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ABSTRACT

In this paper, the robustabilization for a class
uncertain nonlinear systems is investigated. Base
the Lyapunovike approach with differentie
inequalities, a simple linear static control isepéfd to
realize the global exponential stability of st
uncertain  nonlinear systems. Meanwhile, tf
guaranteed exponential convergence rate cal
correctly estimated. Finally, some numeri
simulations are given to demonstrate the feagjt
and effectiveness of the obtained res
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1. INTRODUCTION

Control design with implementatic.of uncertain
nonlinear dynamical systems is one of the r
challenging areas in systems and control thelt is
well known that uncertainties ana@miinearitie: often
appear in various physical systemad dl physical
systems are essentially nonlinéamature Nonlinear
control has been active for many years, and n
results concerning with nonlinear control have t
proposed. ldwever, it is still difficult to implemer
nonlinear controllers for practical syste

Recently, there have several we-developed
techniques and methodologis analyzinguncertain
nonlinear systems, such as bastkpping approa,
fuzzy adaptive contd approach, feedback
linearization, Hinfinity control approach, sliding
mode controlmethodology, LMI approacksingular
perturbation methqd Lyapunov approachRiccati
equation approacheater manifold theore, adaptive
sliding mode control, adaptive fuzmyeura-network,
and others; see, for example, [[Letd the reference
therein.

In this paperthe stabilizability for a class of uncert:
nonlinear systems will been conside. Based on the
Lyapunoe-likeapproach with differential inequality,
linear static control will besstablishe to realize the
global exponential stabilitgf suchuncertain systems.
Moreover, the guaranteed exponential converge
rate can be arrectly calculatd. Several numerical
simulations will also be provided to illuate the use
of the main results.

The layout of the rest of this paper is organizs
follows. The problem formulation, main result, a
controller design are presented in Section In
Section. 3 numerical simulations with  circuit
realization are givenotillustrate the effectiveness
the developed result&inally, some conclusions are
drawn in Section 4ln what follows, 0" denotes the
n-dimensional real spacély| denotes the Euclidean

norm of the vectorxDO", |4 denotes the absolute

value of a real number a, a A" denotes the transport
of the matrixA.

2. PROBLEM FORMULATION AND MAIN
RESULTS

In this paper, we exploréhe following uncertain

nonlinear systems:

% =Dax, +08,X, + Mg, +Aa,xx,  (la)

X, = DagX +DagX, +Aa X + AggX,

(1b)

+AayXX; + Aay Ly,
X3 = Day,X, + AapX; — AdgX X, (1C)
X, = Day X% +Aay X, —Aa,x X, +AayU,, (1d)
[x(0) %(0) x(0) xOJ (le)

=[X10 Xa0 %30 X4o]T’
where x({t)=[x({t) %) xt) ()] 00* is the state
vector, u(t)=[u(t) u,(t)] 00? is the system control,
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[ %o %o Xof IS the initial value, and with §,>0 and 4,>0. In this case, the guaranteed
Na,0i0{12---18 indicate uncertaiparameters of th exponential convergence rasegiven by
system. The hypethaotic Pan syste is a special . min{%, 5, "2z 52}_ 3)

case of systems (1) withut)=0, Aa,=-Aa =10, 2

Nag =28, Da, =-Da, =1 , Aa, =—2 |, day, =-10, and Proof. Let

e T Vx)=x )+ 6 )+ 60+ xt). (4

Ba =0, 0i0{ 346710111315 . The time derivative of/(x(t)) along the trajectories of

the closed-loop systesn(1l) with (2) and (Al), is
The global exponential stabilizatic and the given by
exponential convergencate of the system (1) a v (x(t))
dDee];Iir;l?t?O?IS]fo”OWS. = 2X % F 2%, X, + 2% Xy + 2%, X,
The uncertain systems (1) asaid to beglobally
exponentially stable if there exist a contiu and

positive numbew satisfying +8ay%% = 02,k
Ixt) < |x0) =, Dtzo0. +2x,(D,%, + Day,x; ~ A2, x,)

In this case, the positive number is called the +%X42(A313)9+Aa“x2_Aa4xlx3_A315k2X4)

exponential convergence rate. < 2a,x] + 205 3] + 204, |x,] +202,%%,,
- P 2]+ 20+ 20+ 20

