Bacopa Monnieri - A Review

Dr. Siva Rami Reddy E

Faculty of Homoeopathy, Tantia University, Sri Ganganagar, Rajasthan, India

ABSTRACT

In recent times, the use of herbal products has increased enormously across the globe. Numerous natural products such as those isolated from plants have been evaluated as therapeutics for the treatment of variety of diseases. *Bacopa monnieri* also referred to as water hyssop and "Brahmi," has been used in the Indian system of medicine since time immemorial. It belongs to the family Scrophulariaceae and is an annual creeping plant found in wet, damp, and marshy areas. Phytochemical analysis of *Bacopa monnieri* extracts revealed the presence of various biochemical compounds such as alkaloids, bacosides, flavonoids, glycosides, triterpenoids and saponins etc. The major therapeutic chemical constituents of this plant identified through various researches are the triterpenoids saponins, bacosides. Bacoside A has been recognized as the chief component responsible for therapeutic effects. *Bacopa monnieri* is conventionally used for diverse ailments, but is best known as memory enhancer. A vast range of studies using methanolic and ethanolic extracts of *Bacopa monnieri* appears to demonstrate low toxicity in various rat, mice models including humans however, long term studies of toxicity in humans still need to study in great details. This review focuses on the studies that have traced both pharmacological and phytochemical properties of plant *Bacopa monnieri* covering wide range of its effect on antidepression, anti epileptic, anti oxidative amongst many others which can surely help in betterment of mankind.

KEYWORDS: Bacopa monnieri, Pharmacological study

INTRODUCTION

Bacopa Monniera (L.) Pennell is a plant of scrofulariaceae family that is commonly known as Brahmi, thyme leafed gratiola, water hyssop, herb of grace, Indian pennywort. Bacopa has been used in traditional Ayurvedic treatment for epilepsy and asthma¹. It is one of the ingredients of many Ayurvedic formulations used for ulcers, tumors, ascitis, spleenomegaly, inflammatory disorders, leprosy, anemia and arc gastroenteritis. Brahmi is also the name given to Centella asiatica, particularly in North India and Kerala where it is also identified in Malayalam as muttil or kodakan. This identification of brahmi as Centella asiatica has been in use for long in northern India, as Hemadri's Commentary on Astanghridya treats mandukparni (Centella asiatica) as a synonym of brahmi,²⁻⁴ although that may be a case of mistaken identification that was introduced during the 16th century⁵. Bacopa monnieri was initially described around the 6th century A.D. in texts such as the Charaka Samhita, Atharva Veda, and Sushruta Samhita as a medhya rasayana class herb taken to sharpen intellect and attenuate mental deficits. Ancient Vedic scholars to memorize lengthy sacred hymns and scriptures allegedly used the herb. Traditionally it is known as Soumya, Divyateja, Mahousadhi, Kapotavega, Brahmasuvarcala, Sarasvati, Soma, Satyahva, Divya, Kapotavitaka, Munika, Lavanya, Somavallari, Kapotavanka, Somavalli, Surasrestha, Suvarcala, Vaidhatri, Svayambhuvi, Somalata, Surejya, Matsyaksi, Surasa, Medhya, Vira, Bharati, Vera, Paramesthini, Saradi, Brahmacharini, Chaidhatri, vallari. Acharya Charaka described this plant under Balya, Prajasthapana mahakashya, ⁶ while Bavprakasha mentioned it in Guduchiadi gana.7

It is a scattering, evergreen, fleshy herb. Its branches multiply on moist ground and forms dense pad. Roots are found growing at nodes. The leaves are small, club shaped, stalk less, and fleshy which is bitter in taste. The long stalk flowers are found single at the axis of the leaves. Flowers are pale blue or whitish, axillary, solitary, arranged on long slender pedicels. Fruits are ovoid, acute, 2-celled, 2-valved capsules and tipped with style base. Seeds are minute and numerous.⁸

