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ABSTRACT

Genetic Algorithm (GA) has emerged as a powerful
tool to discover optimal for multidimensional
knapsack problem (MDKP). Multidimensional
knapsack problem has recognized as NP-hard problem
whose applications in many areas like project
selection, capital budgeting, loading problems, cutting
stock etc. Attempts has made to develop cluster
genetic algorithm (CGA) by mean of modified
selection and modified crossover operators of GA.
Clustered genetic algorithm consist of (1) fuzzy
roulette wheel selection for individual selection to
form the mating pool (2) A different kind of crossover
operator which employ hierarchical clustering method
to form two clusters from individuals of mating pool.
CGA performance has examined against GA with
respect to 30 benchmark problems for multi-
dimensional knapsack. Experimental results show that
CGA has significant improvement over GA in relation
to discover optimal and CPU running time. The data
set for MDKP is available at
http://people.brunel.ac.uk/
mastjjb/jeb/orlib/files/mknap2.txt

Keywords: Multidimensional knapsack problem,
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1 INTRODUCTION

Multidimensional knapsack problem is one of the
famous problem in applied mathematics belongs to
NP- hard combi-natorial optimization [1]. This
problem modeling has applied in several project
selection and capital budgeting areas [2-4]. Meirier
developed more mechanisms from real word practice
to combine models of capital budgeting with novels,
and practically applicable technique for evaluation of
project [5]. They developed scenario dependent
capital budgeting model that have MDKP as a
subproblem associated with constraint of generalized
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upper bound (GUB). Capital budgeting emerged as
key challenge for not for profits multihospital
healthcare units in United States. D.N. Kleinmuntz
and C.E. Kleinmuntz developed a framework for
capital budeting which used MDKP formulations [6].
MDKP have been employed to model prob-lems like
investment policy in tourism area of developing
country [7], database allocation and processor
allocation in distributed computing environments [§],
groceries delivery in vehicles with multiple
compartments [9], cutting stock [10], loading
problems [11] and approval voting [12]. Currently,
MDKP has been applied in modeling of daily
management of remote satellite like SPOT, which
consisted in deciding each day what photographs will
be attempted the next day [13].

Multidimensional knapsack problem is described by n
objects and m knapsacks. Each knapsack has a
capacity d; j = 1; 2; 3::m). A number of binary
variables x; (1 = 1; 2; 3::n) are used, that is set to 1 if
i™ object is chosen to inset in knapsacks otherwise it
is set to 0. Each object has a profit value p; (i = 1; 2;
3:n) and a weight wj corresponding to knapsacks.
Thus mathematically this optimization problem can be
modeled as :

Maximize pixi (1)
=1
Subjectto :
M
h-
wijxi dj j=1:2;:xm (2)
=1
xi210;1g el e 3)

The goal of MDKP is to insert a subset of objects into
knapsacks that obtain maximum profit without
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capacity viola-tion of knapsacks. This characteristic

reveal this problem has all nonnegative entries. More

specifically, we can say p; > 0,

m
diand  wj
i=1

di> 0,0 wij diforalli2nandj2m

Rest of the paper is structured as follows. Genetic
algorithm for MDKP is described in Section II
Section III give the overview of related work for
MDKP in domain of genetic algorithm. Section IV
explain CGA to solve multidimensional knapsack
problem. Experimental environments and results are
given in Section V. At last conclusion is made in
section VI.

II. GENETIC ALGORITHM FOR
MULTIDIMENSIONAL KNAPSACK
PROBLEM

Genetic algorithm is computation optimization

technique which mimic the evolutionary principle i.e.
fittest individual will survive in each generation. GA
is guided by three main operation: selection, crossover
and mutation. Individuals re-production are governed
by crossover and mutation operation. Selection
operation choose fittest individuals from population to
form mating pool. Algorithm run as follow : A set of
random individuals are produced which serve as the
initial population of GA. The individual can be
expressed in real number, binary number, integer
number, character based on nature of problem. MDKP
uses the binary representation. Individual goodness
measurement is estimated through fitness function.
MDKP fitness function is maximize the objective
function.

