
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume: 3 | Issue: 3 | Mar-Apr 2019 Available Online: www.ijtsrd.com e-ISSN: 2456 - 6470

@ IJTSRD | Unique Paper ID – IJTSRD22918 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 623

Design & Implementation of Digital

Image Transformation Algorithms

Joe G. Saliby

Researcher, Lebanese Association for Computational Sciences, Beirut, Lebanon

How to cite this paper: Joe G. Saliby

"Design & Implementation of Digital

Image Transformation Algorithms"

Published in International Journal of

Trend in Scientific Research and

Development

(ijtsrd), ISSN: 2456-

6470, Volume-3 |

Issue-3 , April 2019,

pp.623-631, URL:

http://www.ijtsrd.co

m/papers/ijtsrd229

18.pdf

Copyright © 2019 by author(s) and

International Journal of Trend in

Scientific Research and Development

Journal. This is an Open Access article

distributed under

the terms of the

Creative Commons

Attribution License (CC BY 4.0)

(http://creativecommons.org/licenses/

by/4.0)

ABSTRACT

In computer science, Digital Image Processing or DIP is the use of computer

hardware and software to perform image processing and computations on

digital images. Generally, digital image processing requires the use of complex

algorithms, and hence, can be more sophisticated from a performance

perspective at doing simple tasks. Many applications exist for digital image

processing, one of which is Digital Image Transformation. Basically, Digital Image

Transformation or DIT is an algorithmic and mathematical function that converts

one set of digital objects into another set after performing some operations.

Some techniques used in DIT are image filtering, brightness, contrast, hue, and

saturation adjustment, blending and dilation, histogram equalization, discrete

cosine transform, discrete Fourier transform, edge detection, among others. This

paper proposes a set of digital image transformation algorithms that deal with

converting digital images from one domain to another. The algorithms to be

implemented are grayscale transformation, contrast and brightness adjustment,

hue and saturation adjustment, histogram equalization, blurring and sharpening

adjustment, blending and fading transformation, erosion and dilation

transformation, and finally edge detection and extraction. As future work, some

of the proposed algorithms are to be investigated with parallel processing paving

the way to make their execution time faster and more scalable.

KEYWORDS: Algorithms, Digital Image Processing, Digital Image Transformation

I. GRAYSCALE TRANSFORMATION

Grayscale is a range of shades of gray without

apparent color. The darkest possible shade is black,

which is the total absence of transmitted or reflected

light. The lightest possible shade is white, the total

transmission or reflection of light at all visible

wavelengths. Intermediate shades of gray are

represented by equal brightness levels of the three

primary colors (red, green and blue) for transmitted

light, or equal amounts of the three primary pigments

(cyan, magenta and yellow) for reflected light [1].

In photography and computing, a grayscale digital

image is an image in which the value of each pixel is a

single sample, that is, it carries only intensity

information. Images of this sort, also known as black-

and-white, are composed exclusively of shades of

gray, varying from black at the weakest intensity to

white at the strongest. Grayscale images are distinct

from one-bit bi-tonal black-and-white images, which

in the context of computer imaging are images with

only the two colors, black, and white. Grayscale

images have many shades of gray in between.

Grayscale images are also called monochromatic,

denoting the presence of only one color.

A. Implementation

Image img = pictureBox1.Image;

Bitmap bitmap = new Bitmap(img);

// Cycling over all the pixels in the image

for (int i = 0; i < bitmap.Size.Width; i++)

{

for (int j = 0; j < bitmap.Size.Height; j++)

{

Color color = bitmap.GetPixel(i, j); // Retreives

the color of a particular pixel

int R = color.R; // since the image is 8-bit

Grayscale

if (intensityTrackbar.Value == 2)

{

int upperBound = 271; // 271-16 = 255

int lowerBound = 0;

for (int k = 1; k <= 16; k++)

{

upperBound = upperBound - 16;

lowerBound = upperBound - 16;

if (R <= upperBound && R > lowerBound)

{

 R = upperBound;

}

IJTSRD22918

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD22918 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 624

}

}

else if (intensityTrackbar.Value == 1)

{

int upperBound = 319; // 319-64 = 255

int lowerBound = 0;

for (int k = 1; k <= 4; k++)

{

upperBound = upperBound - 64;

lowerBound = upperBound - 64;

if (R <= upperBound && R > lowerBound)

{

 R = upperBound;

}

}

}

else if (intensityTrackbar.Value == 0)

{

 if (R <= 255 && R > 127)

 R = 255;

 else R = 0;

}

bitmap.SetPixel(i, j, Color.FromArgb(R, R, R));

}

}

Figure 1, 2, 3, and 4 depict an original image in 8 bits,

4 bits, 2 bits, and 1 bit grayscale mode respectively.

