
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume: 3 | Issue: 4 | May-Jun 2019 Available Online: www.ijtsrd.com e-ISSN: 2456 - 6470

@ IJTSRD | Unique Paper ID - IJTSRD23698 | Volume – 3 | Issue – 4 | May-Jun 2019 Page: 231

Comparative Study of Test-Driven Development (TDD),

Behavior-Driven Development (BDD) and

Acceptance Test–Driven Development (ATDD)

Myint Myint Moe

University of Computer Studies, Hpa-An, Kayin State, Myanmar

How to cite this paper: Myint Myint

Moe "Comparative Study of Test-Driven

Development (TDD), Behavior-Driven

Development (BDD) and Acceptance

Test–Driven Development (ATDD)"

Published in International Journal of

Trend in Scientific Research and

Development

(ijtsrd), ISSN: 2456-

6470, Volume-3 |

Issue-4, June 2019,

pp.1-3, URL:

https://www.ijtsrd.c

om/papers/ijtsrd23

698.pdf

Copyright © 2019 by author(s) and

International Journal of Trend in

Scientific Research and Development

Journal. This is an Open Access article

distributed under

the terms of the

Creative Commons

Attribution License (CC BY 4.0)

(http://creativecommons.org/licenses/

by/4.0)

ABSTRACT

TDD, BDD and ATDD were introduced by XP (Extreme Programming) is an agile

software development framework. They are unit testing approaches. TDD, BDD

and ATDD are a software development technique which uses unit tests to

incrementally deliver small pieces of functionality. TDD is a developer-focused

process. In Test Driven Development (TDD), first come tests and then the code.

The minimal piece of code is written in order to pass the designed test. In other

words, it is the process of testing the code before its accrual writing. If the code

passes the test, then developers can proceed to its refactoring. Behavior-Driven

Development (BDD) is a customer-focused process. It is based on the full and

clear understanding of the system or module behavior but in the terms of

business/client. The tests for TDD are created by developers for developers. The

test for BDD can be written by testers or technical managers. Acceptance Test-

Driven Development (ATDD) is towards the developer-focused side of things.

ATDD is a technique where the entire team collaborates to define the acceptance

criteria of a story before the implementation actually begins. These acceptance

tests are supported necessary information. Using the Given-When-Then format,

ATDD approach can implement.

KEYWORDS: TDD, BDD, ATDD, Developer, End User, Tester

1. Introduction

Test-Driven Development is the easiest one to apply. It is a test-first software

development methodology. Before writing the actual code, it requires writing test

code that will be tested. In Kent Beck’s good book: The style is to write a few lines

of code then a test that will make it run.

After figuring out to write one small piece of code,

developers want to get immediate feedback and practice

“code a little, and test a little.” So developers immediately

write a test for it. TDD is a low-level, technical methodology

that developers use to produce clean code that works.

Behavior-Driven Development based on TDD is a

methodology. BDD evolved into a process that doesn’t

concern only programmers and testers, but deals with the

entire team and all important stakeholders, technical and

non-technical. Business stakeholders and domain experts

often can determine engineers what kind of tests emit like

they would be useful but only if the tests are high-level tests

that deal with important business aspects. BDD calls as

business-like tests and reserves the word “test” for low-level,

technical checks such as data validation. The important part

is that while tests can only be created by developers and

testers can be collected and analyzed by designers, analysts,

and so on.

ATDD is a collaborative application where users, testers, and

developers define automated acceptance criteria early in the

development process. ATDD aids to ensure that all project

members understand precisely what needs to be done and

implemented. This process usually involves establishing the

criteria first, most often from a user outlook. Thereafter,

acceptance tests are developed and run to detect the

outcomes of failure with the right code based on. Small code

is then developed to run the program, more acceptance tests

are run again, and the results are validated. Before the final

program is developed for use, refactoring is then carried out

based on the results of the acceptance tests.

This paper is composed in six sections: In section 1.

Introduction 2. Objectives, 3. Background Theory, 4.

Motivation, 5. Contribution and 6. Conclusion.

2. Objectives

The primary goal of TDD is to accomplish the code clearer,

simple and bug-free. Test-Driven Development starts with

designing and developing tests for small functionality of an

application. The goals of Behavior-Driven Design (BDD) is to

verify that the application meets the specification; to validate

that the design does what the customer wants; to help the

customer understand the use of the application; and to ask

questions about the behavior of an application before and

during development. Behavior-Driven Development (BDD) is

perhaps the biggest source of confusion. When applied to

IJTSRD23698

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD23698 | Volume – 3 | Issue – 4 | May-Jun 2019 Page: 232

automate testing, BDD is a set of best practices for writing

great tests. BDD can use together with TDD and

unit testing methods. BDD address is implementation detail

in unit tests. The test of TDD is written to analyze the

implementation of functionality, but as the code evolves,

tests can give fail results. BDD is also a test-first approach,

but differs by testing the actual behavior of the system from

the end users perspective. ATDD intends to support

collaboration among the user, developer, and tester to

ensure that acceptance tests exist before writing any code.

