
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume: 3 | Issue: 2 | Jan-Feb 2019 Available Online: www.ijtsrd.com e-ISSN: 2456 - 6470

@ IJTSRD | Unique Reference Paper ID – IJTSRD21458 | Volume – 3 | Issue – 2 | Jan-Feb 2019 Page: 638

Unit Testing to Support Reusable for

Component-Based Software Engineering

Khin Moe Sam

University of Computer Studies, Thaton, Mon State; Myanmar

ABSTRACT

Unit testing is a practical approach to improve the quality and reliability of software. Unit testing is usually performed by

programmers and is the base for all other tests such as integration testing and system testing. Unit Testing can be done

manually (and/or) automatically. The automated unit tests are written by the developers after the completion of functionality

coding. The number of defects reduced when automated unit tests are written iteratively similar to test driven development.

This framework proved that significant portions of windows application can be automatically tested without manual

intervention. This reduces the manpower involved in testing each and every unit of the application and increases the quality of

the software product.

Keywords: Unit Testing, Automatic Unit Testing, And Test Driven Development.

1. INTRODUCTION

Unit Testing is a kind of white box testing where individual

units of software are tested. The intension of unit testing is

to check whether each and every unit (module) of a software

works as per the developer’s expectation. Unit Testing can

be done manually (and/or) automatically. Unit Testing finds

the defects in each and every unit of the application at initial

level of testing. It increases the confidence levels of

developer by ensuring that their code is working correctly.

Unit Testing ensures that code works correctly and improves

the quality, reliability and cost of the application software

development. We initially performed unit testing manually

where it was a time consuming task and hence we intend to

choose automation of unit testing. To automate unit testing,

it is necessary to write test scripts called unit tests. Once the

unit tests are available, it is easy to automate the unit testing.

(1) The purpose is to validate that each unit of the software

performs as designed. A unit is the smallest testable part of

any software. It usually has one or a few inputs and usually a

single output. A combination of the two or more tools can

serve to merge the best of both worlds. The result is not only

the sum of both mechanisms, but the creation of a new

quality of testing tool with new functionality emerging out of

the combination of the two.(3)

2. Objectives

The goal of unit testing is to isolate each part of the program

and show that the individual parts are correct. (4)A

combination of the two can serve to merge the best of both

worlds. The result is not only the sum of both mechanisms,

but the creation of a new quality of testing tool with new

functionality emerging out of the combination of the two.

(3)(5)Unit testing is performed on the smallest elements of a

system; each component is tested to ensure that it properly

works. Usually it performs a single cohesive function. The

goal of unit testing is to analyze each small part of the code

and test that is working correctly. (6) The purpose is to

validate that each unit of the software performs as designed.

A unit is the smallest testable part of any software. It usually

has one or a few inputs and usually a single output.

(2)Benefits of writing good unit tests or unit testing:- Unit

testing supplies plentiful benefits: finding software bugs

early, simplifying integration, providing a source of

documentation, and many others, which I am going to share

in more detail: Unit testing reduces the number of bugs in

the system and acceptance testing; Cost of locating and fixing

bugs in unit testing is very less as they are captured in very

early phase; Automated tests can run as frequently as

required; Unit testing makes it easier to change and refactor

the code; Unit testing can improve code design, especially

with test-driven development; Overall development time can

be used for unit testing; Unit tests are a form of

documentation; Unit testing improves teamwork; Code

coverage can be measured.(7)

3. Methodology

Automated unit testing helps in improving quality,

decreasing costs and reducing time required for testing.

However, all this is possible only with use of appropriate

testing tool. Following are various parameters critical to

selection of appropriate tool: Minimum implementation

time: This is possible when users are already familiar with

technology (language, method of working, integration

constraints) used by the testing tool. Additionally, extensive

documentation and support available help in reducing

implementation time. Minimum ownership and running

costs: An open source tool which is free to access may be less

efficient and have higher operating costs. On the other hand,

a commercial tool available may require initial investment

but due to its better features might make testing efficient

and cost effective in the long run. Flexibility: Every project is

unique in a certain way and has its own peculiar needs. Thus

an efficient testing tool while offering most required features

should also provide option of code modification. Further for

swift debugging, the framework should make test code

readable. (8)

The automated unit tests for any application can be written

in two ways: Before code implementation; after code

implementation. If unit tests are written before any code

implementation then it is known as Test Driven

Development. If Unit tests are written after the code

implementation then it is known as Test after Development.

(9) The best unit testing tools are NUnit, TestNG, JUnit,

JMockit, Emma, Quilt, HtmlUnit. JUnit, TestNG, NUnit are free

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Reference Paper ID – IJTSRD21458 | Volume – 3 | Issue – 2 | Jan-Feb 2019 Page: 639

open source unit testing tools. Nunit is a unit testing

framework based on .net platform. It is free tool allows to

write test scripts manually but not automatically. It works in

the same way as JUnit works for Java.

