
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume: 3 | Issue: 3 | Mar-Apr 2019 Available Online: www.ijtsrd.com e-ISSN: 2456 - 6470

@ IJTSRD | Unique Paper ID - IJTSRD21731 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 194

Unit Test using Test-Driven Development

Approach to Support Reusability

Myint Myint Moe

University of Computer Studies (Hpa-An), Kayin State, Myanmar

How to cite this paper: Myint Myint

Moe "Unit Test using Test-Driven

Development Approach to Support

Reusability" Published in International

Journal of Trend in Scientific Research

and Development

(ijtsrd), ISSN: 2456-

6470, Volume-3 |

Issue-3, April 2019,

pp.194-196, URL:

http://www.ijtsrd.co

m/papers/ijtsrd217

31.pdf

Copyright © 2019 by author(s) and

International Journal of Trend in

Scientific Research and Development

Journal. This is an Open Access article

distributed under

the terms of the

Creative Commons

Attribution License (CC BY 4.0)

(http://creativecommons.org/licenses/

by/4.0)

ABSTRACT

Unit testing is one of the approaches that can be used for practical purposes in improving

the quality and reliability of software. Test-Driven Development (TDD) adopts an

evolutionary approach which requires unit test cases to be written before implementation

of the code. TDD method is a radically different way of creating software. Writing test first

can assure the correctness of the code and thus helping developer gain better

understanding of the software requirements which leads to fewer defects and less

debugging time. In TDD, the tests are written before the code is implemented as test first.

The number of defects reduced when automated unit tests are written iteratively similar to

test driven development. If necessary, TDD does the code refactoring. Refactoring does to

improve the internal structure by editing the existing working code, without changing its

external behavior. TDD is intended to make the code clearer, simple and bug-free. This

paper focuses on methodology and framework for automation of unit testing.

Keywords: Unit Testing, TDD, Refactoring

I. INTRODUCTION

Unit Testing finds the defects in each and every unit of the

application at initial level of testing. Unit testing ensures that

code works correctly and improves the quality, reliability

and cost of the application software development [9]. TDD

starts with designing and developing tests for every small

function of an application. In TDD approach, first, the test is

developed which specifies and validates what the code will

do. In the normal testing process, first generate the code and

then test. Tests might fail since tests are developed even

before the development. In order to pass the test, the

development team has to develop and refactors the code.

Refactoring is a powerful agile technique for improving

existing software [7]. Refactoring a code means changing

some code without affecting its behavior. The idea of

refactoring is to carry out the modifications as a series of

small steps without introducing new defects into to the

system. By re-running the test cases, the developer can be

confident that code refactoring is not damaging any existing

functionality [6].

This paper is organized with (5) sections. The brief

introduction is described in section I. Objectives, Related

work, Methodology are presented in II, III and IV

respectively. The paper is concluded in section V.

II. Objectives

Software testing is an essential part of software development

process to assure the quality of software systems [5]. Unit

testing is to validate that each unit of the software performs

as designed. Unit testing is a practice that forces to test small,

individual and isolated units of code. [7]. TDD is to write and

correct the failed tests before writing new code (before

development). TDD helps to avoid duplication of code as we

write a small amount of code at a time in order to pass tests.

TDD is a process of developing and running automated test

before actual development of the application. Refactoring is

a well-defined process that improves the quality of systems

and allows developers to repair code that is becoming hard

to maintain, without throwing away the existing source code

and starting again [6].

III. Related Work

In [2], the authors proposed on the Effectiveness of Unit

Tests in Test-driven Development. Author conducted an

experiment in an industrial setting with 24 professionals.

Professionals followed the two development approaches to

implement the tasks. Author measures unit test effectiveness

in terms of mutation score. Author also measures branch and

method coverage of test suites to compare author’s results

with the literature. As a result, In terms of mutation score,

author has found that the test cases written for a test-driven

development task have higher defect detection ability than

test cases written for an incremental test-last development

task. Subjects wrote test cases that cover more branches on a

test-driven development task compared to the other task.

IJTSRD21731

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD21731 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 195

However, test cases written for an incremental test-last

development task cover more methods than those written

for the second task.

