length of instruction

/number of blocks

VI. ALGORITHM FOR GRACEFUL CODE

STEP -1. Ask to user the length of a program.

STEP -2. Check size of RAM.

STEP -3. Check size of Virtual memory, (RAM

<VIRTUAL MEMORY).

STEP -4. Enter the user instruction address.

STEP -5. Check whether it is in RAM or in Virtual memory.

STEP -6. Fetch the address through the constant factor with

Factorials.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD23878 | Volume – 3 | Issue – 4 | May-Jun 2019 Page: 626

STEP -7. (a*0!) + (b*1!) + (c*2!) + (d*3!)+………

STEP -8. Find out the constant values of a, b, c, d….

STEP -9. Identify the location.

STEP -10. End.

VII. ADVANTAGES OF GARCEFUL CODE

Virtual Memory using graceful code provides several

advantages over the traditional, Kernel dispatch- based

message passing. Main advantages of virtual memory

mapping communication is to perform low overhead

communication since data can move between one process to

another without message dispatching and context

dispatching. Another advantages of virtual memory mapping

is that it moves the memory buffer management to user

level. Graceful code provides such active portion of running

program with the help of virtual memory.

VIII. RESULT

Here Main memory is showing active part of a running

program and the remaining portion of program is in virtual

memory that performing a role to complete the program.
Input Output

M.M V.M M.M V.M
64 KB 1024 KB 0A 0B 2C

2D 0E 0F
0G 5H 1I

0A 0B 2C
2D 0E 2F
0G 0H 8I

2J
16 KB 256 KB 0A 0B 2C

2D 2E 4F
1G 3H

0A 0B 2C
2D 2E 4H

6I
8 KB 128 KB 0A 0B 1C

1D 1E 2F
4G 1H

0A 0B 1C
1D 1E 2H

3I

CONCLUSION

This paper describes efficiency and implementation of virtual

memory using graceful code. The virtual memory is a

mapping that provides direct data transfer between

receiver‟s virtual address space and sender‟s virtual address

space. This code eliminates operating system involvement in

communication, supports user buffer management, zero copy

protocol, provides protection and minimizes the software

overheads associated with implementation communication.

With this work we provide a first implementation of graceful

code on commercially available hardware platform.

With this work we prove that Virtual memory graceful code

is a fairly portable graceful code, not tried to one particular

hardware platform. A better approach of virtual memory

graceful code implementation at the cost of a specialized

network interface and more operating system modification.

REFERENCES

[1] Rafal Kolanski, “A logic for virtual memory“, Electronic

Notes in theoretical computer science 217, Pages 61-

77, 2008.

[2] Bensoussan, R.C.Daley, ”The multics virtual memory:

concept and design“, volume 15, no.5, PP 3078,318,1

May 1972.

[3] X. Zhou, P Petrov, “Towards virtual memory supports

in realtime and memory constraint embedded

applications the interval page system”, Received on

11th march 2009, Revised on 19 th march 2009.

[4] Archana s. sumant, Pramila M. Chawan, “Virtual

memory techniques in 2.6 kernel and challenges“, vol 2,

no., ISSN : 1793-823; 2, april 2010.

[5] S. P, Smith,, ”Modelling and Enhancing Virtual Memory

Performance in Logic Simulation”, on page 264-

267,Product type-conference publication, 7-10 Nov

1988.

[6] Y. A. Khalidi,, ”Virtual Memory Supports for Multiple

page Sizes”, on pages (104-109), 14-15 oct 1993.

[7] S. JHartley, “Compile Time Progaram Restructuring in

Multiprogrammed Virtual Memory System”, volume 14,

issues:11, on page(s)-1640-1644, November 1988.

[8] Sitaram lyer, ”Application - Assisted Physical Memory

Management”, Rice University, 6100 Main Street, Ms-

132 ,Houston, TX 77005, USA, FEBRUARY 1994.

[9] V.Delaluz et al., ”Schduler-based dram energy power

managemant”, In designing Automation conference

39,2002.

[10] D.culler, ”Logp,performance assessment of fast network

interfaces”, IEEE MICRO.1996.

[11] Black, et. al., “Translation

Lookaside BufferConsistencyA: software

 Approach”, December1988,

CMU-CS-88-201.

[12] Hung-Wei Tseng, Han-Lin Li, Chia-Lin Yang, “An

Energy-Efficient Virtual Memory System with Flash

Memory as the Secondary Storage”, Low Power

Electronics and Design, ISLPED'06, 2006.

[13] M. Huang, J. Renau, S.-M. Yoo, J. Torrellas, "The design

of DEETM: a framework for dynamic energy efficiency

and temperature management", Journal of Instruction-

Level Parallelism, vol. 3, 2002.

[14] R.M. Jones, “Factors Affecting the Efficiency of a Virtual

Memory IEEE Transactions on Computers”, Volume: C-

18, Issue: 11, Nov. 1969.

[15] C. Park, J.-U. Kang, S.-Y. Park, J.-S. Kim, "Energy-aware

demand paging on NAND flash-based embedded

storages", Proceedings of the IEEE/ACM International

Symposium on Low Power Electronics and Design,

August 2004.

[16] Hiroshi Tezuka, Francis O'Carroll, Atsushi Hori, and

Yutaka Ishikawa, “Pin-down Cache: A Virtual Memory

Management Technique for Zero-copy

Communication”, IPPS/SPDP 1998. Proceedings of the

First Merged International and Symposium on Parallel

and Distributed Processing 1998.

[17] Giuseppe Psaila, ”Virtual DOM-An Efficient Virtual

Memory Representation for Large XML Documents”,

Database and Expert Systems Application, 2008. DEXA

'08.

[18] Dr. Vivek Chaplot, “Virtual Memory Benefits and Uses”,

International Journal of Advance Research in Computer

Science and Management Studies, Volume 4, Issue 9,

September 2016.

[19] Yaman Cakmakci, Oguz Ergin, “Exploiting Virtual

Addressing for Increasing Reliability”, IEEE Computer

Architecture Letters, Volume: 13, Issue: 1, Jan.-June 28

2014.

[20] Hanna Alam, Tianhao Zhang, Mattan Erez, Yoav Etsion,

”Do-It-Yourself Virtual Memory Translation”, ISCA ‟17,

June 24-28, 2017.

[21] Pinchas Weisberg and Yair Wiseman, “Virtual Memory

Systems Should Use Larger Pages rather than the

Traditional 4KB Pages”, International Journal of Hybrid

Information Technology, Vol.8, No.8 (2015), pp.57-68.

[22] Andon coleman, Janusz zalewski, “A study of Real-time

memory management: Evaluating operating system‟s

performance”, Automatkya/Automatics, Vol. 17, No. 1,

2013.