Bacopa monnieri contains compounds as dammarane-type triterpenoid saponins that known as bacosides, with jujubogenin or pseudo-jujubogenin moieties as aglycone units⁹. Bacosides comprise a family of 12 known analogs ¹⁰, other saponins called bacopasides I-XII have been identified more recently¹¹. The alkaloids brahmine, nicotine, and herpestine have been catalogued, along with D-mannitol, apigenin, hersaponin, monnierasides I-III, cucurbitacin and plantainoside B¹²⁻¹⁴. The constituent most studied has been bacoside A that was found to be a blend of bacoside A3, bacopacide II, bacopasaponin C, and a jujubogenin isomer of bacosaponin C¹⁵.These assays have conducted using whole plant extract and bacoside concentrations may vary depending upon the extracted part. In one Bacopa monnieri sample, Rastogi et al. found this bacoside profilebacopaside I (5.37%), bacoside A3 (5.59%), bacopaside II (6.9%), bacopasaponin C isomer (7.08%), and bacopasaponin C (4.18%)^{16, 17}.

(I) Flower

(II) Dry leafs

(III) Powder formation of brahmi

The plant belongs to Kingdom – Plantae, Division – Angiospermae, Class – Dicotyledonae, Subclass – Gamopetalae, Series – Bicarpellatae, Order – Personale, Family – Scrophulariaceae, Genus – *Bacopa* and Species – *monnieri.* Genus *Bacopa* comprises of 146 species of aquatic herbs distributed throughout the warmer regions of the world¹⁸. Apart from India, Nepal, Sri Lanka, China, Taiwan and Vietnam, it is also found in Florida and other southern states of USA. In United States, the herbs are recognized as weeds in rice fields and found growing abundantly in marshes and wetlands of warmer regions. In India, it grows in damp, marshy places and on the banks of slow flowing rivers and lakes, ascending up to an attitude of 1,320 m.¹⁹

Botanical Description

Bacopa monnieri is a small creeping, spreading, succulent herb with numerous branches and small fleshy, oblong leaves. Flowers and fruits appear in summer and the whole plant is medicinally important. The salient botanical features are: Stem - prostrate, (sub) succulent, herbaceous; Leaves decussate, simple, oblong, 1 × 0.4 cm, succulent, punctate, penninerved, margin entire, apex obtuse, sessile; Flower(s) axillary, solitary, bracteate, linear, purple, pink or white in colour; Calyx - 5 lobes (unequal); outer 2 lobes larger, oval, 7 × 3.5 mm; inner 2 lobes linear, 5.5 × 0.7 mm; median 1 lobe oblong, 5.5×2 mm, imbricate, (sub) succulent, punctuate, obtuse, acute; Corolla - white with violet and green bands inside the throat, 0.8 cm across, 5 mm tube; 5 lobes, obscurely 2-lipped, obtuse or emarginated; Stamens - 4, didynamous; filament pairs 1 and 2.5 mm anthers oblong, contiguous, 1.5 mm; Ovary - oblong-globose, 2 mm; style slightly deflexed, 5.5 mm; Stigma - flat capsule, oblongglobose, 5×2.5 cm septicidal or locilicidal or 4 valved; Seed oblong, testa striate; Fruit - small, capsule form, less than 0.5 inch in length.20

Pharmacological Studies

Compounds responsible for the pharmacological effects of Bacopa monnieri include alkaloids, saponins and sterols. Detailed investigations first reported the isolation of the alkaloid 'brahmine' from Bacopa monnieri 21. Later, other alkaloids like nicotine and herpestine have also been reported²². Subsequently, the isolation of D-mannitol and a saponin, hersaponin and potassium salts was reported²³. The major chemical entity shown to be responsible for neuropharmacological effects and the nootropic action or antiamnestic effect of BM is bacoside A, assigned as 3-(a-Larabinopyranosyl)-O-b-D-glucopyranoside-10, 20 dihydroxy- 16-keto-dammar- 24-ene²⁴, Bacoside A usually co-occurs with bacoside B; the latter differing only in optical rotation and probably an artefact produced during the process of isolating bacoside A25. On acid hydrolysis, bacosides yield a mixture of aglycones, bacogenin A1, A2, A3,26-28 which are artefacts, and two genuine sapogenins, jujubogenin and pseudojujubogenin and bacogenin, A4, identified as ebelin lactone pseudojujubogenin, were isolated.²⁹ Successively, a minor saponin bacoside A1 and a new triperpenoid saponin, bacoside A3, were isolated. Later, three new dammarane type triterpenoid saponins of biological interest, bacopasaponins A, B and C, pseudojujubogenin were isolated and a new dammaranetype pseudojujubogenin glycoside, bacopasaponin D, were identified by spectroscopic and chemical transformation methods ³⁰. In view of the increasing interest in this herbal plant, yet two new pseudojujubogenin glycosides designated as bacopaside I and II were isolated from glycosidic fraction of the methanol³¹.Subsequently, three new saponins from BM, designated as bacopasides III, IV and V were isolated³².In addition, the isolation of three new phenylethnoid glycosides, viz. monnierasides I-III along with the known analogue plantainoside B was reported from the glycosidic fraction of Bacopa monnieri ³³. Moreover, an isolation of a new saponin, a jujubogenin, named bacopasaponin G, and a new glycoside, phenylethyl alcohol was also reported³⁴⁻³⁶.

