International Journal of Trend in Scientific Research and Development (IJTSRD)

Conference Issue | March 2019 Available Online: www.ijtsrd.com e-ISSN: 2456 - 6470

Fostering Innovation, Integration and Inclusion Through Interdisciplinary Practices in Management

Machine Learning Approach for Employee Attrition Analysis

Dr. R. S. Kamath¹, Dr. S. S. Jamsandekar², Dr. P. G. Naik³

¹Associate Professor, ²Assistant Professor, ³Professor ^{1,2,3}Department of Computer Studies, ^{1,2,3}Chhatrapati Shahu Institute of Business Education and Research, Kolhapur, Maharashtra, India

Organised By:

Management Department, Chhatrapati Shahu Institute of Business Education and Research, Kolhapur, Maharashtra

How to cite this paper: Dr. R. S. Kamath | Dr. S. S. Jamsandekar | Dr. P.G. Naik "Machine Learning Approach for Employee Attrition Analysis" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Special Issue | Fostering Innovation, Integration and

Inclusion Through Interdisciplinary Practices in Management, March 2019, pp.62-67, URL: https://www.ijtsrd. com/papers/ijtsrd 23065.pdf

ABSTRACT

Talent management involves a lot of managerial decisions to allocate right people with the right skills employed at appropriate location and time. Authors report machine learning solution for Human Resource (HR) attrition analysis and forecast. The data for this investigation is retrieved from Kaggle, a Data Science and Machine Learning platform [1]. Present study exhibits performance estimation of various classification algorithms and compares the classification accuracy. The performance of the model is evaluated in terms of Error Matrix and Pseudo R Square estimate of error rate. Performance accuracy revealed that Random Forest model can be effectively used for classification. This analysis concludes that employee attrition depends more on employees' satisfaction level as compared to other attributes.

INTRODUCTION

The process to identifying the existing talent in an organization is among the top talent management challenges and the important issue. For every organization, human resource plays a vital role in all strategic decisions. Satisfied, highly-motivated and loyal employees represent the basis of a company and which in turn have impacts on the productivity of an organization.

The prime objective of the present study is to analyze why some of the best and most experienced employees are leaving prematurely. This analysis also wishes to predict which valuable employees will leave next.

The rest of paper is designed as follows; Introduction followed by the materials and methods utilized in the present study. Then the third section summarizes the results and discussions of the HR attrition analysis. The conclusion at the end justifies the suitability of Random Forest model for this talent mining.

Materials and Methods

The dataset for the present analysis is taken from Kaggle, Machine Learning platform [1]. This is the simulated dataset comprising 15000 employee records classified into two categories (left or not left) based on satisfaction level, latest evaluation, number of project worked on, average monthly hours, time spend in the company, work accident, promotion within the past 5 years, department and salary. Table 1 gives description of employee dataset.

Attribute	Description	Data Type	
satisfaction_level	Level of satisfaction (0-1)	Numeric	
last_evaluation	Time since last performance evaluation (in Years)	Numeric	
number_project	Number of projects completed while at work	Numeric	
average_montly_hours	Average monthly hours at workplace	Numeric	
time_spend_company	Number of years spent in the company	Numeric	
Work_accident	Whether the employee had a workplace accident	Numeric	
Left	Whether the employee left the workplace or not (1 or 0)	Numeric	
promotion_last_5years	Whether the employee was promoted in the last five years	Numeric	
sales	Department in which they work for	String	
salary	Relative level of salary (high)	String	

Table 1: Employee dataset description for talent mining

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

This section explores details of experiment conducted for employee attrition analysis and forecasting. The present study is carried out using R and Rattle data mining platform [4]. Figure 1 shows summary of the HR dataset. Dataset is partitioned randomly into training, testing and validation with division 70%, 15 % and 15% respectively. We used the training dataset for parameter adjustment of model whereas validation set to control learning process.

