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ABSTRACT 
 
Genetic Algorithm (GA) has emerged as a powerful 
tool to discover optimal for multidimensional 
knapsack problem (MDKP). Multidimensional 
knapsack problem has recognized as NP-hard problem 
whose applications in many areas like project 
selection, capital budgeting, loading problems, cutting 
stock etc. Attempts has made to develop cluster 
genetic algorithm (CGA) by mean of modified 
selection and modified crossover operators of GA. 
Clustered genetic algorithm consist of (1) fuzzy 
roulette wheel selection for individual selection to 
form the mating pool (2) A different kind of crossover 
operator which employ hierarchical clustering method 
to form two clusters from individuals of mating pool. 
CGA performance has examined against GA with 
respect to 30 benchmark problems for multi-
dimensional knapsack. Experimental results show that 
CGA has significant improvement over GA in relation 
to discover optimal and CPU running time. The data 
set for MDKP is available at 
http://people.brunel.ac.uk/ 
mastjjb/jeb/orlib/files/mknap2.txt 
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1 INTRODUCTION 

Multidimensional knapsack problem is one of the 
famous problem in applied mathematics belongs to 
NP- hard combi-natorial optimization [1]. This 
problem modeling has applied in several project 
selection and capital budgeting areas [2-4]. Meirier 
developed more mechanisms from real word practice 
to combine models of capital budgeting with novels, 
and practically applicable technique for evaluation of 
project [5]. They developed scenario dependent 
capital budgeting model that have MDKP as a 
subproblem associated with constraint of generalized  

 

 

 

upper bound (GUB). Capital budgeting emerged as 
key challenge for not for profits multihospital 
healthcare units in United States. D.N. Kleinmuntz 
and C.E. Kleinmuntz developed a framework for 
capital budeting which used MDKP formulations [6]. 
MDKP have been employed to model prob-lems like 
investment policy in tourism area of developing 
country [7], database allocation and processor 
allocation in distributed computing environments [8], 
groceries delivery in vehicles with multiple 
compartments [9], cutting stock [10], loading 
problems [11] and approval voting [12]. Currently, 
MDKP has been applied in modeling of daily 
management of remote satellite like SPOT, which 
consisted in deciding each day what photographs will 
be attempted the next day [13]. 

Multidimensional knapsack problem is described by n 
objects and m knapsacks. Each knapsack has a 
capacity dj (j = 1; 2; 3:::m). A number of binary 
variables xi (i = 1; 2; 3::n) are used, that is set to 1 if 
ith object is chosen to inset in knapsacks otherwise it 
is set to 0. Each object has a profit value pi (i = 1; 2; 
3::n) and a weight wij corresponding to knapsacks. 
Thus mathematically this optimization problem can be 
modeled as : 

 

The goal of MDKP is to insert a subset of objects into 
knapsacks that obtain maximum profit without 
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capacity viola-tion of knapsacks. This characteristic 
reveal this problem has all nonnegative entries. More 
specifically, we can say pi > 0, 

 

Rest of the paper is structured as follows. Genetic 
algorithm for MDKP is described in Section II. 
Section III give the overview of related work for 
MDKP in domain of genetic algorithm. Section IV 
explain CGA to solve multidimensional knapsack 
problem. Experimental environments and results are 
given in Section V. At last conclusion is made in 
section VI. 

 

II. GENETIC ALGORITHM FOR 
MULTIDIMENSIONAL KNAPSACK 
PROBLEM 

 
Genetic algorithm is computation optimization 
technique which mimic the evolutionary principle i.e. 
fittest individual will survive in each generation. GA 
is guided by three main operation: selection, crossover 
and mutation. Individuals re-production are governed 
by crossover and mutation operation. Selection 
operation choose fittest individuals from population to 
form mating pool. Algorithm run as follow : A set of 
random individuals are produced which serve as the 
initial population of GA. The individual can be 
expressed in real number, binary number, integer 
number, character based on nature of problem. MDKP 
uses the binary representation. Individual goodness 
measurement is estimated through fitness function. 
MDKP fitness function is maximize the objective 
function. 