Central Nervous System: Memory enhancement:

Behavioral studies in animals have shown that Bacopa improves motor learning, acquisition and retention, and delay extinction of newly acquired behavior³⁷. The methanol extract and different fractions of B. monniera were evaluated for antidepressant activity in the forced swimming test (FST) and tail suspension test (TST) in mice. The results showed that the methanol extract, ethanol and butanol fraction significantly reduced the immobility times both in FST and TST in mice after being administrated orally for 5 consecutive days. All tested samples, in the effective doses for FST and TST, showed no inhibitory effect against locomotor activity. (LA) in mice ³⁸. On the other hand, it was found that bacosides facilitates anterograde memory and attenuate anterograde experimental amnesia induced by scopolamine and sodium nitrite possibly by improving the acetylcholine level and hypoxic conditions, respectively. In addition, bacosides also reversed BN52021 (a plateletactivating factor receptor antagonist) induced retrograde amnesia, probably due to increase in platelet activating factor synthesis by enhancing cerebral glutamate level³⁹. Memory deficits following cholinergic blockade by scopolamine were reversed by Bacopa treatment. Bacopa improved memory functioning in cognitively intact cohorts, with Pycnogenol improving working memory

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

Benzodiazepines are known to produce amnesia by the involvement of GABAergic system and by the interference of long term potentiation. The behavioral study showed that Bacopa monniera significantly reversed the diazepam induced amnesia⁴¹. Bacopa administration with phenytoin significantly reversed phenytoin-induced cognitive impairment, as noted by improved acquisition and retention of memory⁴². A clinical trial was carried out to assess the effects of 12 weeks administration of Bacopa monnieri (300mg/day) on memory performance in people over the age of 55- years. Bacopa significantly improved memory acquisition and retention in older persons ⁴³. Significant cognitive enhancing benefits have been demonstrated with chronic administration of Bacopa extracts. A double-blind, placebo-controlled, 12-week trial utilizing the same patient selection criteria and the same dose of Bacopa extract (300 mg daily) containing 55% combined bacosides, was carried out. Forty six healthy volunteers (ages 18-60) were randomly and evenly divided into treatment and placebo groups. The same series of tests administered in the acute dosage trial were administered at baseline, five, and 12 weeks after treatment began. At the end of the 12 week study, results indicated a significant improvement in verbal learning, memory consolidation, and speed of early information processing in the treatment group compared to placebo. These effects were not observed at baseline or at five weeks ⁴⁴.The Bacopa supplement was commercially available as KeenMind (Flordis).

This product is manufactured from the stems, leaves and roots of Bacopa and is extracted with 50% ethanol. It is standardized to contain active bacosides at levels of 55% ± 5%. KeenMin help develop novel preventative health practices and nutritional/pharmacological targets in the elderly for cognitive and brain health. Bacopa appeared to have multiple modes of action in the brain, all of which may be useful in ameliorating cognitive decline in the elderly. These include: (i) direct pro-cholinergic action; (ii) anti oxidant (flavonoid) activity; (iii) metal chelation; (iv) antiinflammatory effects; (v) improved blood circulation; (vi) adaptogenic activity; and (vii) removal of b-amyloid deposits⁴⁵. However, in a double blind randomized, placebo control study performed on 76 adults aged between 40 and 65 years, in which various memory functions were tested and levels of anxiety was measured, the rate of learning was unaffected by Bacopa monnieri suggesting that Bacopa monnieri decreases the rate of forgetting of newly acquired information. Tasks assessing attention, verbal and visual short term memory and the retrieval of pre-experimental knowledge were unaffected. Questionnaire measures of everyday memory function and anxiety levels were also unaffected.46