In [3], the authors described using Test-Development

Development to Improve Software Development Practices.

Author focused on the participants’ point of view and

experience of using TDD in software development. The data

analysis of author will be described along with a conclusion

on how TDD can improve software development. As a result,

TTD has the ability to help practitioners throughout the

software development implement phase in many ways. TDD

was analyzed with five factors in mind and their outcomes

compared to this research which showed very similar

results. The main advantages of using TDD can be outlined

as: improved code quality, less defects, easier maintenance,

safety net and reliable software.

In [5], authors proposed An Industrial Evaluation of Unit

Test Generation: Finding Real Faults in a Financial

Application. As the method, RANDOOP is one of the most

stable random test generation tools, with easy to follow

instructions to get it up and running in short time. EVOSUITE

is a search-based unit test generation tool for Java that uses a

genetic algorithm to evolve a set of test cases with the

intention of maximizing code coverage. As a result, on

average, RANDOOP can find faults in 36.8% of the runs,

whereas EVOSUITE in 50.8% of the runs. Test generation

tools detected up to 56.40% (EVOSUITE) and 38.00%

(RANDOOP) of faults in all executions.

IV. Methodologies

Test-Driven Development (TDD) is a software development

process that relies on the repetition of a very short

development cycle: requirements are turned into very

specific test cases, and then the software is improved to pass

the new tests, only. This is opposed to software development

that allows software to be added that is not proven to meet

requirements [6]. In Test Driven Development, the developer

writes automated unit tests for the new functionality they

are about to implement. It is a software engineering process

that follows small development cycle. The automated unit

tests for any application can be written in two ways: Before

code implementation and after code implementation. If unit

tests are written before any code implementation then it is

known as Test Driven Development. If Unit tests are written

after the code implementation then it is known as Test after

Development. [9]

A. Proposed System

Test driven development model cycle consists of:

Writing a Test: A unit test (manual or automated,

preferably automated) is first written to exercise the

functionality that is targeted for development. Before writing

the test, the developer is responsible for understanding the

requirements well. A unit test shall also contain assertions to

confirm the pass/fail criteria of the unit test.

Run to fail /make it compile: Since the feature is yet to be

implemented, the unit test that was written in Step 1 is

bound to fail. This step is essentially a validation step for the

unit test written, as the test shouldn’t pass even if there is no

code written for it. Often unit tests are automated and there

are chances that the tests fail because of syntax or

compilation errors. Sanitization of the tests by removing

these errors is also an essential part of this step.

Implementing (complete /partial) functionality:

This step involves developing the part of the functionality for

which the unit test is written and will be validated.

Making tests to pass: Once the unit tests for the developed

code have passed, the developer derives confidence that the

code fulfills the requirements.

Code refactoring: The unit tests might have passed, but code

refactoring may still be required for reasons including

handling errors elegantly, reporting the results in the

required format, or carving a subroutine out of the written

code for re-usability.

Repeating the cycle: The unit test/set of unit tests is/are

refactored to cater to new functionality or push towards

completion of the functionality. [11]

Figure1: TDD cycle

The proposed system verifies the correctness of all codes

and gives developers confidence by reducing code

complexity providing that it is used persistently over time

and motivates developers to produce higher code quality. By

using proposed system, developers were more productive

and make less effort per line- of code. In traditional

development, developers develop their code first, complete

the functionality and go for manual testing. Traditional

development, first code is written and then code is tested. If

tests are written after the implementation, there is a risk

that tests are written to satisfy the implementation.

Development time is relatively high in proposed system. It

nearly takes more time than Test-Last Development or

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID - IJTSRD21731 | Volume – 3 | Issue – 3 | Mar-Apr 2019 Page: 196

traditional development. This is because of its iterative

process between testing, coding, refactoring. As a future

plan, we will reduce development time and it will be less

time- consuming, using proposed system. Besides, the author

also thinks if proposed system could be appealing to

students, teaching approach should be applied in higher

education.

B. Advantages and Disadvantages of TDD

Advantages of TDD, shortens the programming feedback

loop. TDD promotes the development of high-quality code.

User requirements more easily understood. TDD reduced

interface misunderstandings and software defect rates. . TDD

provides concrete evidence that your software works. TDD

gives batter Code and less Debugging Time.