 

Algorithm 1 Genetic Algorithm (GA)  
 

Initialize the control parameters ; 

Initialize randomly N individuals as initial 
population P  

(G); while stopping criterion(s) doesn’t meet do 
 
 
 

i. Choose individuals to create mating pool 
via selection operator. 

ii.Produce new individuals via crossover 
operator. 

iii. Mutate obtained individuals using mutation 
operator.  

iv. Evaluate fitness value of new individuals. 
v. Add new individuals with population. 

vi. Sort population with respect to fitness 
value. 

vii. Choose top N individuals as population of 
next generation. 

end while 

Return the fittest individual as the solution. 

Every individual are transformed from one generation 
to next generation depending on fitness value i.e 
individual with high fitness value has high probability 
to participate in upcoming generation. GA employee 
crossover operator for exploration and mutation 
operator for exploitation. MDKP uses one point 
crossover and random mutation. Number of crossover 
operations are govern through crossover rate while 
number of mutation operations are govern through 
mutation rate. A cycle of GA comprise of applying 
GA operations i.e. evaluation, reproduction, crossover 
and mutation. Each generation produce a set of 
individuals. GA termination return the fittest 
individual as solution. The details of GA operators i.e 
selection, crossover, and mutation are explained in 
[14]. 

III. RELATED WORK 
 

J.P. Martin and C.B Neto and M.K. Crocomo made 
compar-ison among four linkage learning based 
genetic algorithm for multidimensional knapsack 
problem namely, extended com-pact genetic 
algorithm (eCGA), bayesian optimization algo-rithm 
(BOA) with detection graphs, BOA with community 
detection and linkage tree genetic algorithm (LTGA) 
[15]. eCGA and LTGA have better exploration and 
exploitation capabilities than BOA versions with 
small size population (N=100) and produce better 
quality solutions for MDKPs. All algorithms with 
large population size produce approxi-mately similar 
quality solutions for MDKPs but these have different 
running time and function evaluations. When con-
sider solutions quality, functions evaluations and 
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running time of algorithms, BOA versions have better 
running time than eCGA and LTGA. It is very 
difficult to make comparison for computational time 
between eCGA and LTGA because these have 
different reproduction operators. 

Khuri, Back and Heitkotter proposed a GA f
MDKP [16]. Algorithm allowed breeding and 
participation of infeasi-ble solutions during search. In 
this GA, reproduction proceeds by combining the 
partial information from all element of population. A 
test suite with few problems were used to test t
GA; only moderate quality solutions were produced. 
Hoff, Lokentangen and Mittet proposed a GA with 
proper tuned parameters and search mechanisms in 
which only feasible solutions were allowed during 
search [17]. This GA discovered optimal for 54 
problems out a suite of 55 problems. 

Rudolph and Sprave proposed a GA in which 
selection of parent is not unrestricted as in standard 
GA but is restricted be-tween neighboring solutions 
[18]. In their GA every infeasible solutions were 
penalized as GA of Khursi, Back and Heitkotter
The premier component of this GA be solutions local 
interaction with in a spatial structured population and 
self ad-justed controlling mechanism of selection 
pressure. P. C. Chu and J.E. Beasley proposed 
heuristic dependent GA for MDKP [19]. 
heuristic operator was employed which work with 
problem specific knowledge. Heuristic operator 
repaired infeasible solutions and algorithm discover 
optimal solution among feasible solutions. C. Cota 
and J.M. Troya proposed another GA which have an 
improvement mechanism whose objective is to 
convert infeasible solutions in search space to feasible 
solutions [20]. Experimental results were better to 
basic GA, but not as good as Chu and Beasley’s GA 
results. 