Anti depression:

Research using a rat model of clinical anxiety demonstrated that a BM extract containing 25% bacoside a exerted anxiolytic activity comparable to lorazepam, a common benzodiazepine anxiolytic drug, and it was attentively noted that the BM extract did not induce amnesia, side effects associated with lorazepam, but instead had a memoryenhancing effect ⁴⁷⁻⁴⁹. The antidepressant potential of BM has been evaluated in an earlier study, wherein it showed a significant antidepressant activity in the most commonly used behaviour paradigms in animal models of depression, namely, forced swim test and learned

helplessness tests. In the study, the BM extract in the dose range of 20-40 mg/kg was given once daily for 5 days and it was found comparable to standard anti depressant drug imipramine in antidepressant activity in rodent animals. The same study has postulated the role of serotonin and GABA (gamma amino butyric acid) in the mechanism of action attributed for its antidepressant action along with its anxiolytic potential, based on the compelling evidence that the symptoms of anxiety and depression overlap each other.⁵⁰

Anti oxidiant:

Antioxidants have been reported to prevent oxidative damage by free radicals that are responsible for number of human disorders such as artherosclerosis, hypertension, arthritis, gastritis, ischemia, Alzheimer's disease, diabetes mellitus and AIDS. Bacosides are reported to scavenge free radicals such as peroxides, superoxides and hydroxyl radicals.

Antioxidant activity of alcoholic and hexane extract of B. monnieri on lipid peroxidation by ferrous sulphate and cumene hydroperoxide in rat liver homogenate is documented. Based on animal studies, bacosides were shown to have antioxidant activity in the hippocampus, frontal cortex and striatum and found to modulate the expression of certain enzymes involved in generation and scavenging of reactive oxygen species in the brain and demonstrated that Bacoside A3 in the hydroalcoholic extract of the whole plant exhibited an inhibitory effect on superoxides released from polymorphonuclear cells in a nitroblue tetrazolium assay. Sumathy investigated the hepatoprotective activity of its alcoholic extract, administered orally, on the liver antioxidant status of morphine-treated rats. The same research group (Sumathy) reported the protective effect of the plant extract on morphine-decreased brain mitochondrial enzyme activity in rats.

Russo showed the protective role of methanolic extract against the toxicity induced by the NO donor (S-nitroso-Nacetyl-penicillamine, SNAP) in culture of rat astrocytes, consequently preventing DNA damage. The neuroprotective effect of the herb against aluminium induced oxidative stress in the hippocampus of rat brain has also been proved by Janani. Sharan reported the free radical scavenging activity of the methanolic extract of the plant provided protection against DNA damage in human non-immortalized fibroblasts.^{51,52}

Anti Epileptic:

Khan reported the neuroprotective role of BM extract in epileptic rats. The experiment showed the glutamate mediated excitotoxicity occurring during seizures and cognitive damage along with pilocarpine induced epilepsy. The study also involved morris water maze experiment. A clinical study by Dhanasekaran ⁵³ reported the effectiveness of alcoholic extract of *Bacopa monnieri* in decreasing symptoms of epileptic seizures. Mathew in another experiment investigated temporal lobe epilepsy, a common epileptic syndrome. The effect of *Bacopa monnieri* on Gamma amino butyric acid (GABA) binding and gene expression was reported in cerebral cortex region of epileptic rats. BM and bacoside-A treatment showed therapeutic effect in this study ^{54,55}.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

Dosage:

Daily doses of Bacopa are 5-10 g of non standardized powder, 8-16 mL of infusion, and 30 mL daily of syrup. Dosages of a 1:2 fluid extract are 5-12 mL per day for adults and 2.5-6 mL per day for children ages 6-12. For Bacopa extracts standardized to 20-percent bacosides A and B, the dosage is 200-400 mg daily in divided doses for adults, and 100-200 mg daily in divided doses for childrens.

