
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume: 3 | Issue: 3 | Mar-Apr 2019 Available Online: www.ijtsrd.com e-ISSN: 2456 - 6470

@ IJTSRD | Unique Paper ID – IJTSRD22925 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 660

Implementation of Combinatorial

Algorithms using Optimization Techniques

Youssef Bassil

Researcher, LACSC – Lebanese Association for Computational Sciences Registered, Beirut, Lebanon

How to cite this paper: Youssef Bassil

"Implementation of Combinatorial

Algorithms using Optimization

Techniques" Published in International

Journal of Trend in Scientific Research

and Development

(ijtsrd), ISSN: 2456-

6470, Volume-3 |

Issue-3, April 2019,

pp.660-666, URL:

http://www.ijtsrd.co

m/papers/ijtsrd229

25.pdf

Copyright © 2019 by author(s) and

International Journal of Trend in

Scientific Research and Development

Journal. This is an Open Access article

distributed under

the terms of the

Creative Commons

Attribution License (CC BY 4.0)

(http://creativecommons.org/licenses/

by/4.0)

ABSTRACT

In theoretical computer science, combinatorial optimization problems are about

finding an optimal item from a finite set of objects. Combinatorial optimization is

the process of searching for maxima or minima of an unbiased function whose

domain is a discrete and large configuration space. It often involves determining

the way to efficiently allocate resources used to find solutions to mathematical

problems. Applications for combinatorial optimization include determining the

optimal way to deliver packages in logistics applications, determining taxis best

route to reach a destination address, and determining the best allocation of jobs

to people. Some common problems involving combinatorial optimizations are

the Knapsack problem, the Job Assignment problem, and the Travelling

Salesman problem. This paper proposes three new optimized algorithms for

solving three combinatorial optimization problems namely the Knapsack

problem, the Job Assignment problem, and the Traveling Salesman respectively.

The Knapsack problem is about finding the most valuable subset of items that fit

into the knapsack. The Job Assignment problem is about assigning a person to a

job with the lowest total cost possible. The Traveling Salesman problem is about

finding the shortest tour to a destination city through travelling a given set of

cities. Each problem is to be tackled separately. First, the design is proposed,

then the pseudo code is created along with analyzing its time complexity. Finally,

the algorithm is implemented using a high-level programming language. As

future work, the proposed algorithms are to be parallelized so that they can

execute on multiprocessing environments making their execution time faster

and more scalable.

KEYWORDS: Combinatorial Algorithms, Optimization Techniques, Knapsack, Job

Assignment, Traveling Salesman

I. KNAPSACK PROBLEM

The knapsack problem is a problem in combinatorial

optimization [1]. Given n items of weights w1, w2….wn

and values v1, v2…vn and a knapsack (container) of

capacity W. The problem is to find the most valuable

subset of items that fit into the knapsack [2].

A. Proposed Solution

The algorithms is based on exhaustive search

approach which suggests generating every

combinational object of the problem and performing

the appropriate calculations. The algorithm use three

one-dimentional arrays, one to store the item

weights, another one to store the item values, and a

last one to store the generated subsets.

B. Design

Figure 1 shows the process flow diagram of the

Knapsack problem design

Figure 1: Process Flow for the Knapsack problem

C. Algorithm

//ALGORITHM Knapsack (itemsValue[n], items

Weight[n])

// Knapsack Problem

// INPUT: itemsValue[n] , itemsWeight[n]

// OUTPUT: optimalSubset: array of integers

ITEMS_COUNT: integer constant that holds the # of

items

itemsValue[n]: array of integers that holds item

Values

itemsWeight[n]: array of integers that holds item

Weights

IJTSRD22925

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD22925 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 661

bitString[ITEMS_COUNT]: array of flags that holds a

particular subset

optimalSubset[ITEMS_COUNT]: array of flags that

holds the subset of items with highest total value

knapsackCapacity : integer that holds the Capacity of

the Knapsack

optimalValue: integer that holds the highest Value

calculated after each subset

sumValues: integer that holds the sum of all items

values for a given subset

sumWeights: integer that holds the sum of all items

weights for a given subset

BEGIN

optimalValue � 0

// Step1: Generates integer numbers

FOR i <- 0 TO Pow(2,ITEMS_COUNT) DO

{

// Step2: Convert integer Numbers to binary

numbers

// Step3: Generating Subsets

j <- 0

WHILE i<>0

{

bitString[j] � i MOD 2

i � i/2

}

// Step4: Calculate the Item values

corresponding to each subset

sumValues<-0

sumWeights<-0

FOR k <- 0 TO ITEMS_COUNT DO

{

// Replaces TRUE flag with its corresponding

Item value

IF bitString[k] = TRUE THEN

{

sumValues <- sumValues + itemsValue[k]

sumWeights <- sumWeights +

itemsWeight[k]