IV. CLUSTERED GENETIC ALGORI

MULTIDMENSIONAL KNAPSACK PROBLEM

 

In this work, clustered genetic algorithm is developed 
for multidimensional knapsack problem. CGA is 
explained in algorithm 2. CGA uses an advanced 
selection method which employee fuzzy and roulette 
wheel selection called fuzzy roulette wheel selection. 
Selection mechanism always choose first individual 
and assigned it to first partition of roulette wheel. 
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CLUSTERED GENETIC ALGORITHM FOR 

MULTIDMENSIONAL KNAPSACK PROBLEM 

In this work, clustered genetic algorithm is developed 
for multidimensional knapsack problem. CGA is 
explained in algorithm 2. CGA uses an advanced 
selection method which employee fuzzy and roulette 

n called fuzzy roulette wheel selection. 
Selection mechanism always choose first individual 
and assigned it to first partition of roulette wheel. 

Partition size is relative to fitness value. Next 
similarity value between first individual and 
remaining individuals are estimated. The individual 
with highest similarity value occupy the second 
partition of roulette wheel. This procedure repeat until 
all individuals are allocated to partition in roulette 
wheel. Figure 1 show the 4 individuals in binary 
representation and procedure of assigning individual 
to the partition of roulette wheel. Then mechanism 
determined overlapping area between adjacent 
individuals. Overlapping area size is correlated by 
similarity value between adjacent individuals. In 
mating pool formation, a random number is 
generated. After for each individual membership 
degree to which generated number belongs is 
calculated. Individual with highest membership 
degree is selected. This process repeat until mating 
pool size is equal to population siz
the fuzzy roulette wheel selection mechanism for 4 
individuals in Figure 1. 

 

 

 

 

 

 

 

Fig. 1: Procedure of assigning individual to partition 
of roulette wheel .

CGA adopt a special crossover operator which uses 
the hierarchical algorithm to 
Individuals in the mating pool are divided into two 
clusters using hierarchical clustering algorithm. In the 
hierarchical algorithm, single linkage procedure given 
in eq (2) is apply to estimate similarity between the 
two clusters. 

 

 

 

 
Fig. 2: Fuzzy roulette wheel

 

S(X; Y ) =  M AX fs(x; y)g

x2X;y2Y
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Fig. 1: Procedure of assigning individual to partition 
of roulette wheel . 

CGA adopt a special crossover operator which uses 
the hierarchical algorithm to form clusters. 
Individuals in the mating pool are divided into two 
clusters using hierarchical clustering algorithm. In the 
hierarchical algorithm, single linkage procedure given 
in eq (2) is apply to estimate similarity between the 

2: Fuzzy roulette wheel. 

S(X; Y ) =  M AX fs(x; y)g (4)

x2X;y2Y 
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Where X and Y are two clusters and s(x,y) stand for 
similarity between individuals x and y. A pair of 
offsprings are generated by mating of a random parent 
from first cluster and a random parent from second 
cluster. One point crossover operator is employed. 
This step is continued N/2-1 times. Random mutation 
is performed for each offspring to keep diversity and 
to defeat the problem of premature convergence. 
 

 

 

 

 

 

 

 

Fig. 3: Selection of parent pair for crossover. 

 

 

 

 

 

 

Fig. 4: One point crossover. 

 

V. EXPERIMENTAL RESULTS AND 
DISCUSSION 
 

To show CGA is better technique to GA, experiments 
has carried out over 30 standard problems for 
multidimensional knapsack. 

Algorithm 2 Clustered Genetic Algorithm (CGA) 
 
 

Initialize the control parameters ; 
 

Initialize randomly N individuals as initial 
population P (G); while stopping criterion(s) 
doesn’t meet do 

 

i.Choose individuals to create mating pool via 
fuzzy roulette wheel selection operator. 

ii. Create two clusters of individuals using 
hierarchical clustering algorithm .  

iii. (iii)Produce new individuals by using 
crossover operator with a random parent 
from cluster 1 and a random parent from 
cluster 2. 