Figure 1: 8-bit Grayscale = 256 Levels

Figure 2: 4-bit Grayscale = 16 Levels

Figure 3: 2-bit Grayscale = 4 Levels

Figure 4: 1-bit Grayscale = 2 Levels (Black & White)

II. CONTRAST ADJUSTMENT

Contrast is created by the difference in luminance, the

amount of reflected light, reflected from two adjacent

surfaces. There is also the Weber definition of

contrast:

Contrast = Lmax – Lmin

 Lmax

Lmax = Luminance on the lighter surface

Lmin = Luminance on the darker surface

When the darker surface is black and reflects no light,

the ratio is 1. Contrast is usually expressed as

percentage value; the ratio is multiplied by 100. The

maximum contrast is thus 100% contrast [2]. The

symbols of the visual acuity charts are close to the

maximum contrast. If the lowest contrast perceived is

5%, contrast sensitivity is 100/5=20. If the lowest

contrast perceived by a person is 0.6%, contrast

sensitivity is 100/0.6=170.

A. Implementation

public static Bitmap AdjustContrast(Bitmap Image,

float Value)

{

Value = (100.0f + Value) / 100.0f;

Value *= Value;

Bitmap NewBitmap = (Bitmap)Image.Clone();

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD22918 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 625

BitmapData data = NewBitmap();

int Height = NewBitmap.Height;

int Width = NewBitmap.Width;

for (int y = 0; y < Height; ++y)

{

byte* row = (byte*)data.Scan0 + (y *

data.Stride);

int columnOffset = 0;

for (int x = 0; x < Width; ++x)

{

byte B = row[columnOffset];

byte G = row[columnOffset + 1];

byte R = row[columnOffset + 2];

float Red = R / 255.0f;

float Green = G / 255.0f;

float Blue = B / 255.0f;

Red = (((Red - 0.5f) * Value) + 0.5f) * 255.0f;

Green = (((Green - 0.5f) * Value) + 0.5f) *

255.0f;

Blue = (((Blue - 0.5f) * Value) + 0.5f) * 255.0f;

int iR = (int)Red;

iR = iR > 255 ? 255 : iR;

iR = iR < 0 ? 0 : iR;

int iG = (int)Green;

iG = iG > 255 ? 255 : iG;

iG = iG < 0 ? 0 : iG;

int iB = (int)Blue;

iB = iB > 255 ? 255 : iB;

iB = iB < 0 ? 0 : iB;

row[columnOffset] = (byte)iB;

row[columnOffset + 1] = (byte)iG;

row[columnOffset + 2] = (byte)iR;

columnOffset += 4;

}

}

}

III. BRIGHTNESS ADJUSTMENT

Brightness is an attribute of visual perception in

which a source appears to be radiating or reflecting

light. In other words, brightness is the perception

elicited by the luminance of a visual target [3]. This is

a subjective attribute/property of an object being

observed.

A. Implementation

Image img = pictureBox1.Image;

Bitmap bitmap = new Bitmap(img);

// Cycling over all the pixels in the image

for (int i = 0; i < bitmap.Size.Width; i++)

{

for (int j = 0; j < bitmap.Size.Height; j++)

{

Color color = bitmap.GetPixel(i, j); //

Retreives the color of a particular pixel

int R = color.R; // since the image is 8-bit

Grayscale --> R = G = B

int G = color.G; // since the image is 8-bit

Grayscale --> R = G = B

int B = color.B; // since the image is 8-bit

Grayscale --> R = G = B

R+= intensity_level;

G+= intensity_level;

B+= intensity_level;

bitmap.SetPixel(i, j, Color.FromArgb(R, G,

B)); // Updating the bitmap with the new

modified pixel

}

 }

IV. HUE & SATURATION ADJUSTMENT

HSL stands for hue, saturation, and lightness, and is

often also called HLS. HSV stands for hue, saturation,

and value, and is also often called HSB. A third model,

common in computer vision applications, is HSI, for

hue, saturation, and intensity. However, while

typically consistent, these definitions are not

standardized, and any of these abbreviations might be

used for any of these three or several other related

cylindrical models [4].