}

k � k+1

}

// Step5: Store the highest value with its

corresponding subset

IF (sumWeights <= knapsackCapacity

 AND sumValues > optimalValue)

THEN

{

optimalValue <- sumValues

FOR p�0 TO ITEMS_COUNT DO

{

optimalSubset[p] <- bitString[p]

p <- p+1

}

}

i � i+1

} // end of step1 FOR LOOP

 // Step6: Return the Subset that has highest Items

value

RETURN optimalSubset

END

D. Analysis

The proposed algorithm can find the optimal subset

of items with their corresponding optimal value while

falling under the below efficiency class:

Knapsack (a[n],b[n]) € O n2 (n2 > n)

Knapsack (a[n],b[n]) € Ω 1 (1 < n)

Knapsack (a[n],b[n]) € Ф n (n = n)

Performance wise, it requires about 9 milliseconds to

handle the problem with 50 items.

E. Implementation

Figure 2 depicts the screenshot of the program that

implements the Knapsack problem using C#.NET [3].

Figure 2: The Knapsack Program

II. JOB ASSIGNMENT PROBLEM

The assignment problem is a fundamental

combinatorial optimization problem [4]. Given n

people who need to be assigned to n jobs , one person

per job. The cost of ith person is assigned to jth job is

stored in table[i][j]. The problem is to find an

assignment with the lowest total cost [5].

A. Proposed Solution

Developing an algorithms based on the brute force

techinque which tests and evaluates all possible

objects combinations involved in the problem and

performs appropriate calculations. The algorithm

uses a one-dimentational array to store permutations

and a two-dimentinal array to store Person/Job cost

B. Design

Figure 3 shows the process flow diagram of the Job

Assignment problem design

Figure 3: Process Flow for the Job Assignment

problem

C. Algorithm

// ALGORITHM Assignment (table[n][n] , COUNTER)

// Person/Job Assignment Problem

// INPUT: table[n][n] , COUNTER

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD22925 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 662

// OUTPUT: optimalList : array of integers

table[n][n]: 2D integer array that Stores all costs

entered by the user

COUNTER: integer that holds the # of persons(or the

of jobs)

list[COUNTER]: array of integers that holds

permutation

pointers[COUNTER]: array of integers that holds

present direction of each permutation

increasingPtr[COUNTER]: array of integers that holds

left to right arrows -> -> ->

decreasingPtr[COUNTER]: array of integers that holds

right to left arrows <- <- <-

optimalSum: integer that holds the lower cost per

person/job assignment

optimalList [COUNTER]: array of integers that holds

the permutation with the lower cost

mobile: integer that holds the mobile element

mobileIndex: integer that holds the index of the

mobile element

flag: boolean variable that indicates if a mobile exists

or not

temp: integer used FOR swapping purposes

sum: integer that holds the cost of a particular

permutation instance

BEGIN

optimalSum � INFINITY

//Fill array lists with 1 2 3 4 5 6....(depending on

variable COUNTER)

FOR i�0 TO COUNTER DO

{

list[i] � i+1

i � i+1

}

//Initialize pointers <- <- <-

FOR i � COUNTER-1 TO 0 DO

{

pointers[i] � i-1

i � i+1

}

//Initialize increasingPtr -> -> ->

FOR i�0 TO COUNTER DO

{

increasingPtr[i] � i+1

i � i+1

}

//Initialize decreasingPtr <- <- <-

FOR i�COUNTER-1 TO 0 DO

{

decreasingPtr[i] � i-1

i � i+1

}

// Johnson-Trotter ALGORTIHM

// Generates Permutations

FOR i�0 TO fac(COUNTER)-1 DO

{

//Calculate the cost for each permutation

instance

sum � 0

FOR j�0 TO COUNTER DO

{

sum � sum+table[j,list[j]-1]

j � j+1

}

// Holds the lowest sum

IF sum < optimalSum THEN

{

optimalSum � sum

FOR k�0 TO COUNTER DO

{

optimalList[k]�list[k]

k � k+1

}

}

 mobile � 0

 mobileIndex � 0

 flag � false

 //Step1 : Find the largest Mobile

FOR i�0 TO COUNTER DO

{

IF(pointers[i]<>1 && pointers[i]<>COUNTER

AND list[i]>mobile AND

list[pointers[i]]<list[i])