 

iv. Mutate obtained individuals using mutation 
operator.  

v. Evaluate fitness value of new individuals. 
vi. Add new individuals with population. 

vii. Sort population with respect to fitness value. 
viii. Choose top N individuals as population of 

next generation.  

end while 

Return the fittest individual as the solution. 

A. Experimental Environment 

GA and CGA depict in previous section were imple-
mentd for multidimensional Knapsack. Experiments 
were de-signed to estimate average mean error and 
average mean execution time for GA and CGA. Data 
set for multidimen-sional knapsack is available at 
http://people.brunel.ac.uk/ mas-
tjjb/jeb/orlib/files/mknap2.txt. Crossover rate CR = 
0.7 and mutation rate MR = 0.01. The experiments 
were conducted on 7th generation intel core i-7-7700k 
processor (4.2 GHz) and coded in c++ whose 
compilation is done using Dev c++ compiler. 

 

 

 

 

 

 

 

 

 
Fig. 5: Error comparision between GA and CGA. 
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B. Results and Analysis 

Experimental results of GA and CGA for MDKPs are 
given in Table I and Table II respectively. Column 1 
denote instance no and column 2 represent MDKP, 
column 3 and 4 show number of knapsacks and 
number of objects corresponding to problem, columns 
5 denotes the optimal value, columns 6-10 keeps the 
output value of five run, simulation statical 
information is given in columns 11-14 and column 15 
show mean time taken in execution. GA and CGA has 
average mean error 4.49% and 1.764% respectively 
while GA and CGA has average mean execution time 
2.34 seconds and 2.34 seconds respectively. CGA has 
considerable less average mean error in comparison of 
GA but CGA has slightly higher average mean 
execution time in comparison of GA. Figure 5 plot the 
average mean error against the problem instance and 
Figure 6 plot the average mean execution time against 
the problem instance. 

 

 

 

 

 

 

 

 

 

 
Fig. 6: CPU running time comparison between GA 
and CGA. 

 

VI. CONCLUSION AND FUTURE WORK 

This paper addressed multidimensional knapsack 
problem via the cluster genetic algorithm to find 
optimal. CGA employ the fuzzy roulette selection 
mechanism for individual selection to form mating 
pool. CGA adopts a special kind of crossover operator 
in which uses hierarchical clustering algorithm to 
form two clusters from mating pool. A pair of 
offspring is generated by mating of a random parent 
from first cluster and a random parent from second 
cluster. CGA performance has examined against GA 
w.r.t 30 standard MDKPs over two criterion i.e 
average mean error and average mean execution time. 

As GA and CGA experimental results are shown, 
CGA has better performance than GA for MDKP. A 
comparative study of different mutation operators 
with CGA will be studied in the future work. 
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Sr 
no 

Test 
Proble

ms 

m n Opt
ima

l 

 Number of 
Runs 

  Statistical 
Information 

 Time 
(s) 

     1 2 3 4 5 Max  Min Avg %
Err 

 