Algorithm 1 Genetic Algorithm (GA)

Initialize the control parameters ;

Initialize randomly N individuals as initial
population P

(G); while stopping criterion(s) doesn’t meet do
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i.  Choose individuals to create mating pool
via selection operator.
ii.Produce new individuals via crossover
operator.
1ii. Mutate obtained individuals using mutation
operator.

iv. Evaluate fitness value of new individuals.
v.  Add new individuals with population.
vi.  Sort population with respect to fitness
value.
vii. Choose top N individuals as population of
next generation.
end while

Return the fittest individual as the solution.

Every individual are transformed from one generation
to next generation depending on fitness value i.e
individual with high fitness value has high probability
to participate in upcoming generation. GA employee
crossover operator for exploration and mutation
operator for exploitation. MDKP wuses one point
crossover and random mutation. Number of crossover
operations are govern through crossover rate while
number of mutation operations are govern through
mutation rate. A cycle of GA comprise of applying
GA operations i.e. evaluation, reproduction, crossover
and mutation. Each generation produce a set of
individuals. GA termination return the fittest
individual as solution. The details of GA operators i.e
selection, crossover, and mutation are explained in
[14].

III. RELATED WORK

J.P. Martin and C.B Neto and M.K. Crocomo made
compar-ison among four linkage learning based
genetic algorithm for multidimensional knapsack
problem namely, extended com-pact genetic
algorithm (eCGA), bayesian optimization algo-rithm
(BOA) with detection graphs, BOA with community
detection and linkage tree genetic algorithm (LTGA)
[15]. eCGA and LTGA have better exploration and
exploitation capabilities than BOA versions with
small size population (N=100) and produce better
quality solutions for MDKPs. All algorithms with
large population size produce approxi-mately similar
quality solutions for MDKPs but these have different
running time and function evaluations. When con-
sider solutions quality, functions evaluations and
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running time of algorithms, BOA versions have better
running time than eCGA and LTGA. It is very
difficult to make comparison for computational time
between eCGA and LTGA because these have
different reproduction operators.

Khuri, Back and Heitkotter proposed a GA for 0/1
MDKP [16]. Algorithm allowed breeding and
participation of infeasi-ble solutions during search. In
this GA, reproduction proceeds by combining the
partial information from all element of population. A
test suite with few problems were used to test this
GA; only moderate quality solutions were produced.
Hoff, Lokentangen and Mittet proposed a GA with
proper tuned parameters and search mechanisms in
which only feasible solutions were allowed during
search [17]. This GA discovered optimal for 54
problems out a suite of 55 problems.

Rudolph and Sprave proposed a GA in which
selection of parent is not unrestricted as in standard
GA but is restricted be-tween neighboring solutions
[18]. In their GA every infeasible solutions were
penalized as GA of Khursi, Back and Heitkotter [16].
The premier component of this GA be solutions local
interaction with in a spatial structured population and
self ad-justed controlling mechanism of selection
pressure. P. C. Chu and J.E. Beasley proposed
heuristic dependent GA for MDKP [19]. In their GA
heuristic operator was employed which work with
problem specific knowledge. Heuristic operator
repaired infeasible solutions and algorithm discover
optimal solution among feasible solutions. C. Cota
and J.M. Troya proposed another GA which have an
improvement mechanism whose objective is to
convert infeasible solutions in search space to feasible
solutions [20]. Experimental results were better to
basic GA, but not as good as Chu and Beasley’s GA
results.

Partition size is relative to fitness value. Next
similarity value between first individual and
remaining individuals are estimated. The individual
with highest similarity value occupy the second
partition of roulette wheel. This procedure repeat until
all individuals are allocated to partition in roulette
wheel. Figure 1 show the 4 individuals in binary
representation and procedure of assigning individual
to the partition of roulette wheel. Then mechanism
determined overlapping area between adjacent
individuals. Overlapping area size is correlated by
similarity value between adjacent individuals. In
mating pool formation, a random number is
generated. After for each individual membership
degree to which generated number belongs is
calculated. Individual with highest membership
degree is selected. This process repeat until mating
pool size is equal to population size. Figure 2 show
the fuzzy roulette wheel selection mechanism for 4
individuals in Figure 1.