The aim of this paper is to findsimple linearstatic  , 5ng x  x ~2a_Kkx2

control such that the global exponential stezation 9

of uncertain systems(l) can be guarantee + 2y, x| + 28,5 —2Dax, %X,

Meanwhile an estimate of the exponent +2b[xx,|+2b,x[x|-20a,xxx,

convergencerate of such stable systems is ¢ - 2a,,k,x¢

explored.
| =3Bl vh)y
Throughout this paper, we makthe following

assumption: +2(o, + bm]XlIIX4| + 206 +2(b, + by, )%, x|
(A1) There exist constants, and a such that (%+Q4]X2||X4|+2(E+%j><§

= 2X1(Aail.xl +Aayx, + AagX, + Aa4)(3)(4)
+ 2%, (Dagx, +DagX, + Aa,X; + AdgX,

+2
a<ha<g, 0i0{12--18, with h:=maxﬂa|,‘i‘},
a >0, 0i0{10,18 anda <o, 0i0{112.

{ 3o, +h)* |, = (b, + qJ+Q+5+qﬁ
43, 23, el

Now we present the main result fthe globally —Z{_g(tkfb”) +(b8+b14) +521xf

exponential stabilization afincertain systems (1) v 4

Lyapunov-like theorem withthe differential anc :—ijf—(b N M= L -3(b, +b,) }

integral inequalities. 3 2 2 43,

Theorem 1 M ~ 3, +by,) 2}

- +
The uncertain systems (dyith (Al) realize the ~3 ale—(b3+b13]>&||x4|+TX4
globally exponential stabilizatiorunder the linear -

l\)
l\).p 0-’|
N

static control - X2 = (b, + by, Jo ] + —(o +by,f }
u= [ul Uz]T = [_ ko - k2X4]T , (2a) - %z
where EERCECVANELT RS

1
k >—x -

doen) e, (20) ) o

-3b+b ) -brb) L, s @, i

{ 4a * 2a, hrar < —2(%))(12 - 2(_7612]&2 - 20X —25,%;
k, Zi{_g(birb”)z o ot b) +52} (2c) < —2(0’)(12 +axg + o +ax§)

s 2 4 = -2V, 0Ot=0
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Hence, one has
eIV +e* RaV = %[ez‘”t m/]
<0, Ot=0.
It results
{
E[%[ez‘” v(x(t))]ar
= e W(x{t)-V(x(0)

(5)

t
stdr:o, Ot>0.
0

From (4) and (5), it follows
X)) = Vv (x(t)) < eV (x(0))
=e|x0)", Dt=0
As a consequence, we conclude tha:
[x(t)|<e|x(), Tt=o.
This completes the proof. o

3. NUMERICAL SIMULATIONS
Consider the uncertain systems (1) v-::::

-11<Aa <-10, 9<Aa, <10, (6a)
27<Na;<28 0<lha <], (6b)
-1<Aay <1, —3sAa125%8, (6¢)
-10<Aa,<-9, 1<ha,la,<2,  (6d)
Na, =0, 0i0f{ 34671113 . (6e)

By comparing (Al) and (6)with
parameters of

(51’ a, a,, %): [_1011. _?8 ,lj.

(b, by, b;, by, by) = (1028,000),
(bs. by, by, by,) = (00110),

selecting the

(A1) is evidently satisfiedWith the choiceg, =4, =1
in (2), it can be obtained that
Uz[ul Uz]Tz[_lllxz _32X4]T- (7

As a consequence, by Theoremwke conclude the
the uncertain systems (1) with )(Gre globally
exponentially stable under the linestatic control of
(7). Besides, from (3), thguaranteed exponent
convergence rate is given hy=1. The typical tate
trajectories of the uncontrolledsystem and th
feedbackeontrolled system are depicted in ure 1
and Figure 2, respectivelyn addition, the control
signals and the electronic circuit to realize sucl
control law are depicted in Figure &d Figure 4,
respectively.

4. CONCLUSION

In this paper, the robust stabilization for a clas:

uncertain nonlinear systerhas been explor. Based

on the Lyapunov-likeapproac with differential

inequalities, a simpldinear static control has been
presentedo realize the global exponential stability

such uncertain nonlineasystems. Meanwhile, the

guaranteed exponential convergence rate cal

correctly calculated. Finally, some numerice

simulations have been offerecco demonstrate the
feasibility and &ectiveness of the obtained rest
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Figure 1: Typical state trajectories of the system
with (6) andu=0.
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Figure 2: Typical state trajectoried the feedbac-
controlled system of (1) with (&nd (7.
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Figure 3: Control signal<of u,(t) andu,ft).
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Figure 4: The diagram of implementation
controller, whereRL=R3=1kQ, R2=111kQ, and

R4 =32kQ.
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