It supports data-driven tests that can run in parallel. It uses

console runner to load and execute tests. JUnit is an open-

source unit testing framework designed for Java

Programming language. It supports for test-driven

environment and the core idea on which it is based ‘first

testing then coding’. Test data is first tested and then

inserted in the piece of code. It provides annotation for test

method identification, assertion for testing expected result

and test runners. It is simplest and helps to write code easily

and faster. TestNG is an open-source automation testing

framework for java programming language. This tool is

heavily influenced by JUint and NUnit with concurrent

testing annotation support. TestNG supports parameterized

and data-driven testing along with unit functional and

integration testing. It proved effective with powerful

execution model and flexible test configuration.

4. Proposed System

In Test Driven Development, the developer writes

automated unit tests for the new functionality they are about

to implement. It is a software engineering process that

follows small development cycle. In industry, while coding a

software application the development cycle that they follow

is shown below in figure 1.

Fig.1. Test Driven Development Cycle

4.1 Develop Automated Unit Tests

Without writing any code to implement feature, test cases

must be written by the developer in the initial stage by

collecting the specifications and requirements in the form of

user stories (or) use cases that covers all the requirements

and conditions. This makes developer to focus on

requirements and coding in this manner makes the code

consistent.

4.2 Run Automated Unit Tests

Run the automated Unit tests to ensure that they fail because

there is no implemented code yet.

4.3 Implement the Code to Pass Test(s)

Developer needs to write the code for those cases that are

failed in the previous test. The code that developer writes

should not add any other unpredicted functionality.

4.4 Run All the Tests in Code Base

Once development is done, run all the automated tests in the

code base. If all the tests are passing then develop automated

unit tests for other features of the application and repeat the

same process otherwise implement the code necessary to

make the test pass and run the automated unit test(s).

Finally, once the development of code for the application and

unit testing are done, the developer may restructure the

code for better readability (or) improving the performance.

The advantage of above written unit tests is that whatever

changes the developer may make to the code now, it won’t

affect the existing functionality of the build, as the test cases

written earlier defines the requirement and specifications of

the application.

5. Conclusion

Unit tests isolate each part of the program and check that the

individual parts are correct. Unit testing finds problems

early in the development cycle and hence facilitates changes

required in code. Testing the parts of a program first and

then testing the sum, allows faster integration testing and

progressive documentation which are critical to the success

of the unit. However, considering the variety of testing tools

available and their variable features, it becomes essential

that features of each testing tool are analyzed in detail before

any selection and use. As a future work direction, we plan to

apply mutation testing and analysis to the test suites

generative by our tool to assess their fault detection

effectiveness and to compare that effectiveness with those of

the test suites generated by other comparable tools. We also

plan to compare the effort and time spent in using those

tools. Also, the execution time of our tool to automatically

generate test case code is very fast, and we plan to compare

the associated efficiency to manual coding when our tool is

used in large-scale projects. (10)

References

[1] Aswatha Kumar M. et al. (Eds.): Proceedings of ICAdC,

AISC 174, pp. 813–822. springerlink.com ©

springer India 2013)

[2] Software testing fundamentals.com/ unit-

testing/(ISTQB)

[3] Andrew Patterson; Faculty of Information Technology;

Monash University; Australia; Introducing Unit Testing

With BlueJ,ajp@infotech. monash.edu.au

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Reference Paper ID – IJTSRD21458 | Volume – 3 | Issue – 2 | Jan-Feb 2019 Page: 640

[4] Kolawa, Adam; Huizinga, Dorota (2007). Automated

Defect Prevention: Best Practices in Software

Management. Wiley-IEEE Computer Society Press.

p. 75. ISBN 0-470-04212-5.)

[5] johnr@infotech.monash.edu.au//

[6] https://apiumhub.com/tech-blog-barcelona/top-benefits-

of-unit-testing/

[7] By Ekaterina Novoseltseva; Jan. 18, 17 · DevOps Zone;

http://crestechglobal.com/the-importance-of-unit-

testing-in-software-testing/

[8] By Arvind Rongala, Manager, Business Development and

Marketing, Invensis Technologies) ;March 28, 2015

[9] A.N. Seshu Kumar and S. Vasavi; Effective Unit Testing

Framework for Automation of Windows Applications;

V.R. Siddhartha Engineering College, Vijayawada

{seshu1203, vasavi.movva} @gmail.com

[10] Christian Wiederseiner1, Shahnewaz A. Jolly1, Vahid

Garousi1, and Matt M. skandar; An Open-Source Tool for

Automated Generation of Black-Box xUnit Test Code and

Its Industrial Evaluation; Software Quality Engineering

Research Group (SoftQual), University of Calgary,

Canada; MR Control Systems International Inc., Calgary,

Canada, {christian. wiederseiner, sajolly,vgarousi}

@ucalgary .ca,matt. eskandar@mrcsi.com)