HSL and HSV are the two most common cylindrical-

coordinate representations of points in an RGB color

model. The two representations rearrange the

geometry of RGB in an attempt to be more intuitive

and perceptually relevant than the Cartesian (cube)

representation. Developed in the 1970s for computer

graphics applications, HSL and HSV are used today in

color pickers, in image editing software, and less

commonly in image analysis and computer vision.

Figure 5 depicts the HSL and HSV color spectrum.

Figure 5: HSL & HSV

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD22918 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 626

A. Implementation

public static Color[]

GetColorDiagram(List<ControlPoint> points)

{

Color[] colors = new Color[256];

points.Sort(new PointsComparer());

for (int i = 0; i < 256; i++)

{

ControlPoint leftColor = new ControlPoint(0,

GetNearestLeftColor(points[0].Color));

ControlPoint rightColor = new ControlPoint

(255,

GetNearestRigthColor(points[points.Count -

1].Color));

if (i < points[0].Level)

{

rightColor = points[0];

}

if (i > points[points.Count - 1].Level)

{

leftColor = points[points.Count - 1];

}

else

{

for (int j = 0; j < points.Count - 1; j++)

{

if ((points[j].Level <= i) & (points[j +

1].Level > i))

{

leftColor = points[j];

rightColor = points[j + 1];

}

}

}

if ((rightColor.Level - leftColor.Level) != 0)

{

double koef = (double)(i - leftColor.Level) /

(double)(rightColor.Level - leftColor.Level);

int r = leftColor.Color.R + (int)(koef *

(rightColor.Color.R - leftColor.Color.R));

int g = leftColor.Color.G + (int)(koef *

(rightColor.Color.G - leftColor.Color.G));

int b = leftColor.Color.B + (int)(koef *

(rightColor.Color.B - leftColor.Color.B));

colors[i] = Color.FromArgb(r, g, b);

}

else

{

colors[i] = leftColor.Color;

}

}

return colors;

}

V. HISTOGRAM

In image processing and photography, a color

histogram is a representation of the distribution of

colors in an image. For digital images, a color

histogram represents the number of pixels that have

colors in each of a fixed list of color ranges that span

the image's color space, the set of all possible colors

[5].

The color histogram can be built for any kind of color

space, although the term is more often used for three-

dimensional spaces like RGB or HSV. For

monochromatic images, the term intensity histogram

may be used instead. For multi-spectral images,

where each pixel is represented by an arbitrary

number of measurements (for example, beyond the

three measurements in RGB), the color histogram is

N-dimensional, with N being the number of

measurements taken. Each measurement has its own

wavelength range of the light spectrum, some of

which may be outside the visible spectrum.

A. Histogram Equalization Algorithm

1. Iterate over all the pixels and count the number of

pixels that have a particular intensity

2. Store the results in a table and calculate the

probability of each intensity using Number of

pixels of a particular intensity level / total number

of pixels in the image

3. Perform equalization using T(rk) = (L-1)

Sum[i=0�k] Pr(i) = sk

4. Store the new results in a table and update the

image by substituting the old intensity values by

the new equalized ones.

5. Calculate the histogram distribution of the new

generated image

B. Implementation

distribution = new double[256, 3];

// distribution[0]= # of pixels

// distribution[1]= probability

//distribution[2]= New Intensity level after

Equalization

Bitmap bitmap = new Bitmap(pictureBox1.Image);

for (int i = 0; i < bitmap.Height; i++)

{

for (int j = 0; j < bitmap.Width; j++)

{

int intensity = bitmap.GetPixel(j, i).R;

distribution[intensity, 0]++;

}

}

// working with LISTVIEW

listView1.Items.Clear();

int total = 0;

double totalProbability = 0.0;

for (int i = 0; i < distribution.GetLength(0); i++)

{

distribution[i, 1] = distribution[i, 0] / 87040.0;

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD22918 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 627

total = total + Convert.ToInt32(distribution[i,

0]);

totalProbability = totalProbability +

distribution[i, 1];

// Updating the listview just for illustration

purposes

// i represents the INTENSITY level

ListViewItem item = new ListViewItem(new

string[] { "" + i, "" + distribution[i, 0],

distribution[i, 1].ToString("0.000000"), "" });

listView1.Items.Add(item);

}

listView1.Items.Add(""); // EMPTY row

listView1.Items.Add(new ListViewItem(new string[] {

"Totals:", "" + total, "" + totalProbability, "" }));

Figure 6 is about calculating the Intensity Distribution

prior to historgram equalization which is depicted in

Figure 7.