Individual 3

|
Individuat 2 |
|
|

(=1

Individual 4

Individual Individual Similanty value
(Max =8)

i 2 4
1 3 E]

Selected pair

[1.4]

1 4 3

Fig. 1: Procedure of assigning individual to partition
of roulette wheel .

CGA adopt a special crossover operator which uses
the hierarchical algorithm to form clusters.
Individuals in the mating pool are divided into two
clusters using hierarchical clustering algorithm. In the
hierarchical algorithm, single linkage procedure given
in eq (2) is apply to estimate similarity between the

IV. CLUSTERED GENETIC ALGORITHM FOR!WO clusters.

MULTIDMENSIONAL KNAPSACK PROBLEM

In this work, clustered genetic algorithm is developed
for multidimensional knapsack problem. CGA is
explained in algorithm 2. CGA uses an advanced
selection method which employee fuzzy and roulette
wheel selection called fuzzy roulette wheel selection.
Selection mechanism always choose first individual
and assigned it to first partition of roulette wheel.
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Fig. 2: Fuzzy roulette wheel.

S(X;Y )= MAX fs(x; y)g 4)

x2X;y2Y
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Where X and Y are two clusters and s(x,y) stand for
similarity between individuals x and y. A pair of
offsprings are generated by mating of a random parent
from first cluster and a random parent from second
cluster. One point crossover operator is employed.
This step is continued N/2-1 times. Random mutation
is performed for each offspring to keep diversity and
to defeat the problem of premature convergence.

Cluster 1 Cluster 2

‘-—-

Fig. 3: Selection of parent pair for crossover.

mdividual1 [ 1 ] 0 T 0 T 1 71 BEREN
mdvidialz [ 0 [ 1T T 0 J 1 T1 BERER
Y crossover point
orngs [T ] 0 [0 [ T T [ T[T 0]
Offspring 2 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 |

Fig. 4: One point crossover.

V. EXPERIMENTAL RESULTS AND
DISCUSSION

To show CGA is better technique to GA, experiments
has carried out over 30 standard problems for
multidimensional knapsack.

Algorithm 2 Clustered Genetic Algorithm (CGA)

Initialize the control parameters ;

Initialize randomly N individuals as initial
population P (G); while stopping criterion(s)
doesn’t meet do
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1.Choose individuals to create mating pool via
fuzzy roulette wheel selection operator.

ii. Create two clusters of individuals using
hierarchical clustering algorithm .

iii.  (iii)Produce new individuals by using
crossover operator with a random parent
from cluster 1 and a random parent from
cluster 2.

iv. Mutate obtained individuals using mutation
operator.

v.Evaluate fitness value of new individuals.
vi. Add new individuals with population.
vii. Sort population with respect to fitness value.

viii. Choose top N individuals as population of
next generation.
end while

Return the fittest individual as the solution.
A. Experimental Environment

GA and CGA depict in previous section were imple-
mentd for multidimensional Knapsack. Experiments
were de-signed to estimate average mean error and
average mean execution time for GA and CGA. Data
set for multidimen-sional knapsack is available at
http://people.brunel.ac.uk/ mas-
tjjb/jeb/orlib/files/mknap2.txt. Crossover rate CR =
0.7 and mutation rate MR = 0.01. The experiments
were conducted on 7th generation intel core i-7-7700k
processor (4.2 GHz) and coded in c++ whose
compilation is done using Dev c++ compiler.

Error (%)
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:
!
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!
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Fig. 5: Error comparision between GA and CGA.
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B. Results and Analysis

Experimental results of GA and CGA for MDKPs are
given in Table I and Table II respectively. Column 1
denote instance no and column 2 represent MDKP,
column 3 and 4 show number of knapsacks and
number of objects corresponding to problem, columns
5 denotes the optimal value, columns 6-10 keeps the
output value of five run, simulation statical
information is given in columns 11-14 and column 15
show mean time taken in execution. GA and CGA has
average mean error 4.49% and 1.764% respectively
while GA and CGA has average mean execution time
2.34 seconds and 2.34 seconds respectively. CGA has
considerable less average mean error in comparison of
GA but CGA has slightly higher average mean
execution time in comparison of GA. Figure 5 plot the
average mean error against the problem instance and
Figure 6 plot the average mean execution time against
the problem instance.