1 SENT01 30 60 7772 7712 7736 7725 7719 7723 7736  7712 7723 0.6
3 

4.27 

2 SENT02 30 60 8722 8690 8662 8702 8669 8682 8702  8662 8681 0.4
6 

4.23 

3 WEING
1 

2 28 1412
78 

1379
02 

1388
04 

1386
02 

1399
03 

13990
4 

13990
4 

 13790
2 

1390
23 

1.6
0 

1.58 

4 WEING
2 

2 28 1308
83 

1244
53 

1257
52 

1249
73 

1239
89 

12498
3 

12575
2 

 12398
9 

1248
30 

4.6
2 

1.60 

5 WEING
3 

2 28 95667 92296 9199
8 

9229
2 

92398 92451 92451  9199
8 

92287 3.5
3 

1.68 

6 WEING
4 

2 28 1193
37 

1166
25 

1164
41 

1159
98 

1164
59 

11679
2 

11679
2 

 11599
8 

1164
63 

2.4
1 

1.71 

7 WEING
5 

2 28 98796 93667 9366
2 

9344
2 

93778 93631 93778  9344
2 

93636 5.2
2 

1.53 

8 WEING
6 

2 28 1306
23 

1244
50 

1260
93 

1260
92 

1261
72 

12615
8 

12617
2 

 12445
0 

1257
93 

3.7
0 

1.59 
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9 WEING
7 

2 10
5 

1095
445 

1054
402 

1057
806 

1059
803 

1057
804 

1056
405 

10598
03 

 1054
402 

1057
244 

3.4
9 

5.72 

10 WEING
8 

2 10
5 

6243
19 

6214
22 

6217
98 

6206
42 

6218
82 

62176
1 

62188
2 

 62064
2 

6215
01 

0.4
5 

5.64 

11 WEISH
01 

5 30 4554 4214 4298 4288 4178 4292 4298  4178 4254 6.5
9 

1.62 

12 WEISH
02 

5 30 4536 4197 4182 4178 4181 4187 4197  4178 4187 7.7
4 

1.58 

13 WEISH
03 

5 30 4115 3990 3987 3976 3973 3984 3990  3973 3982 3.2
3 

1.64 

14 WEISH
04 

5 30 4561 4314 4317 4323 4302 4304 4323  4302 4312 5.4
5 

1.66 

15 WEISH
05 

5 30 4514 4311 4309 4388 4303 4309 4388  4303 4324 4.2
1 

1.63 

16 WEISH
06 

5 40 5557 5331 5333 5307 5228 5291 5333  5228 5298 4.6
6 

2.08 

17 WEISH
07 

5 40 5567 5186 5193 5177 5244 5180 5244  5177 5196 6.6
6 

2.12 

18 WEISH
08 

5 40 5605 5302 5368 5352 5214 5309 5368  5214 5329 4.9
2 

2.06 

19 WEISH
09 

5 40 5246 4901 4848 4898 4886 4812 4901  4812 4869 7.1
9 

2.31 

20 WEISH
10 

5 50 6339 5916 5923 5978 5981 5972 5981  5916 5954 5.9
9 

2.28 

21 WEISH
11 

5 50 5643 5387 5362 5324 5336 5361 5387  5324 5354 5.1
2 

2.70 

22 WEISH
12 

5 50 6339 5984 5972 5988 5977 5974 5988  5972 5979 5.6
8 

2.66 

23 HP1 4 28 3418 3220 3198 3224 3278 3215 3278  3198 3227 5.5
9 

1.54 

24 HP2 4 35 3186 3016 3010 3078 2999 2912 3078  2912 3003 5.7
4 

1.80 

25 PB1 4 27 3090 2916 2924 2942 2918 2930 2942  2916 2926 5.3
1 

1.66 

26 PB2 4 34 3186 2978 2986 2962 2971 2963 2986  2962 2972 6.7
2 

1.76 

27 PB4 2 29 95168 92372 9270
8 

9250
4 

92666 92780 92780  9237
2 

92606 2.6
9 

1.64 

28 PB5 10 20 2139 2037 2032 2043 2012 2041 2043  2012 2033 4.9
5 

1.50 

29 PB6 30 40 776 706 740 765 758 766 766  706 747 3.7
4 

3.40 

30 PB7 30 37 1035 977 992 966 973 932 992  932 968 6.4
7 

3.02 

 
TABLE I: Result of Genetic Algorithm For Multidimensional Knapsack Problems. 
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Sr 
no 

Test 
Proble

ms 

m n Opt
ima

l 

 Number of 
Runs 

  Statistical 
Information 

 Time 
(s) 

     1 2 3 4 5 Ma
x 

 Min Avg %Er
r 

 