Figure 6: Calculating the Intensity Distribution

Figure 7: Performing Histogram Equalization

VI. BLURRING & SHARPENING ADJUSTMENT

A Gaussian blur (also known as Gaussian smoothing)

is the result of blurring an image by a Gaussian

function. It is a widely used effect in graphics

software, typically to reduce image noise and reduce

detail. The visual effect of this blurring technique is a

smooth blur resembling that of viewing the image

through a translucent screen, distinctly different from

the bokeh effect produced by an out-of-focus lens or

the shadow of an object under usual illumination.

Gaussian smoothing is also used as a pre-processing

stage in computer vision algorithms in order to

enhance image structures at different scales [7].

Mathematically, applying a Gaussian blur to an image

is the same as convolving the image with a Gaussian

function. This is also known as a two-dimensional

Weierstrass transform. By contrast, convolving by a

circle would more accurately reproduce the bokeh

effect. Since the Fourier transform of a Gaussian is

another Gaussian, applying a Gaussian blur has the

effect of reducing the image's high-frequency

components; a Gaussian blur is thus a low pass filter.

A. Implementation

double[] filter = new double[]{

Convert.ToDouble(textBox1.Text),

Convert.ToDouble(textBox2.Text),

Convert.ToDouble(textBox3.Text),

Convert.ToDouble(textBox4.Text),

Convert.ToDouble(textBox5.Text),

Convert.ToDouble(textBox6.Text),

Convert.ToDouble(textBox7.Text),

Convert.ToDouble(textBox8.Text),

Convert.ToDouble(textBox9.Text) };

Bitmap bitmap = (Bitmap)pictureBox1.Image;

Bitmap bitmap2 = new Bitmap(bitmap.Width,

bitmap.Height);

for (int y = 0; y < bitmap.Height; y++)

{

for (int x = 0; x < bitmap.Width; x++)

{

int Rcenter = bitmap.GetPixel(x, y).R;

int R0 = 0;

R0 = bitmap.GetPixel(x - 1, y + 1).R;

int R1 = 0;

R1 = bitmap.GetPixel(x, y + 1).R;

int R2 = 0;

R2 = bitmap.GetPixel(x + 1, y + 1).R;

int R3 = 0;

R3 = bitmap.GetPixel(x - 1, y).R;

int R5 = 0;

R5 = bitmap.GetPixel(x + 1, y).R;

int R6 = 0;

R6 = bitmap.GetPixel(x - 1, y - 1).R;

int R7 = 0;

R7 = bitmap.GetPixel(x, y - 1).R;

int R8 = 0;

R8 = bitmap.GetPixel(x + 1, y - 1).R;

int sum = Convert.ToInt32(((R0 * filter[0]) +

(R1 * filter[1]) +

 (R2 * filter[2]) + (R3 * filter[3]) + (Rcenter *

filter[4]) +

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD22918 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 628

 (R5 * filter[5]) + (R6 * filter[6]) + (R7 *

filter[7]) +

 (R8 * filter[8])) / 9);

if (sum < 0)

sum = 0;

if (sum > 255)

sum = 255;

bitmap2.SetPixel(x, y, Color.FromArgb(sum,

sum, sum));

}

 }

 pictureBox2.Image = bitmap2;

Figure 8 demonstrates the blurring effect; while,

Figure 9 demonstrates the sharpening effect on a

particular image.

Figure 8: Applying Blurring Effect

Figure 9: Applying Sharpening Effect

VII. BLENDING & FADING TRANSFORMATION

Blending in graphics is about forming a blend of two

input images of the same size. The value of each pixel

in the output image is a linear combination of the

corresponding pixel values in the input images [8].

