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ABSTRACT 

Building a multi-headed model that's capable of detecting different types of 
toxicity like threats, obscenity, insult and identity-based hate. Discussing things 
you care about can be difficult. The threat of abuse and harassment online means 
that many people stop expressing themselves and give up on seeking different 
opinions. Platforms struggle to efficiently facilitate conversations, leading many 
communities to limit or completely shut down user comments. So far we have a 
range of publicly available models served through the perspective APIs, 
including toxicity. But the current models still make errors, and they don't allow 
users to select which type of toxicity they're interested in finding.   
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1. INTRODUCTION 

Discussing things you care about can be difficult. The threat 
of abuse and harassment online means that many people 
stop expressing themselves and give up on seeking different 
opinions. Platforms struggle to evidently facilitate 
conversations, leading many communities to limit or 
completely shut down user comments. 
 
2. MOTIVATION 

So far we have a range of publicly available models served 
through the Perspective API, including toxicity. But the 
current models still make errors, and they don't allow users 
to select which type of toxicity they're interested in finding. 
(E.g. some platforms may be ne with profanity, but not with 
other types of toxic content) 
 
3. PROBLEM STATEMENT 

Building a multi-headed model that's capable of detecting 
different types of toxicity like threats, obscenity, insult and 
identity-based hate. 
 
4. DATASET 

The dataset used was Wikipedia corpus dataset which was 
rated by human raters for toxicity. The corpus contains 
comments from discussions relating to use pages and 
articles dating from 2004-2015. The dataset was hosted on 
Kaggle. 
 
 
 

5. DATA OVERVIEW 

The dataset used was Wikipedia corpus dataset which was 
rated by human raters for toxicity. The corpus contains  
comments from discussions relating to use pages and 
articles dating from 2004-2015. The dataset was hosted on 
Kaggle. 
 
The comments were manually classified into following 
categories: 
Toxic 
Severe toxic  
Obscene 
Threat  
Insult 
Identity hate 
 

6. APPROACH 

6.1 HOW PROBABILITY WAS CALCULATED? 

Though there many multi class classifiers, we do not have a 
suitable multi label classier which was able to give 
probability with which target belongs to a label. 
 
So, we used scikit-learn OneVsRestClassier with various 
estimators, with the help of predict_proba, we predicted the 
probability with which a comment belongs to a particular 
label. 
 
 
 
 

 
IJTSRD23464 



International Journal of Trend in Scientific Research and Development (IJTSRD)   @ www.ijtsrd.com    eISSN: 2456-6470 

@ IJTSRD     |     Unique Paper ID - IJTSRD23464     |     Volume – 3 | Issue – 4     |     May-Jun 2019 Page: 25 

7. ANALYSIS OF DATASET 
7.1 VISUALIZATION 

7.1.1 COUNT THE NUMBER OF COMMENTS IN EACH 

CLASS 

 
Three major labels are: 
toxic 
obscene  
insult 
 
7.1.2 Pie chart of Label Distribution over comments 

(without “none” category). 

 
 

7.1.3 COUNT FOR EACH LABEL COMBINATION 

Now, let's take a look at number of comment for each label 
combination. This helps us in finding correlation between 
categories. 

 
 
Following can be inferred from above table: 

The table shows that number of comments with only none 
label are high. 
 
Toxic which is the label high after none is present in all top 6 
combinations. 
 
Among the top combinations, obscene and insult comes 4 
times in 6. 

As the combinations increase the count drops very fast. 
 
7.1.4 CORRELATION MATRIX  

 
 

Following can be inferred from above matrix: 

Toxic is highly correlated with obscene and insult. 
 
Insult and obscene have highest correlation factor of 0.74 
 
Interesting things to be observed: 

Though, a severe toxic comment is also a Toxic comment, the 
correlation between them is only 0.31. 
 
8. FEATURE ENGINEERING 

8.1 CLEANING THE COMMENTS 

Since,   the   comments   in   the   dataset   were collected  
from  the  internet  they  may  contain 'HTML' elements in 
them. So, we removed the 
 
HTML 

We then converted each comment into lower case and then 
split it into individual words. 
 
There were some words in the dataset which had length > 
100, since there are no words in the English language whose 
length > 100, we remove such words. 
 
First, we tried building the features removing stop words 
and then trained some models thinking that it may help the 
model in learning the semantics of toxicity, but we found out 
that the model learns better if there are stop words in the 
comment. 
 
Possible reason is, generally a hate/toxic comment is used 
towards a person, seeing the data we found out that those 
persons are generally referred by pronouns, which are 
nothing but stop words. 
 
8.2 STEMMERS AND LEMMATIZERS 

1. Definitions: 

Stemming usually refers to a crude heuristic process that 
chops o the ends of words in the hope of achieving this goal 
correctly most of the time, and often includes removal of 
derivational affixes. 
 