CPU-Time (Sec)

Instance

Fig. 6: CPU running time comparison between GA
and CGA.

VI. CONCLUSION AND FUTURE WORK

This paper addressed multidimensional knapsack
problem via the cluster genetic algorithm to find
optimal. CGA employ the fuzzy roulette selection
mechanism for individual selection to form mating
pool. CGA adopts a special kind of crossover operator
in which uses hierarchical clustering algorithm to
form two clusters from mating pool. A pair of
offspring is generated by mating of a random parent
from first cluster and a random parent from second
cluster. CGA performance has examined against GA
w.r.t 30 standard MDKPs over two criterion i.e
average mean error and average mean execution time.
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As GA and CGA experimental results are shown,
CGA has better performance than GA for MDKP. A
comparative study of different mutation operators
with CGA will be studied in the future work.
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Sr Test m n Opt Number of Statistical
no Proble ima Runs Information
ms |
Min Avg
1 SENTO1 | 30 | 60 | 7772 | 7712 | 7736 | 7725 | 7719 | 7723 | 7736 7712 | 7723 | 0.6 | 4.27
3
2 SENTO02 | 30 | 60 | 8722 | 8690 | 8662 | 8702 | 8669 | 8682 | 8702 8662 | 8681 | 04 | 4.23
6
3 WEING | 2 | 28 | 1412 | 1379 | 1388 | 1386 | 1399 | 13990 | 13990 13790 | 1390 | 1.6 | 1.58
1 78 02 04 02 03 4 4 2 23 0
4 WEING | 2 | 28 | 1308 | 1244 | 1257 | 1249 | 1239 | 12498 | 12575 12398 | 1248 | 4.6 | 1.60
2 83 53 52 73 89 3 2 9 30 2
5 WEING | 2 | 28 | 95667 | 92296 | 9199 | 9229 | 92398 | 92451 | 92451 9199 | 92287 | 3.5 | 1.68
3 8 2 8 3
6 | WEING | 2 |28 | 1193 | 1166 | 1164 | 1159 | 1164 | 11679 | 11679 11599 | 1164 | 24 | 1.71
4 37 25 41 98 59 2 2 8 63 1
7 | WEING | 2 | 28 | 98796 | 93667 | 9366 | 9344 | 93778 | 93631 | 93778 9344 | 93636 | 5.2 | 1.53
5 2 2 2 2
8 WEING | 2 | 28 | 1306 | 1244 | 1260 | 1260 | 1261 | 12615 | 12617 12445 | 1257 | 3.7 | 1.59
6 23 50 93 92 72 8 2 0 93 0
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9 | WEING | 2 | 10| 1095 | 1054 | 1057 | 1059 | 1057 | 1056 | 10598 1054 | 1057 | 3.4 | 5.72

7 5 | 445 | 402 | 806 | 803 | 804 | 405 03 402 | 244 9
10 | WEING | 2 | 10| 6243 | 6214 | 6217 | 6206 | 6218 | 62176 | 62188 62064 | 6215 | 04 | 5.64