Below is the algorithm for blending two input images

together:

1. Iterate over all the pixels of both source images

namely image 1 and image 2

2. On each iteration, read the intensity value of a

particular pixel in image 1 and add it to the

intensity value of the corresponding pixel in

image 2 as in pixel(i , image3) = pixel(i , image1) +

pixel(i , image2)

3. Check if the obtained value is larger than 255 then

normalize it to 255 and if the obtained value is

less than 0 (in case of subtraction) then normalize

it to 0

4. Store the resulting value in a 3rd image

5. Upon scanning of all the pixel of both images 1

and 2, a new image 3 will be obtained and it is the

result of image 1 + image 2

A. Implementation

Button button = (Button)sender;

Bitmap bitmap1 = new Bitmap(pictureBox1.Image);

Bitmap bitmap2 = new Bitmap(pictureBox2.Image);

Bitmap bitmap3 = new Bitmap(300, 300);

for (int y = 0; y < bitmap1.Height; y++)

{

for (int x = 0; x < bitmap1.Width; x++)

{

Color color1 = bitmap1.GetPixel(x, y);

Color color2 = bitmap2.GetPixel(x, y);

int R1 = color1.R;

int R2 = color2.R;

int R3 = 0;

if (button.Text == "+")

R3 = R1 + R2;

else if (button.Text == "-")

R3 = R1 - R2;

else if (button.Text == "*")

R3 = R1 * R2;

else if (button.Text == "/")

{

if (R2 != 0)

R3 = R1 / R2;

}

if (R3 > 255)

R3 = 255;

else if (R3 < 0)

R3 = 0;

bitmap3.SetPixel(x, y, Color.FromArgb(R3, R3,

R3));

}

}

pictureBox3.Image = bitmap3;

pictureBox3.Refresh();

Figure 10 demonstrates the blending effect of two

images; while, Figure 11 demonstrates the shading

effect applied by a constant value to an image.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD22918 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 629

Figure 10: Blending of Two Images

Figure 11: Shading by a Constant

VII. EROSION & DILATION TRANSFORMATION

Erosion is about performing a special processing on a

binary image. We successively place the center pixel

of the structuring element on each foreground pixel

(value 1). If any of the neighborhood pixels are

background pixels (value 0), the foreground pixel is

switched to background. On the other hand, to

perform dilation, we successively place the center

pixel of the structuring element on each background

pixel [9]. If any of the neighborhood pixels are

foreground pixels (value 1), the background pixel is

switched to foreground.

AND operation (Intersection)

� Scan both images A and B simultaneously pixel-

by-pixel

if pixelA is black AND pixelB is black

then Set ResultPixel to black

else then Set ResultPixel to white

OR operation (Union)

� Scan both images A and B simultaneously pixel-

by-pixel

if pixelA is black OR pixelB is black

then Set ResultPixel to black

else then Set ResultPixel to white

NOT operation (Complement)

� Scan images A pixel-by-pixel

if pixelA is black

then Set ResultPixel to white

else then Set ResultPixel to black

XOR operation

� Scan both images A and B simultaneously pixel-

by-pixel

if pixelA is black AND pixelB is black

then Set ResultPixel to white

else if pixelA is black OR pixelB is black

then Set ResultPixel to black

else then Set ResultPixel to white

Difference operation (A-B)

� Scan both images A and B simultaneously pixel-

by-pixel

� Apply the complement of B

� Then Apply the AND operation on A and B

� A AND (NOT B)

Boundary Extraction

� Apply erosion on A and B

� Subtract the result form A (Use logical set

differencing)

� A – (A erosion B) [10]

Connected Components

� Connected component labeling works by scanning

an image, pixel-by-pixel (from top to bottom and

left to right) in order to identify connected pixel

regions, i.e. regions of adjacent pixels which share

the same set of intensity values V.

� When a point p is encountered (p denotes the

pixel to be labeled at any stage in the scanning

process for which V={1}), it examines the four

neighbors of p which have already been

encountered in the scan. Based on this

information, the labeling of p occurs as follows:

If all four neighbors are 0, assign a new label to

p, else

if only one neighbor has V={1}, assign its label to

p, else

if one or more of the neighbors have V={1},

assign one of the labels to p and make a note of

the equivalences.

� After completing the scan, the equivalent label

pairs are sorted into equivalence classes and a

unique label is assigned to each class. As a final

step, a second scan is made through the image,

during which each label is replaced by the label

assigned to its equivalence classes [11].