The acceptance test is written from the users outlook and

function as a requirement for how the software should

function.

3. Background Theory

Test-Driven Development (TDD) is a simple process. Test-

Driven Development (TDD) focuses on the “inside-out”

perspective and creates tests from a developer’s perspective.

The methodology focuses specifically on unit tests. The

developer catches a requirement and then converts it into a

particular test case. Then the code is written by the

developer to pass those specific test cases only. This practice

is intended to prevent unnecessary updates that do not

address the requirements. Before writing code, TDD forces

developers to focus on product requirements, a fundamental

difference from traditional programming where unit tests

are written by developers after the writing the code.

Behavior Driven-Development (BDD) focuses on the

“outside-in” perspective. These are related to business

outcomes. The process is very similar to TDD. BDD requires

guidance from developers, testers, and users to ensure

answers a user story. BDD is largely an addition of the TDD

methodology. The developer defines a test case, tests code to

analyze that the test case will fail. Next, the code is written

by the developer necessary to pass the test case and then

tests the code to ensure compliance. BDD tests cases exist in

a way that defines the desired behavior. The clear language

of BDD test cases produces it simple for all stakeholders in a

development project to understand. Acceptance Test-Driven

Development (ATDD) is an increasingly popular

development method. ATDD is closely related to Test Driven

Development (TDD) because of its highly collaborative

approach. Acceptance Test Driven Development needs

participation from customer-facing team members to

provide end user stories to the development/testing team.

These stories are refined into Acceptance Tests that lead the

development process.

3.1 Test-Driven Development (TDD)

The TDD process is presented in Figure 1, and consists of the

following steps:

1. Select a user story,

2. Write a test that fulfills a small task of the user story and

run this test. Then produces a failed test,

3. Re-write the production code necessary to implement

the feature,

4. Execute the pre-existing tests again, where any failed

test is existent. When the code is correct, completely and

finally go to the refactoring stage.

5. As the refactoring stage is finished, the correct

production code is produced and the user can select new

user story again.

This method produces some benefits, focus on the

commitment of increasing the quality of the software

product and the productivity of programmers.

Figure: 1 Test-Driven Development flow

3.2 Behavior Driven-Development (BDD)

BDD, initially proposed by Dan North, is a synthesis and

refinement of software engineering practices that help teams

generate and deliver higher quality software quickly. The

BDD process is similar to TDD and follows these steps:

1. Write a scenario;

2. Run the scenario that fails;

3. Writes the test that corresponds to the specifications of

the scenario;

4. Write the simplest code to pass the test and the

scenario, and lastly;

5. Refactor to eliminate duplication.

Figure: 2 Behavior -Driven Development flow

3.3 Acceptance Test-Driven Development

Acceptance test- driven development (ATDD) is

a development methodology based on communication

between the business customers, the developers, and the

testers. Before developers begin coding, ATDD

encompasses acceptance testing, but highlights writing

acceptance tests. The ATDD process follows these steps:

1. Select user story;

2. Write acceptance test;

3. Implement user story;

4. Run acceptance test

5. Make little change/Refactor

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD23698 | Volume – 3 | Issue – 4 | May-Jun 2019 Page: 233

Figure 3: Acceptance Test- Driven Development flow

3.4 Advantages and Disadvantages of TDD

The benefits of TDD:

� Helps prevents defects

� Helps document code with executable examples

� Helps programmers really understand their code

� Helps support refactoring as needs and design changes

� Encourages better design (more cohesive modules that

are loosely coupled)

� Provides early warning to design problems (when they

are easier to fix)

� Creates an automated regression test suite, basically for

free

� Programmers learn how to write other kinds of tests

� It encourages small steps and the principle that it is

easier to keep a system working

The drawback of TDD:

� A challenge to learn

� Hard to apply to legacy code

� Lots of misconceptions that keep programmers from

learning it

3.5 Advantages and Disadvantages of BDD

If software team plans to implement BDD, here are a few

points that will benefit the software team.

� Software team is no longer defining ‘test’, but is defining

‘behavior’.

� Better communication between developers, testers and

product owners.

� Because BDD is explained using simple language, the

learning curve will be much shorter.

� Being non-technical in nature, it can reach a wider

audience.

� The behavioral approach defines acceptance criteria

prior to development.