satisfaction_level	last_evaluation	number_project	average_montly_hour	3
MIN. :0.0900	MIN. :0.3600	MIN. :2.000	MIN. : 96.0	
1st Qu.:0.4400	1st Qu.:0.5600	1st Qu.:3.000	1st Qu.:156.0	
Median :0.6500	Median :0.7200	Median :4.000	Median :200.0	
Mean :0.6159	Mean :0.7152	Mean :3.798	Mean :200.9	
3rd Qu.:0.8200	3rd Qu.:0.8700	3rd Qu.:5.000	3rd Qu.:245.0	
Max. :1.0000	Max. :1.0000	Max. :7.000	Max. :310.0	
time spend company	Work accident	promotion last	5years sales	
Min. : 2.000	Min. :0.0000	Min. :0.00000	sales :2	897
1st Qu.: 3.000	1st Qu.:0.0000	1st Qu.:0.00000	technical :1	915
Median : 3.000	Median :0.0000	Median :0.00000	support :1	580
Mean : 3.498	Mean :0.1446	Mean :0.02257	IT :	852
3rd Qu.: 4.000	3rd Qu.:0.0000	3rd Qu.:0.00000	product mng:	612
Max. :10.000	Max. :1.0000	Max. :1.00000	marketing :	606
			(Other) :2	037
salary	left			
high : 842 Min	:0 0000			
lev E000 let	0.0000			
10% :2090 180	Qu.:0.0000			
medium:4567 Medi	an :0.0000			
Mear	:0.2367			
3rd	Qu.:0.0000			
Max.	:1.0000			

Figure 1: Dataset exploration – Summary

Among the vast machine learning algorithms, authors have picked Decision Tree, Random Forest, Support Vector Machine (SVM), and Linear Regression techniques to build the model. These algorithms are based on supervised learning and best known for building prediction models [8]. Supervised learning algorithms try to model relationships and dependencies between the target prediction output and the input features/ predictors such that we can predict the output values for new data based on those relationships which it learned from the previous data sets.

Figure 2 explains Decision tree modeling of HR data. It begins with a root node "satisfaction level", that part into different branches, prompting to further nodes, each of which may additionally part or else end as a leaf node. Connected with each nonleaf node will be a test or question that figures out which branch to take after [7]. The leaf nodes indicate the attrition sates whether the employee "left" or "not left". Figure 3 gives pictorial representation of Decision tree thus derived.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

```
Classification tree:
rpart(formula = left ~ ., data = crs$dataset[crs$train, c(crs$input,
   crs$target)], method = "class", parms = list(split = "information"),
   control = rpart.control(usesurrogate = 0, maxsurrogate = 0))
Variables actually used in tree construction:
[1] average montly hours last evaluation
                                            number project
[4] satisfaction level
                      time spend company
Root node error: 2485/10499 = 0.23669
n= 10499
       CP nsplit rel error xerror
                                       xstd
1 0.240644 0 1.00000 1.00000 0.0175262
2 0.184909
              1 0.75936 0.75936 0.0158321
3 0.073843
              3 0.38954 0.38954 0.0119291
4 0.054728
              5 0.24185 0.24185 0.0095788
               6 0.18712 0.18833 0.0085093
5 0.031388
                  0.15573 0.15976 0.0078650
               7
6 0.016901
                 0.13883 0.14165 0.0074223
7 0.010060
               8
8 0.010000
               9
                  0.12877 0.13119 0.0071521
Time taken: 0.39 secs
```


Figure 3: Decision tree for HR attrition status

Figure 4 explains Random Forest Modeling for HR attrition analysis. RANDOMFOREST package in R environment is employed here to analyze model structure [5-6]. RF builds many decision trees using random subset of data and variables. Rattle provides access to three parameters such as the number of trees, sample size and number of variables for tuning the models.

Figure 4: Summary of the Random Forest Model

Figure 5 explains Support Vector Machine (SVM) designed for the attrition analysis of employee data. SVM searches for support a vector that separates the class.