8 5 19 22 98 42 82 1 2 2 01 5
11 | WEISH | 5 | 30 | 4554 | 4214 | 4298 | 4288 | 4178 | 4292 | 4298 4178 | 4254 | 6.5 | 1.62
12 W](E)IISH 5 |30 | 4536 | 4197 | 4182 | 4178 | 4181 | 4187 | 4197 4178 | 4187 7?7 1.58
13 Wl(3)128H 5 130 | 4115 | 3990 | 3987 | 3976 | 3973 | 3984 | 3990 3973 | 3982 3‘.‘2 1.64
14 WI(E)I38H 5 130 | 4561 | 4314 | 4317 | 4323 | 4302 | 4304 | 4323 4302 | 4312 5?4 1.66
15 WIEZ)?SH 5 130 | 4514 | 4311 | 4309 | 4388 | 4303 | 4309 | 4388 4303 | 4324 4?2 1.63
16 W&SSH 5 |40 | 5557 | 5331 | 5333 | 5307 | 5228 | 5291 | 5333 5228 | 5298 4%6 2.08
17 WIEZ)I68H 5 |40 | 5567 | 5186 | 5193 | 5177 | 5244 | 5180 | 5244 5177 | 5196 6?6 2.12
18 WIEZ)ZSH 5 140 | 5605 | 5302 | 5368 | 5352 | 5214 | 5309 | 5368 5214 | 5329 4?9 2.06
19 WIEZ)?SH 5 140 | 5246 | 4901 | 4848 | 4898 | 4886 | 4812 | 4901 4812 | 4869 7%1 231
20 W]EZ)?SH 5150 | 6339 | 5916 | 5923 | 5978 | 5981 | 5972 | 5981 5916 | 5954 5?9 2.28
21 W]é?SH 5 |50 | 5643 | 5387 | 5362 | 5324 | 5336 | 5361 | 5387 5324 | 5354 5?1 2.70
22 W]éIISH 5150 | 6339 | 5984 | 5972 | 5988 | 5977 | 5974 | 5988 5972 | 5979 5%6 2.66
23 Hllfl 4 | 28 | 3418 | 3220 | 3198 | 3224 | 3278 | 3215 | 3278 3198 | 3227 5?5 1.54
24 HP2 4 | 35| 3186 | 3016 | 3010 | 3078 | 2999 | 2912 | 3078 2912 | 3003 5?7 1.80
25 PB1 4 127 | 3090 | 2916 | 2924 | 2942 | 2918 | 2930 | 2942 2916 | 2926 5‘.‘3 1.66
26 PB2 4 | 34| 3186 | 2978 | 2986 | 2962 | 2971 | 2963 | 2986 2962 | 2972 6%7 1.76
27 PB4 2 129 (95168 | 92372 | 9270 | 9250 | 92666 | 92780 | 92780 9237 | 92606 2?6 1.64
28 PB5 10 | 20 | 2139 | 2037 20832 20443 2012 | 2041 | 2043 20212 2033 4?9 1.50
29 PB6 30 140 | 776 | 706 | 740 | 765 | 758 | 766 766 706 747 3?7 3.40
30 PB7 30 | 37 | 1035 | 977 | 992 | 966 | 973 | 932 992 932 968 6%4 3.02

7

TABLE I: Result of Genetic Algorithm For Multidimensional Knapsack Problems.
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Sr Test m n Opt Number of Statistical
no Proble ima Runs Information
ms |
1 2 3 4 5 Ma Min | Avg | %Er
X r
1 SENTO1 |30 |60 | 7772 | 7762 | 7746 | 7758 | 7752 | 7747 | 776 7746 | 7754 | 0.23 | 4.95
2
2 SENTO02 |30 | 60 | 8722 | 8712 | 8707 | 8705 | 8716 | 8710 | 871 8705 | 8710 | 0.14 | 4.89
6
3 WEING1 | 2 | 28 | 1412 | 1401 | 1401 | 1401 | 1401 | 14077 | 140 14017 | 1403 | 0.69 | 1.83
78 77 83 96 78 1 771 7 01
4 WEING2 | 2 |28 | 1308 | 1278 | 1278 | 1281 | 1279 | 12799 | 127 12780 | 1279 | 2.25 | 1.82
83 62 04 08 03 3 993 4 934
5 WEING3 | 2 | 28 | 95667 | 94570 | 9458 | 9444 | 94684 | 94556 | 945 9444 | 94568 | 1.15 | 1.85
2 8 82 8
6 WEING4 | 2 |28 | 1193 | 1179 | 1179 | 1178 | 1179 | 11794 | 117 11789 | 1179 | 1.17 | 1.92
37 82 47 92 32 2 982 2 39
7 WEINGS | 2 | 28 | 98796 | 96694 | 9670 | 9688 | 96879 | 96861 | 968 9669 | 96804 | 2.02 | 1.77
2 4 79 4
8 WEING6 | 2 |28 | 1306 | 1285 | 1286 | 1287 | 1286 | 12863 | 128 12850 | 1286 | 1.53 | 1.91
23 03 64 04 30 9 704 3 28