Even the best development approaches can have problems

and BDD is no exception. Some of them are:

� To work in BDD, prior experience of TDD is required.

� BDD is incompatible with the waterfall approach.

� If the requirements are not properly specified, BDD may

not be effective.

� Testers using BDD need to have sufficient technical

skills.

3.6 Advantages and Disadvantages of ATDD

Advantages:

� Improve communication and collaboration between

project stakeholders

� Shared understanding of what a successful

implementation means

� Better coverage of business expectations

� Faster feed back

Disadvantages:

� New methodology that requires rigor and discipline

� Find the right balance between people/process/tool

3.7 Difference between TDD, BDD and ATDD

� BDD focuses on the behavioral aspect of the system

rather unlike the TDD focuses on the implementation

aspect of the system.

� TDD leans towards the developer-focused side of things;

the BDD is where the step of making it more customer-

focused comes in.

� BDD is usually done in very English-like language, and

often with further tools to make it easy for non-techies

to understand. This permits much easier collaboration

with non-techie stakeholders, than TDD.

� BDD focuses on the behavioral aspect of the system

rather than the implementation aspect of the system

that TDD focuses on. BDD provides a clearer

understanding as to what the system should do from the

perspective of the developer and the customer. TDD

only gives the developer an understanding of what the

system should do.

� ATDD focuses on capturing requirements in acceptance

tests and uses them to drive the development. ATDD

focuses on external quality of the software.

� ATDD leans towards the developer-focused side of

things like TDD does. The BDD is where the step of

making it more customer-focused comes in.

� TDD focuses on the low level, ATDD on high level.

4. Motivation

� According to the study, there has found TDD compared

Traditional techniques. In addition, there has discovered

TDD compared incremental Test- Last development.

This paper describes TDD compared BDD and ATDD.

5. Contribution

Test-driven development (TDD) is a development technique

where developer must first write a test that fails before you

write new functional code. In development approaches, tests

are written ahead of the code, but in BDD, tests are more

user-focused and based on the system’s behavior. ATDD

leans towards the developer-focused side of things. This

permits much easier collaboration with non-techie

stakeholders, than TDD. This paper investigates about TDD,

BDD and ATDD. Its study pros and cons of TDD, BDD and

ATDD. This explores differences of TDD, BDD and ATDD.

6. Conclusion

Test-Driven Development is a process for when developers

write and run your tests. Following it produces it possible to

have a very high test-coverage. Test-coverage refers to the

percentage of codes that is checked automatically, so a

higher number is better. TDD also reduces the probability of

having bugs in developer’s tests, which can otherwise be

difficult to track down. BDD illustrates the methods of

developing a feature based on its behavior. The behavior is

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD23698 | Volume – 3 | Issue – 4 | May-Jun 2019 Page: 234

basically explained in a very simple language which can be

understood by everyone in the team who is responsible for

the development. BDD is a better approach that BDD has

actually evolved from TDD, as a way to eliminate the

shortfalls of TDD. So there is positively no damage in

implementing both approaches – one to support the quality

of the code the developer writes, and the other to support

the behavior of the system defined by the product owner.

Acceptance test-drive development makes the

implementation process more effective. These techniques

have the same goal: write just enough code, reduce

developer efforts, build to detailed requirements and

continuously test the product to ensure it meets business

user expectations.

References

[1]. ShawetaKumar, Sanjeev Bansal; “Comparative study of

Test-Driven development with Traditional

Techniques”; (IJSCE); ISSN: 2231-2307, Volume-3,

Issue-1, March 2016.

[2]. Luis A. Cisneros, Marisa Maximiano, Catarina I. Reis,

José Antonio Quiña Mera; “An Experimental Evaluation

of ITL and TDD”; ICSEA 2018 : The Thirteenth

International Conference on Software Engineering

Advances; Copyright (c) IARIA, 2018. ISBN: 978-1-

61208-668-2.

[3]. Helen Johnson, works at QATestLab; Feb 10, 2017;

www.quora.com/profile/ Helen-Johnson-76.

[4]. Kamil Nicieja, CEO of Ada and author of "Writing

Great Specifications"; Feb 11, 2017;

www.quora.com/profile/

[5]. Vinai Amble; May 31, 2018;

http://dannorth.net/introducing-bdd.

[6]. Manoj; November 5, 2012; September 19, 2014

https://vibhuaggarwal.wordpress.com/

[7]. Sergey Sergyenko; Updated 19 February 2014; http://

code.google.com/

[8]. Duck DuckGo; www.code.google.com/ p/concord

ion/

[9]. Shanmugam Lakshmanan; March 25, 2017;

www.codeqa.com/

[10]. Kevin Dunne; http://www. gasymphony.com