Conclusion

It is concluded by above literature that Bacopa Monniera (L.) Pennell (Brahmi) is highly potential medicinal plant that is using in Ayurveda since a long time. Lots of experimental & clinical trial certifies its ancient claims of its therapeutic values on cognition, learning disorders, epileptic seizures, memory, free radical scavenger activity, anxiety, depression, thyroid gland and carcinogenic activity. However, numbers of research are required in future to validate its effectiveness in various disorders.

References

- [1] Rajani, M.; et al. (2004). Ramawat, K. G., ed. Biotechnology of Medicinal Plants: Vitalizer and Therapeutic. Enfield, NH: Science Publishers.
- [2] Warrier, P. K.; Nambiar, V. P. K.; Ramankutty, C.; Ramankutty, R. Vasudevan Nair (1996).
- [3] Indian Medicinal Plants: A Compendium of 500 Species. Orient Blackswan. p. 238. ISBN 978-81-250-0301-4
- [4] Daniel, M. (2005). Medicinal Plants: Chemistry and 57808-395-4.
- [5] Khare, C. P. (2003). Indian Herbal Remedies: Rational Western Therapy, Ayurvedic, and Other Traditional Usage, Botany. Springer. p. 89. ISBN 978-3-540-01026-5.
- [6] Charaka samhita, Part-1 (Vidyotini Hindi commentary),2456-6 Kashinath Shastri, Gorakhnatha Chaturvedi, 1st ed., Chaukhambha Bharati Academy, Varanasi, 1996, Sutra [24] Singh HK, Rastogi RP, Srimal RC, Dhawan BN. Effect of sthana 4/7, p. 49.
- [7] Chunakar KC, Bhavprakasha Nighuntu. 1st ed., Chaukhambha Bharati Academy, Varanasi, 2004, p.280-81.
- [8] Warrier, P. K., Nambiar, V. P. K. and Ramankutty, C. 1993-1995. Indian Medicinal Plants. Vol. 1-5. Orient Longman Ltd., Madras
- [9] Sivaramakrishna, C; Rao, CV; Trimurtulu, G; Vanisree, M; Subbaraju, GV (2005). "Triterpenoid glycosides from Bacopa monnieri". Phytochemistry 66: 2719-2728
- [10] Garai, S; Mahato, SB; Ohtani, K; Yamasaki, K (2009). "Dammarane triterpenoid saponins from Bacopa monnieri". Can J Chem 87: 1230-1234.
- [11] Chakravarty, A.K; Garai, S.; Masuda, K; Nakane, T; Kawahara, N. (2003). "Bacopasides III-V: Three new triterpenoid glycosides from Bacopa monniera". Chem Pharm Bull 51: 215-217.
- [12] Chatterji, N; Rastogi, RP; Dhar, ML (1965). "Chemical examination of Bacopa Monniera (L.) Pennell Wettst: Part II—Isolation of chemical constituents". Ind J Chem 3:24-29.
- [13] Chakravarty, AK; Sarkar, T; Nakane, T; Kawahara, N; Masuda, K (2008). "New phenylethanoid glycosides

from Bacopa monniera". Chem Pharm Bull 50: 1616-1618.