9 | WEING7 | 2 | 10 | 1095 | 1074 | 1076 | 1075 | 1074 | 1073 | 107 1073 | 1075 | 1.85 | 6.10
51 445 | 998 | 681 662 | 552 | 902 | 668 902 159

10 | WEINGS8 | 2 | 10| 6243 | 6231 | 6229 | 6231 | 6232 | 62311 | 623 62299 | 6231 | 0.19 | 6.08

5 19 10 90 84 08 3 208 0 21
11 | WEISHO1 | 5 | 30 | 4554 | 4428 | 4462 | 4448 | 4436 | 4461 | 446 4428 | 4447 | 235 | 1.93
2
12 | WEISHO2 | 5 | 30 | 4536 | 4402 | 4398 | 4372 | 4410 | 4403 | 440 4372 | 4397 | 3.06 | 1.87
3
13 | WEISHO3 | 5 | 30 | 4115 | 4083 | 4076 | 4083 | 4071 | 4082 | 408 4071 | 4079 | 0.87 | 1.90
3

14 | WEISHO4 | 5 | 30 | 4561 | 4461 | 4448 | 4457 | 4434 | 4445 | 446 4434 | 4449 | 246 | 1.92

15 | WEISHOS | 5 | 30 | 4514 | 4476 | 4487 | 4462 | 4462 | 4468 | 448 4462 | 4452 | 1.00 | 1.87

16 | WEISHO6 | 5 | 40 | 5557 | 5441 | 5436 | 5392 | 5446 | 5463 | 546 5392 | 5436 | 2.18 | 2.44

17 | WEISHO7 | 5 | 40 | 5567 | 5395 | 5407 | 5437 | 5437 | 5414 | 543 5395 | 5392 | 2.83 | 2.52

18 | WEISHO8 | 5 | 40 | 5605 | 5518 | 5507 | 5532 | 5522 | 5536 | 553 5507 | 5523 | 146 | 2.38

19 | WEISHO9 | 5 | 40 | 5246 | 5076 | 5084 | 5102 | 5078 | 5080 | 510 5076 | 5084 | 3.09 | 2.68

20 | WEISHI0 | 5 | 50 | 6339 | 6201 | 6198 | 6182 | 6180 | 6184 | 620 6180 | 6189 | 2.37 | 2.76

21 | WEISHI1 | 5 | 50 | 5643 | 5558 | 5537 | 5529 | 5568 | 5568 | 556 5529 | 5552 | 1.61 | 3.07

22 | WEISHI2 | 5 | 50 | 6339 | 6236 | 6199 | 6214 | 6208 | 6233 | 623 6199 | 6218 | 1.91 | 3.02
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23 HP1 4 | 28 | 3418 | 3368 | 3332 | 3357 | 3362 | 3341 | 336 3332 | 3352 | 1.93 | 1.82
24 HP2 4 | 35| 3186 | 3109 | 3112 | 3106 | 3104 | 3114 32131 3104 | 3109 | 242 | 2.12
25 PBI 4 |27 | 3090 | 3012 | 3001 | 3017 | 3005 | 3015 331 3001 | 3010 | 2.58 | 1.93
26 PB2 4 |34 | 3186 | 3094 | 3088 | 3116 | 3098 | 3089 339 3088 | 3097 | 2.79 | 2.06
27 PB4 2 | 29 | 95168 | 94207 | 9399 | 9410 | 94103 | 94111 922 9399 | 94105 | 1.12 | 1.89
28 PBS 10 | 20 | 2139 | 2099 2181 1 21604 2106 | 2115 20171 20899 2107 | 1.50 | 1.76
29 PB6 30 {40 | 776 | 763 | 758 759 766 | 769 729 758 763 | 1.68 | 3.87
30 PB7 30 | 37 | 1035 | 1008 | 1017 | 1012 | 1006 | 1002 | 101 1002 | 1009 | 2.51 | 3.49
]
TABLE II: Result of Clustered Genetic Algorithm for Multidimensional Knapsack Problems.
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