THEN

{

mobile <- list[i]

mobileIndex <- i

flag <- TRUE

}

i � i+1

}

// Step2: test whether a mobile was found

// Step3: Swap the mobile with the element that it

points to

// Step4: Swap the pointers of mobile and the

element that it points to

// Step5: Reverse Directions of all elements that

are greater than mob

IF flag=TRUE THEN

{

// Swap the mobile with the element that it

points to

list[mobileIndex] � list[pointers[mobileIndex]]

list[pointers[mobileIndex]] � mobile

IF(pointers[pointers[mobileIndex]]=mobileInde

x) THEN

{

// Indicates the mobile is at the left side

IF(pointers[mobileIndex] > mobileIndex)

THEN

{

// Swap the pointers of mobile and the

element that it points to

Temp�pointers[pointers[mobileIndex]]

pointers[pointers[mobileIndex]]�pointers

[mobileIndex]+1

pointers[mobileIndex]�temp-1

}

ELSE // Indicates the mobile is at the right

side

{

// Swap the pointers of mobile and the

element that it points to

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD22925 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 663

Temp�pointers[pointers[mobileIndex]]

pointers[pointers[mobileIndex]]�pointer

s[mobileIndex]-1

pointers[mobileIndex]�temp+1

}

}

}

// Reverse Directions

FOR i�0 TO COUNTER DO

{

IF list[i]>mobile THEN

IF pointers[i]�increasingPtr[i] THEN

pointers[i]�decreasingPtr[i]

ELSE IF pointers[i]�decreasingPtr[i] THEN

pointers[i]�increasingPtr[i]

i � i+1

}

 }

 //Calculate the cost FOR the last permutation

instance

 sum � 0

 FOR j�0 TO COUNTER DO

 {

sum � sum+table[j,list[j]-1]

j � j+1

 }

 // Holds the lowest sum

 IF sum < optimalSum THEN

 {

optimalSum � sum

FOR k�0 TO COUNTER DO

{

optimalList[k]�list[k]

k � k+1

}

}

// optimal list should hold the less costly

person/job assignment

RETURN optimalList

END

D. Analysis

The proposed algorithm can find the optimal

person/job assignment with its corresponding lowest

cost. It is very practical even on large number of

persons, however it exhausts processing time due to

Johnson-trotter algorithm [6] whose order of growth

is always exponential. The algorithm falls under the

below efficiency class:

Assignment (table[n][n] , c) € O n3 (n3 > n2)

Assignment (table[n][n] , c) € Ω n (n < n2)

Assignment (table[n][n] , c) € Ф n2 (n2 = n2)

Performance wise, it requires 12 seconds to handle a

problem with 100 jobs 100! = 9.33262154439441

52681699238856267e+157 permutations

E. Implementation

Figure 4 depicts the screenshot of the program that

implements the Job Assignment problem using

C#.NET.

Figure 4: The Job Assignment Program

III. TRAVELING SALESMAN PROBLEM

The Traveling Salesman Problem is a classic

algorithmic problem in the field of computer science

that focuses on optimization [7]. The problem ask to

find the shortest tour through a given set of n cities or

nodes that visits each city exactly once before

returning to the city where it started [8].

A. Proposed Solution

Exaustive search technique is so far the most

appropriate appraoch to solve this problem. It

consists of generating all possible paths with their

correponding lengths so eventually the shortest path

can be identified. The algorithm uses a one-

dimentional array to store permutations, a one-

dimentional array to store distinct cities, and a two-

dimentional array to store from city, to city, and

length variables.