- [14] Bhandari P, Kumar N, Singh B, Kaul VK. Cucurbitacins from Bacopa monnieri. Phytochemistry 2007.
- [15] Deepak, M; Sangli, GK; Arun, PC; Amit, A (2005). "Quantitative determination of the major saponin mixture bacoside A in Bacopa monnieri by HPLC". Phytochem Anal 16: 24-29.
- [16] Rastogi, M; Ojha, R; Prabu, PC; Devi, DP; Agrawal, A; Dubey, GP (2012). "Amelioration of age associated neuroinflammation on long term bacosides treatment". Neurochem Res 37: 869-874.
- [17] Neeta, harish kumar,anil (2016). A critical review on brahmi. Eur J Pha Med Res;3(8):270-276.
- [18] Russo, borrelli (2005). Bacopa monniera, a reputed nootropic plant: an overview. Pht; 12(4):305-17.
- [19] Thomas (2013). Neuropharmacological Review of the Nootropic Herb Bacopa monnieri. Rej Res; 16(4): 313-326.
- [20] Singh HK, Dhawan BN, Tandon PN, Bijlani V, Wadhwa A (Eds.) : 1992. Drugs affecting learning and memory.Lectures in Neurobiology, New Delhi, Wile Kastern, 189-202.
- [21] Chakravarty AK, Sarkar T, Nakane T, Kawahara N, Masuda K. New phenylethanoid glycosides from Bacopa monniera. Chem Pharm Bull 2002;50:1616-8.
- Properties. Science Publishers. p. 225. ISBN 978-1-on [22] Hou CC, Lin SJ, Cheng JT, Hsu FL. Bacopaside III, bacopasaponin G, and bacopasides A, B, and C from of Trend in Sci Bacopa monniera.] Nat Prod 2002;65:1759-63.
 - [23] Deepak M. The need for establishing identities of bacoside A and B? The putative major bioactive saponing of Indian medicinal plant. Phytomed 2003;11:264-8.
 - bacosides A and B on avoidance responses in rats. Phytother Res 1988; 2:70-5.
 - [25] Singh HK, Dhawan BN. Neuropsychopharmacological effects of the Ayurvedic nootropic Bacopa monniera Linn. (Brahmi). Ind J Pharmacol 1997; 29:S359-S65.
 - [26] Malhotra CK, Das PK. Pharmacological studies of Herpestis monniera Linn (Brahmi). Ind J Med Res 1959; 47:294-305.
 - [27] Aithal HN, Sirsi M. Pharmacological investigation on Herpestis monniera. Ind J Pharmacy 1961; 23:2-5.
 - [28] Prakash JC, Sirsi M. Comparative study of the effects of brahmi (Bacopa monniera) and chlorpromazine on learning in rats. J Sci Indust Res 1962; 21:93-6.
 - [29] Sinha MM. Some empirical behavioural data indicative of concomitant biochemical reactions. Proceeds Ind. Sci. Congress Part II, Bangalore: 1971. p. 1-26.
 - [30] Bhattacharya SK, Kumar A, Ghosal S. Effect of Bacopa monniera on animal models of Alzheimer's disease and perturbed central cholinergic markers of cognition in rats. In: DV Siva Sankar, editors. Molecular Aspects of Asian Medicines. New York: PJD Publications; 1999. p. 27-58.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

- [31] Singh HK, Dhawan BN. Effect of Bacopa monnieri Linn. (Brahmi) extract on avoidance responses in rat.] Ethnopharmacol 1982; 5:205-8.
- [32] Singh HK, Rastogi RP, Srimal RC, Dhawan BN. Effect of bacosides A and B on avoidance responses in rats. Phytother Res 1988; 2:70-5.
- [33] Sairam K, Rao CV, Babu MD, Goel RK. Prophylactic and curative effects of Bacopa monniera in gastric ulcer models. Phytomed 2001; 8:423-30.
- [34] Bhattacharya SK, Ghosal S. Anxiolytic activity of a standardized extract of Bacopa monniera: an experimental study. Phytomed 1998; 5:77-82.
- [35] Shankar G, Singh HK. Anxiolytic profile of standardized brahmi extract. Ind J Pharmacol 2000; 32:152.
- [36] Sairam K, Dorababu M, Goel RK, Bhattacharya SK. Antidepressant activity of standardized extract of Bacopa monniera in experimental models of depression in rats. Phytomed 2002; 9:207-11.
- [37] Singh ΗK and Dharwan BN. Neuropsychopharmacological effects of the Ayurvedic nootropic Bacopa monniera Linn (Brahmi). Indian Journal of Pharmacology 1997; 29:S359-S365.
- WD. Antidepressant effects of methanol extract and fractions of Bacopa monnieri. Pharmaceutical Biology 2009; 47(4) :340-343.
- [39] Kishore K and Singh M. Effect of bacosides, alcoholic extract of Bacopa monniera Linn. (brahmi), on experimental amnesia in mice. Indian J Exp Biol 2005; In Sci Part II. Ind J Exp Biol 1969; 7:250-62. 43(7): 640-645.
- [40] Ryan J, Croft K, Mori T, Wesnes K, Spong J, Downey Le Comme the Medyha Rasayana drug, Brahmi (Bacopa monniera Kure C, Lloyd J and Stough C. An examination of the effects of the antioxidant Pycnogenol® on cognitive performance, serum lipid profile, endocrinological and oxidative stress biomarkers in an elderly population. Journal of Psychopharmacology 2008; 22(5):553-562.
- [41] Saraf MK, Prabhakar S, Pandhi P and Anand A. Bacopa monniera ameliorates amnesic effects of diazepam qualifying behavioural-molecula partitioning. Neuroscience 2008; 155(2): 476-484.
- [42] Vohora D, Pal SN and Pillai KK. Protection from phenytoin-induced cognitive deficit by Bacopa monniera, a reputed Indian nootropic plant. J Ethnopharmacol 2000; 71:383-390.
- [43] Morgan A, and Stevens J. Does Bacopa monnieri improve memory performance in older persons? Results of a randomized, placebo-controlled, double-blind trial. The Journal of Alternative and Complementary Medicine 2010; 16(7):753-759.