Lemmatization usually refers to doing things properly with 
the use of a vocabulary and morphological analysis of words, 
normally aiming to remove endings only and to return the 
base or dictionary form of a word, which is known as the 
lemma. 
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2. Reasons to use: 

We used both snowball stemmer, porter stemmer and 
WordNet lemmatizer. 
 
For grammatical reasons, documents are going to use 
different forms of a word, such   as   organizes,   organize   
and organizing.  But  they  all  represent  thesame semantics. 
So, using stemmer/Lemmatizer for those three words gives a 
single word, which helps algorithm learn better. 
 
3. Results: 

On public dataset: 
Snowball > WordNet > Porter 
 
On private dataset: 
WordNet > Snowball > Porter 
 
Decreasing order of accuracy. 
 
8.3  VECTORIZATION 

Python's scikit-learn deals with numeric data only. To 
convert the text data into numerical form, tf-idf vectorizer is 
used. TF-IDF vectorizer converts a collection of raw 
documents to a matrix of Tf-idf features. 
 
We set the predictor variable on the dataset with tf-idf 
vectorizer, in two different ways. First, by setting the 
parameter analyzer as 'word'(select words) and the second 
by setting it to 'char'(select characters). Using 'char' was 
important because the data had many 'foreign languages' 
and they were di cult to deal with by considering only the 
'word' analyzer. 
 
We set the parameter n-gram range (an n-gram is a 
continuous sequence of n-items from a given sample of text 
or speech). After trying various values, we set the n-gram as 
(1, 1) for 'word' analyzer and (1, 4) for 'char' analyzer. We 
also set the max_features as 30000 for both word and char 
analyzer after many trails. 
 
We then combined the word and character features and 
transformed the dataset into two sparse matrixes for train 
and test sets, respectively using tf-idf vectorizer. 
 
8.4 ADDING DATA RELATED FEATURES 

We tried adding features to the dataset that are computed 
from the data itself. Those features are: 
 
Length of comments 
Number of exclamation marks - Data showed severe toxic 
comments with multiple exclamation marks. 
 
Number of question marks 
Number of punctuation symbols - Assumption is that angry 
people might not use punctuation symbols. 
 
Number of symbols - there are some comments with words 
like f**k, 
 
$#*t etc. 
 
Number of words 
Number of unique words - Data showed that angry 
comments are some- times repeated many times. 
 
Proportion of unique  words 

Conclusion: All the above features had correlation of <0.06 
with all labels. So, we decided that adding these features 
does not benefit the model. 
 
9. MODEL BUILDING 

Our basic pipeline consisted of count vectorizer or a tf-idf 
vectorizer and a classifier. We used OneVsRest Classifier 
model. We trained the model with Logistic Regression (LR), 
Random Forest (RF) and Gradient Boosting (GB) classifiers. 
Among them LR gave good probabilities with default 
parameters. So, we then improved the LR model by changing 
its parameters. 
 
10. TRAINING, VALIDATION AND TEST METRICS 

10.1 TRAINING AND VALIDATION SPLIT 

To know whether was generalizable or not, we divided the 
into train and validation sets in 80:20 ratio. We then trained 
various models on the training data, then we ran the models 
on validation data and we checked whether the model is 
generalizable or not. 
 
Also, we trained different models on training data and tested 
those on validation data, then we arrived at our best model. 
 
10.2 TEST METRIC 

We used Receiver Operating Characteristic (ROC) along with 
Area under the curve (AUC) as test metric. 
 
10.3  RESULTS FOR VARIOUS MODELS 

10.3.1 BASE MODEL: 

We created a model without any preprocessing or parameter 
tuning, we used this model as our model, and measured our 
progress using this model. 
 
For this we used Logistic Regression as Classifier. 
 

1. Cross Validation Results 

 
 

2. ROC-AUC Curve 
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10.3.2 Random Forest: 

Next, we created our model using Random Forest. We used 
n_estimators = 10 and random_state = 1 as parameters. 
We observed the following results: 

1. Cross Validation Results 

 

2. ROC – AUC Curve 

 

From the Cross Validation results table and ROC-AUC Curve, 
it is clear that Random Forest performs poorly compared to 
our base model itself, so we proceeded to tune parameters 
for Logistic Regression for better accuracy. 
 
10.3.3 LOGISTIC REGRESSION 

I. We created one model using C = 4 as parameter. The 
following results were observed. 

 
1. Cross Validation Results 

 
 

2. ROC –AUC Curve 

 
 

II. We created another Logistic Regression by selecting the 
best parameters by cross - validating the following 
parameters. 

 
 

3. Cross Validation Results 

 
 

4. ROC – AUC Curve 

 
 
Though, (i) gave better score compared to (ii) on validation 
set, with difference in order of 0.0001. When run on the 
actual data (ii) was found to better than (i). 
 
11. CONCLUSION 

After checking the kaggle discussion board of the actual 
competition, standard Machine Learning approaches yield a 
maximum score of 0.9792, irrespective of any approach. In 
order to get a large margin over this score one has to employ 
Deep Learning (DL) techniques. 
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