1 SENT01 30 60 7772 7762 7746 7758 7752 7747 776
2 

 7746 7754 0.23 4.95 

2 SENT02 30 60 8722 8712 8707 8705 8716 8710 871
6 

 8705 8710 0.14 4.89 

3 WEING1 2 28 1412
78 

1401
77 

1401
83 

1401
96 

1401
78 

14077
1 

140
771 

 14017
7 

1403
01 

0.69 1.83 

4 WEING2 2 28 1308
83 

1278
62 

1278
04 

1281
08 

1279
03 

12799
3 

127
993 

 12780
4 

1279
934 

2.25 1.82 

5 WEING3 2 28 95667 94570 9458
2 

9444
8 

94684 94556 945
82 

 9444
8 

94568 1.15 1.85 

6 WEING4 2 28 1193
37 

1179
82 

1179
47 

1178
92 

1179
32 

11794
2 

117
982 

 11789
2 

1179
39 

1.17 1.92 

7 WEING5 2 28 98796 96694 9670
2 

9688
4 

96879 96861 968
79 

 9669
4 

96804 2.02 1.77 

8 WEING6 2 28 1306
23 

1285
03 

1286
64 

1287
04 

1286
30 

12863
9 

128
704 

 12850
3 

1286
28 

1.53 1.91 

9 WEING7 2 10
5 

1095
445 

1074
998 

1076
681 

1075
662 

1074
552 

1073
902 

107
668

1 

 1073
902 

1075
159 

1.85 6.10 

10 WEING8 2 10
5 

6243
19 

6231
10 

6229
90 

6231
84 

6232
08 

62311
3 

623
208 

 62299
0 

6231
21 

0.19 6.08 

11 WEISH01 5 30 4554 4428 4462 4448 4436 4461 446
2 

 4428 4447 2.35 1.93 

12 WEISH02 5 30 4536 4402 4398 4372 4410 4403 440
3 

 4372 4397 3.06 1.87 

13 WEISH03 5 30 4115 4083 4076 4083 4071 4082 408
3 

 4071 4079 0.87 1.90 

14 WEISH04 5 30 4561 4461 4448 4457 4434 4445 446
1 

 4434 4449 2.46 1.92 

15 WEISH05 5 30 4514 4476 4487 4462 4462 4468 448
7 

 4462 4452 1.00 1.87 

16 WEISH06 5 40 5557 5441 5436 5392 5446 5463 546
3 

 5392 5436 2.18 2.44 

17 WEISH07 5 40 5567 5395 5407 5437 5437 5414 543
7 

 5395 5392 2.83 2.52 

18 WEISH08 5 40 5605 5518 5507 5532 5522 5536 553
6 

 5507 5523 1.46 2.38 

19 WEISH09 5 40 5246 5076 5084 5102 5078 5080 510
2 

 5076 5084 3.09 2.68 

20 WEISH10 5 50 6339 6201 6198 6182 6180 6184 620
1 

 6180 6189 2.37 2.76 

21 WEISH11 5 50 5643 5558 5537 5529 5568 5568 556
8 

 5529 5552 1.61 3.07 

22 WEISH12 5 50 6339 6236 6199 6214 6208 6233 623
6 

 6199 6218 1.91 3.02 
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23 HP1 4 28 3418 3368 3332 3357 3362 3341 336
8 

 3332 3352 1.93 1.82 

24 HP2 4 35 3186 3109 3112 3106 3104 3114 311
4 

 3104 3109 2.42 2.12 

25 PB1 4 27 3090 3012 3001 3017 3005 3015 301
7 

 3001 3010 2.58 1.93 

26 PB2 4 34 3186 3094 3088 3116 3098 3089 309
8 

 3088 3097 2.79 2.06 

27 PB4 2 29 95168 94207 9399
8 

9410
6 

94103 94111 942
07 

 9399
8 

94105 1.12 1.89 

28 PB5 10 20 2139 2099 2111 2104 2106 2115 211
5 

 2099 2107 1.50 1.76 

29 PB6 30 40 776 763 758 759 766 769 769  758 763 1.68 3.87 
30 PB7 30 37 1035 1008 1017 1012 1006 1002 101

7 
 1002 1009 2.51 3.49 

 

TABLE II: Result of Clustered Genetic Algorithm for Multidimensional Knapsack Problems. 