Support Vector Machine object of class "ksvm"
SV type: C-svc (classification)
parameter : cost C = 1
Gaussian Radial Basis kernel function.
Hyperparameter : sigma = 0.109166570184432
Number of Support Vectors : 1510
Objective Function Value : -1188.127
Training error : 0.03467
Probability model included.
Time taken: 10.80 secs

Figure 5: Summary of SVM Model

Figure 6 explains Linear Regression Model. It is the traditional method for fitting a statistical model to data. It is appropriate since the target variable "attrition status" is numeric.

Figure 6: Summary of Logistic Regression model

Results and Discussion

The present investigation employed different prediction algorithms to analyze employee attrition status and likelihood of retention-attrition of employees. The performance of the model is evaluated in terms of Error Matrix and Pseudo R Square estimate of error rate. An error matrix shows the true outcomes against the predicted outcomes. It is also known as confusion matrix. Table 2 explains performance analysis of these classifiers in terms of error matrix.

Model		Error l	Matri	x
	Predicted			
	Actual	0	1	Error
Decision Tree	0	1662	21	1.2
	1	41	525	7.2
	Predicted			
	Actual	0	1	Error
Random Forest	0	1680	3	0.2
	1	15	551	2.7
	Predicted			
	Actual	0	1	Error
Support Vector Machine	0	1641	42	2.5
	1	50	516	8.8
	Predicted			
	Actual	0	1	Error
Liner Model	0	1558	125	7.4
	1	396	170	70.0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm	~		

#### **Table 2: Performance Analysis of the Classifiers**

Figure 7, the "Predicted versus Observed" plot shows the performance analysis of all the four models. The plot displays the predicted values against the observed values. The Pseudo R-Squared, square of the correlation between the predicted and observed values. The closer to 1, is the acceptable one. Table 3 gives Pseudo R-Square values for these four models.



----

Table 1: Performance accuracy of classifiers			
Classifier	Pseudo R-square		
Decision Tree	0.8473		
Random Forest	0.9773		
Support Vector Machine	0.8315		
Linear Regression	0.2299		

Confusion matrix and "Predicted versus Observed" plot concludes that Random Forest is the appropriate model for analysis of Employee attrition as compared to the other algorithms considered in this study and the underlined data. Figure 8 explains the relative importance of HR dataset attributes using Gini importance and Permutation importance measures. Based on these two measures, it reveals that employees' "satisfaction level" is the predominant predictor of employee attrition.



Figure 8: Dependency of employee attrition status on other attributes

# Conclusion

Authors have explored a machine learning solution for HR attrition analysis and forecast. Present study exhibits performance estimation of various classification algorithms and compares the classification accuracy. The performance of the model is evaluated in terms of Error Matrix and Pseudo R Square estimate of error rate. Performance accuracy revealed that Random Forest model can be effectively used for classification. The result also concludes that employee attrition depends more on employees' satisfaction level as compared to other attributes.

# **References:**

- [1] Retrieved on 30th Dec, 2017 from https://www.kaggle.com/ludobenistant/hr-analytics-1/data
- [2] Boudreau, J. W. Ramstad, P. M.: Beyond HR. Boston. Harvard Business School Press, 2007. ISBN 978-1-4221-0415-6.
- [3] https://www.infogix.com/blog/machine-learning-vsstatistical-modeling-the-real-difference, accessed date 28/012/2017

- [4] Graham, W. Data Mining with Rattle and R: The Art of Excavating Data for Knowledge Discovery, Springer, DOI 10.1007/978-1-4419-9890-3
- [5] Breiman, L. (2005), Random Forest. Machine Learning,45, 5-32
- [6] Andy, L., & Matthew, W. (2002). Classification and Regression by random Forest, R News, 2(3)
- [7] R. S. Kamath, R. K. Kamat (2016), Modeling of Random Textured Tandem Silicon Solar Cells Characteristics: Decision Tree Approach, Journal of Nano and Electronic Physics, Vol. 8 No 4(1), 04021(4pp)
- [8] R. S. Kamath, R. K. Kamat (2016), Supervised Learning Model for Kick starter Campaigns with R Mining, International Journal of Information Technology, Modeling and Computing (IJITMC), Vol. 4, No.1, February, 19-30

Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article dis



Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)