A. Implementation

AND Operation

Bitmap A = (Bitmap)pictureBox1.Image;

Bitmap B = (Bitmap)pictureBox2.Image;

Bitmap C = new Bitmap(319 , 240) ;

for (int i = 0; i < A.Height; i++)

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD22918 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 630

{

for (int j = 0; j < A.Width; j++)

{

int colorA = A.GetPixel(j, i).R;

int colorB = B.GetPixel(j, i).R;

if (colorA < 200 && colorB < 200)

C.SetPixel(j,i,Color.FromArgb(0,0,0)) ;

else

C.SetPixel(j,i,Color.FromArgb(255,255,255)) ;

}

}

pictureBox3.Image = C ;

pictureBox3.Refresh();

Dilation

byte* ptr = (byte*)data.Scan0;

byte* tptr = (byte*)data2.Scan0;

ptr += data.Stride + 3;

tptr += data.Stride + 3;

int remain = data.Stride - data.Width * 3;

for (int i = 1; i < data.Height - 1; i++)

{

for (int j = 1; j < data.Width - 1; j++)

{

if (ptr[0] == 255)

{

byte* temp = tptr - data.Stride - 3;

for (int k = 0; k < 3; k++)

{

for (int l = 0; l < 3; l++)

{

temp[data.Stride * k + l * 3] =

temp[data.Stride * k + l * 3 + 1] =

temp[data.Stride * k + l * 3 + 2] =

(byte)(sElement[k, l] * 255);

}

}

}

ptr += 3;

tptr += 3;

}

ptr += remain + 6;

tptr += remain + 6;

}

bmpimg.UnlockBits(data);

tempbmp.UnlockBits(data2);

bmpimg = (Bitmap)tempbmp.Clone();

pictureBox2.Image = bmpimg;

Figure 12 demonstrates the erosion and dilation

effects when applied to a black and white image.

Likewise, Figure 13 shows the difference logical

operation over a particular image. Finally, Figure 14

shows the boundary extraction effect.

Figure 12: Erosion Morphology

Figure 13: A – B (Difference)

Figure 14: Boundary Extraction

VIII. CONCLUSIONS & FUTURE WORK

This paper proposed the design and implementation

of a set of digital image transformation algorithms

that deal with converting digital images from one

domain to another. The algorithms implemented

were grayscale transformation, contrast and

brightness adjustment, hue and saturation

adjustment, histogram equalization, blurring and

sharpening adjustment, blending and fading

transformation, erosion and dilation transformation,

and finally edge detection and extraction. The

proposed algorithms were implemented using

C#.NET and .NET Framework 3.5.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD22918 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 631

As future work, the proposed algorithms are to be

reprogrammed to fit in a multiprocessing

environment with the purpose of speeding up their

execution and processing time.

Acknowledgment

This research was funded by the Lebanese

Association for Computational Sciences (LACSC),

Beirut, Lebanon, under the “Parallel Programming

Algorithms Research Project – PPARP2019”.

References

[1] Rafael C. Gonzalez, Richard E. Woods, “Digital

Image Processing”, 3rd Edition, Prentice Hall,

2007.

[2] Maria Petrou, Costas Petrou, “Image Processing:

The Fundamentals”, 2nd edition, Wiley, 2010

[3] Mike Reed, "Graphic arts, digital imaging and

technology education", THE Journal, vol.21 no.5,

p.69, 2002.

[4] S. Naik and C. Murthy, "Hue-preserving color

image enhancement without gamut problem,"

IEEE Trans, Image Processing, vol. 12, no. 12, pp.

1591–1598, 2003

[5] Kenneth Castleman, “Digital Image Processing”,

Prentice Hall, 1995

[6] N. Bassiou, C. Kotropoulos, "Color image

histogram equalization by absolute discounting

back-off," Computer Vision and Image

Understanding, vol. 107, no. 1-2, pp.108-122,

2007

[7] John C. Russ, “The Image Processing Handbook”,

6th Edition, CRC Press, 2011.

[8] Ronny Richardson, "Digital imaging: The wave of

the future", THE Journal, vol. 31, no.3, 2003

[9] Qi-Yu Liang, et al, "Observation of three-photon

bound states in a quantum nonlinear medium",

Science, vol. 359, no.6377, pp.783–786, 2018

[10] Pietro Perona, Jitendra Malik, "Scale-space and

edge detection using anisotropic diffusion",

Proceedings of IEEE Computer Society

Workshop on Computer Vision, vol.1, pp. 16–22,

1987

[11] Guillermo Sapiro, "Geometric partial differential

equations and image analysis", Cambridge

University Press, 2001