- [44] Stough C, Lloyd J, Clarke J, et al. The chronic effects of an extract of Bacopa monniera (Brahmi) on cognitive healthy function in human subjects. Psychopharmacology 2001; 156:481-484.
- [45] Stough CK, Pase MP, Cropley V, Myers S. A randomized controlled trial investigating the effect of Pycnogenol and Bacopa CDRI08 herbal medicines on cognitive, cardiovascular, and biochemical functioning in cognitively healthy elderly people: The Australian Research Council Longevity Intervention (ARCLI) study protocol (ANZCTR12611000487910). Nutrition Journal 2012; 11(11): 2-9.
- [46] Roodenrys S, Booth D, Bulzomi S, Phipps A, Micallef C, and Smoker J. Chronic effects of Brahmi (Bacopa monnieri) human memory. on Neuropsychopharmacology 2002; 27(2): 279-281.
- [47] Bafna PA, Balaraman R. Antioxidant activity of DHC-1, an herbal formulation, in experimentally-induced cardiac and renal damage. Phytother Res 2005; 19:216-21.
- [48] Sumathy T, Govindasamy S, Balakrishna K, Veluchamy G. Protective role of Bacopa monniera on morphineinduced brain mitochondrial enzyme activity in rats. Fitoterapia 2002; 73:381-5.
- [38] ShenYH, ZhouY, Zhang C, Liu RH, Su J, Liu XH and Zhang [49] Pawar R, Gopalakrishnan C, Bhutani KK. Dammarane triterpene saponin from Bacopa monniera as the superoxide inhibitor in polymorphonuclear cells. Planta Med 2001; 67:752-4.

[50] Bhakuni DS, Dhar ML, Dhar MM, Dhawan BN, Mehrotra BN. Screening of Indian plants for biological activity:

- Resear [51] Singh RH, Singh L. Studies on the anti-anxiety effect of Wettst.) - Part 1. J Res Ayur Siddha 1980; 1:133-48.
 - [52] Calabrese C, Gregory WL, Leo M, Kraemer D, Bone K, Oken B. Effects of a standardized Bacopa monnieri extract on cognitive Performance, anxiety, and depression in the Elderly: A randomized, double-Blind, placebo-controlled trial. J Alt Comp Med 2008; 14:707-13.
 - [53] Dhanasekaran M, Tharakan B, Holcomb LA, Hitt AR, Young KA, Manyam BV (2007) Neuroprotective mechanisms of ayurvedic antidementia botanical Bacopa monnieri, Phytotherapy Res 21: 965-969.
 - [54] D'Souza P, Deepak M, Rani P, Kadamboor S, Mathew A (2002) Chandrashekar AP, Agarwal A, Brine shrimp lethality assay of Bacopa monnieri. Phytotherapy Res 16: 197-198.
 - [55] Khan AV, Ahmed QU (2010) Antibacterial efficacy of Bacopa monnieri leaf extracts against pathogenic bacteria. Asian Biomed 4: 651-655.