B. Design

Figure 5 shows the process flow diagram for the

Traveling Salesman problem design

Figure 5: Process Flow for the Traveling Salesman

problem

C. Algorithm

// ALGORITHM Salesman(table[n][3] , startCity)

// Person/Job Assignment Problem

// INPUT: table[n][n] , startCity

// OUTPUT: optimalList : array of characters

cities[citiesCounter]: array of characters holds Distinct

cities

newList[citiesCounter+1]: array of characters that

holds: startcity+permutation+startcity

citiesCounter: integer holds # of distinct cities

startCity: Character holds the name of the start city

table[n][3]: 2D integer array that Stores all routes

with their corresponding length

list[citiesCounter-1]: array of characters that holds

permutation

pointers[citiesCounter-1]: array of integers that holds

present direction of each permutation

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD22925 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 664

increasingPtr[citiesCounter-1]: array of integers that

holds left to right arrows -> -> ->

decreasingPtr[citiesCounter-1]: array of integers that

holds right to left arrows <- <- <-

optimalSum: integer that holds the shortest path

summation

optimalList[citiesCounter+1]: array of characters that

holds the permutation with the shortest path

mobile: integer that holds the mobile element

mobileIndex: integer that holds the index of the

mobile element

flag: boolean variable that indicates if a mobile exists

or not

temp: integer used for swapping purposes

sum: integer that holds the cost of a particular

permutation instance

BEGIN

//Step1: Recognize and store in array cities only

the distinct cities

i�0

WHILE(i<citiesCounter) DO

{

IF table[i][1]<>cities[i] THEN

i<-i+1

ELSE

{

i � citiesCounter+1

s � i

}

}

// Adding the found city to the array

IF i=citiesCounter THEN

{

cities[citiesCounter]� table[s][1]

citiesCounter � citiesCounter+1

}

//Step2: create an array named list that contains all

distinct cities

k�0

FOR i�0 TO citiesCounter DO

{

IF cities[i] <> startCity THEN

{

list[k]�cities[i]

k � k+1

}

i � i+1

}

//Initialize pointers <- <- <-

FOR i � citiesCounter-1 TO 0 DO

{

pointers[i] � i-1

i � i+1

}

//Initialize increasingPtr -> -> ->

FOR i�0 TO citiesCounter DO

{

increasingPtr[i] � i+1

i � i+1

}

//Initialize decreasingPtr <- <- <-

FOR i�citiesCounter-1 TO 0 DO

{

decreasingPtr[i] � i-1

i � i+1

}

FOR i�0 TO fac(citiesCounter)-1 DO

{

// Step3 : Add the startcity at the beginning & at

the end

newList[0]�startCity

k � 1

FOR s�0 TO citiesCounter DO

{

newList[k]�list[s]

k �k+1

s �s+1

}

newList[citiesCounter]<-startCity

//Step4: Calculate Length

Sum�0

i�0

j�0

WHILE i<citiesCounter-1 AND j<n-1 DO

{

IF(newList[i]=table[j,0] AND

newList[i+1]=table[j,1])

THEN

{

Sum�sum+table[j,2]

i�i+1

j�0

}

ELSE j�j+1

}

// store the shortest path

IF sum < optimalSum THEN

{

optimalSum�sum

FOR s�0 TO s<citiesCounter DO

{

optimalList[s]�newList[s]

s � s+1

}

}

// Johnson-Trotter ALGORTIHM

// Step5: Generates Permutations

mobile � ' ' // small value

mobileIndex � 0

flag � FALSE

// Step1 : Find the largest Mobile

FOR i�0 TO citiesCounter DO

{

IF(pointers[i]<>1 AND

pointers[i]<>citiesCounter-1

AND list[i]>mobile AND

list[pointers[i]]<list[i])

THEN

{

mobile � list[i]

mobileIndex � i

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD22925 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 665

flag � true

}

i � i+1

}

//Step2: test whether a mobile was found

//Step3: Swap the mobile with the element that

it points to

//Step4: Swap the pointers of mobile and the

element that it points to

//Step5: Reverse Directions of all elements that

are greater than mobile

IF flag=TRUE THEN

{

// Swap the mobile with the element that it

points to

list[mobileIndex] �

list[pointers[mobileIndex]]

list[pointers[mobileIndex]] � mobile

IF(pointers[pointers[mobileIndex]]=mobileIn

dex) THEN

{

// Indicates the mobile is at the left side

IF(pointers[mobileIndex] > mobileIndex)