Disadvantages of TDD, Programmers like to code, not to test.

Test writing is time consuming. Test completeness is difficult

to judge. TDD may not always work [10]

C. Comparison of TDD and Traditional Testing

TDD approach is primarily a specification technique. It

ensures that your source code is thoroughly tested at

confirmatory level. With TTD, a successful test finds one or

more defects. When a test fails, you have made progress

because you know that you need to resolve the problem.

With traditional testing, a successful test finds one or more

defects. When a test fails, you have made progress because

you know that you need to resolve the problem. TDD ensures

that your system actually meets requirements defined for it.

It helps to build your confidence about your system. In TDD

more focus is on production code that verifies whether

testing will work properly. In traditional testing, more focus

is on test case design. In order to fulfill requirements, the

test will show the proper/ improper execution of the

application. In TDD, achieve 100% coverage test. Every

single line of code is tested, unlike traditional testing. The

combination of both tradition testing and TDD leads to the

importance of testing the system rather than perfection of

the system. [6] [10].

V. Conclusion

In this paper, the proposed system is a development

approach that can help developers to design a code and

supports developers in their work with confidence.

Consequently, they will be able to write more reliable

software. This system has given the developers deeper

logical understanding of their code and has supported them

to improve their development skills. It counts the bugs and

defects over a period of time. This approach enables

thorough unit testing which improves the quality of the

software and enhances customer satisfaction. The proposed

system is an effective tool to improve productivity in long

run and can significantly reduce the defect density of

developed software either immediately or in the long run.

Unit tests detect changes that may break a design contract.

They help with maintaining and changing the code. Unit

testing reduces defects in the newly developed features or

reduces bugs when changing the existing functionality. That

is why, Unit testing is chosen than other testing in this

research. This system has the ability to speed up the process.

References

[1] Causevic, A., Shukla, R., & Punnekkat, S. (2013).

“Industrial study on test driven development:

Challenges and experience” 2013 1st International

Workshop on Conducting Empirical Studies in Industry

(CESI).

[2] Tosun, A., Ahmed, M., Turhan, B., & Juristo, N. (2018).

On the effectiveness of unit tests in test-driven

development. Proceedings of the 2018 International

Conference on Software and System Process - ICSSP

’18.

[3] RAQUELITA ROS AGUILAR, “Using Test-Development

Development to Improve Software Development

Practices”, REYKJAVIK UNIVERSITY, SPRING 2016, T-

622-UROP.

[4] Arcuri, A., Campos, J., & Fraser, G. (2016) “Unit Test

Generation during Software Development: EvoSuite

Plugins for Maven, IntelliJ and Jenkins” 2016 IEEE

International Conference on Software Testing,

Verification and Validation (ICST).

[5] Almasi, M. M., Hemmati, H., Fraser, G., Arcuri, A., &

Benefelds, J. (+2017). “An Industrial Evaluation of Unit

Test Generation: Finding Real Faults in a Financial

Application” 2017 IEEE/ACM 39th International

Conference on Software Engineering: Software

Engineering in Practice Track (ICSE-SEIP).

[6] Shaweta Kumar, Sanjeev bansal, “Comparative Study of

Test driven Development with Traditional

Techniques”; International Journal of Soft computing

and Engineering (IJSCE); ISSN:2231-2307,Volume-3,

Issue-1, (March 2013).

[7] Authors : Viktor Farcic , Alex Garcia ; “Java Test-Driven

Development”; First published: August 2015;

Production reference: 1240815; Published by Packt

Publishing Ltd.; Livery Place; 35 Livery Street;

Birmingham B3 2PB, UK. ISBN 978-1-78398-742-9;

www.packtpub.com; www.it-ebooks.info.

[8] www.JUnit.org

[9] A. N. Seshu Kumar and S. Vasavi ; “Effective Unit

Testing Framework for Automation of Windows

Applications”; Aswatha Kumar M.et al.(Eds);

Proceedings of ICADC, AISC 174, pp. 813-822.

Springerlink .com @ Springer India 2013

[10] Author: Mark Levison; published : Oct 14, 2008,

www.agilepainrelief.com, www.guru99.com