THEN

{

// Swap the pointers of mobile and the

element that it points to

Temp�pointers[pointers[mobileIndex]]

pointers[pointers[mobileIndex]]�pointer

s[mobileIndex]+1

 pointers[mobileIndex]�temp-1

}

ELSE // Indicates the mobile is at the right

side

{

// Swap the pointers of mobile and the

element that it points to

Temp�pointers[pointers[mobileIndex]]

pointers[pointers[mobileIndex]]�pointer

s[mobileIndex]-1

 pointers[mobileIndex]�temp+1

}

}

}

// Reverse Directions

FOR i�0 TO citiesCounter DO

{

IF list[i]>mobile THEN

IF pointers[i]�increasingPtr[i] THEN

pointers[i]�decreasingPtr[i]

ELSE IF pointers[i]�decreasingPtr[i] THEN

pointers[i]�increasingPtr[i]

i � i+1

}

}

RETURN optimalList

END

D. Analysis

The proposed algorithm can find the shortest path

among many alternatives starting from a given city,

passing through all the available cities only once to

end at the same starting point. Even though it is based

on Johnson-Trotter algorithm to generate

permutations, the proposed algorithm is considered

quite efficient due to the complexity of the original

problem. Therefore to solve a complex problem such

the traveling salesman problem, somehow you are

going to lose some processing time. The algorithm

falls under the below efficiency class:

Salesman (table[n][3] , sCity) € O n3 (n3 > n2)

Salesman (table[n][3] , sCity) € Ω n (n < n2)

Salesman (table[n][3] , sCity) € Ф n2 (n2 = n2)

Performance wise, it requires 17 seconds for a

problem with 100 cities

(100! = 9.3326215443944152681699238856267e+157

permutations)

E. Implementation

Figure 6 depicts the screenshot of the program that

implements the Traveling Salesman problem using

C#.NET.

Figure 6: The Traveling Salesman Program

IV. Conclusions & Future Work

This paper proposed three new optimized algorithms

for solving three combinatorial optimization

problems namely the Knapsack problem, the Job

Assignment problem, and the Traveling Salesman

problem respectively. Each problem was tackled from

a design, analysis, and implementation point of views.

The proposed designs showed the optimized versions

of the algorithms while listing their complete pseudo

code. Furthermore, a thorough time complexity

analysis was performed to finally end up

implementing the algorithms and testing them using

C#.NET.

As future work, the proposed algorithms are to be

parallelized using multithreading and

multiprogramming techniques so as to speeding up

their execution time and making them more

adaptable to large computing architectures.

Acknowledgment

This research was funded by the Lebanese

Association for Computational Sciences (LACSC),

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD22925 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 666

Beirut, Lebanon, under the “Parallel Programming

Algorithms Research Project – PPARP2019”.

References

[1] Caccetta, L., Kulanoot, A, "Computational Aspects

of Hard Knapsack Problems". Nonlinear Analysis,

47 (8): 5547–5558, 2001

[2] Poirriez, Vincent; Yanev, Nicola; Andonov,

Rumen, "A hybrid algorithm for the unbounded

knapsack problem", Discrete Optimization, 6 (1):

110–124, 2009

[3] Petzold, Charles, "Programming Microsoft

Windows with C#", Microsoft Press. ISBN 0-

7356-1370-2, 2002

[4] Munkres, James, "Algorithms for the Assignment

and Transportation Problems", Journal of the

Society for Industrial and Applied Mathematics,

5 (1): 32–38, 1957

[5] Brualdi, Richard A., "Combinatorial matrix

classes. Encyclopedia of Mathematics and Its

Applications", Cambridge: Cambridge University

Press, ISBN 978-0-521-86565-4, 2006

[6] Dershowitz, Nachum, "A simplified loop-free

algorithm for generating permutations", Nordisk

Tidskr Informations, 15 (2): 158–164, 1957

[7] Cook, William, "In Pursuit of the Traveling

Salesman: Mathematics at the Limits of

Computation", Princeton University Press, ISBN

9780691152707, 2012

[8] Steinerberger, Stefan, "New Bounds for the

Traveling Salesman Constant", Advances in

Applied Probability, (47): 27–36, 2015.

