
International Journal of Trend in Scientific Research and Development (IJTSRD)

Volume: 3 | Issue: 2 | Jan-Feb 2019 Available Online: www.ijtsrd.com e-ISSN: 2456 - 6470

@ IJTSRD | Unique Reference Paper ID – IJTSRD19045 | Volume – 3 | Issue – 2 | Jan-Feb 2019 Page: 1063

A Complete Reference for Informatica Power Center ETL Tool

Abhishek Gupta

Associate Projects, Cognizant Technology Solutions, Chennai, Tamil Nadu, India

ABSTRACT
today we are living in the world of data science, where we have to handle bulk amount of data to run any organization. To
accomplish the goal of any organization it’s mandatory to take right decision at the right time. For this data is maintained in the
form of data ware housing and for the extract, transform and load majorly informatics power center tool is used by
organization. So in this paper we have shared the complete informatics power center logics, that will be useful not only for
organization’s but also be useful for data scientists as a complete reference.

Keywords: debugger, performance tuning, udf

INTRODUCTION
INFORMATICA – the most recent Informatica tool is 10.1

1. Active and Passive transformations –
Active transformations are those transformations which
have following things –
1. Number of incoming and outgoing rows are different.
2. Change in the row type. Eg. Update strategy.
3. Change in the transaction boundaries. Eg. Transaction

control.

Else it’s passive transformation.

2. Connected and un-connected transformations –
if the transformations are connected within pipeline then
connected else it’s un-connected transformation.

3. Load types in database -
In database the loading can be done through two types
which are – normal load and bulk load (with indexing and
without indexing).

4. Debugger –

To see how data is moving from source to target, it’s
required. Debugger has two windows which are – target
window and instance window.

How to use debugger –

1. Press f9 – debugger starts.
2. choose any one session out of three sessions– i.s. to use

=>
3. Use an existing session instance.
4. Use an existing reusable session.
5. Create a session debug instance.

Discard target data – if checked no data will go to the target.

Mapping => debugger => next instance

You can use edit break point option of the debugger. If
breakpoint = true, i.s. pauses run of debugger. You can
review and modify the transformation data and continue the
session.

Debugger has three states – initializing, running, paused.

5. Mapplet –

Goto mapplet designer and create mapplet. Mapplet should
get i/p from source definition or i/p transformation similarly
it must give o/p to the o/p transformation, traditional target.
Source will be one output can be multiple. It can be drag and
drop. It can be expanded or un-expanded. Changes done in
mapplet inherited by mapping.

Un-supported repository objects –
1. Cobol source definition.
2. Joiner, normalizer transformations
3. Non-reusable seq generator.
4. Pre and post session stored procedure.
5. Target definition
6. Xml source definition

If you are using stored procedure transformation, configure
it to normal.

6. UDF –

To create complex functions using builtin functions. This can
be used in multiple mappings after creation.

There are two of UDF –

1. private (can be used by all users’ in repo. It can be
transformations, w/fs, link condition and cmd task).

2. public (can be used only inside public udf).

Goto mapping designer => udf folder

Right click on it and click on new and then launch editor
after specific entries and when passed on launch editor it
show expression editor where you can define udf and save it.
Now it’s possible to access it through any expression editor
and can be called as :udf.udf_name(param_list);

Things that are provided in udf are – name, description,
public/private, expression, arguments.
1. private udf can be declared as public udf but public udf

can’t be declared as private udf.
2. nesting of same udf is not possible.

7. Workflow Basics –

Workflow executions can be done in two ways – 1. Serial
based 2. Event based.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Reference Paper ID – IJTSRD19045 | Volume – 3 | Issue – 2 | Jan-Feb 2019 Page: 1064

In workflow tasks can be placed in serial, parallel, or any
required format. Start task come by default whenever
workflow is created by double click on it we can edit name
and description.

To show always full name of task – tools => options =>
general => show full name of tasks.

Connections are created so that i.s. can read/write data
from/into source or target. Connections that can be created
in w/f are relational, ftp, queue and application.

To create connection –

Connection menu => select connection type => a wizard will
open => new => give credential to connect => close.

Components of w/f manager – task developer, worklet
designer, workflow designer.

Workflow variable –

It’s used to share information between two tasks. For eg. 2nd
session will run only then when 1st session get completed.
Double click on the link and set expression like
$cmd_create_folder.status = succeeded. Next session will run
only then when 1st session get satisfied.

Workflow => edit => variable.

Workflow parameter –

Can be defined in the parameter file and give it’s path to the
workflow.

Workflow => edit => properties => parameter filename
(place full path)

It can be used to define connection for source and target. Eg.
$DBConnection_source place it in the file.

8. Worklet –

Group of tasks, linked with each other. Types – reusable and
non-reusable.

9. Work flow Schedulers –

Can schedule when it should run. Workflow => schedulers
=> new => schedule.
1. run continuously.
2. run on demand.
3. run on i.s. initialization.

Other options (when working with run on i.s. initilization)
for scheduler option
Run once –

1. Start option – start date/start time.
2. For scheduler options –

A. run once
B. run every _days _ hours _ minutes
C. customize repeats – there are so many options.

3. A. End point – end on _ date
B. end after _ runs
C. forever.

Scheduling workflow –

1. Reusable schedulers – control-m
2. Non-Reusable schedulers – defined inside w/f itself.

(conventional w/f)

10. Workflow Wizard –

used to generate scheduled w/f for mapping automatically.
1. workflow => wizard (give name, desc, server) => next
2. select mapping => schedule workflow => next => finish.

11. Stop and Abort –

If a session or w/f is taking much time than usual stop/abort
it to free resources (cpu, memory etc.) to give it to another
process. Stop/Abort can be done in multiple ways – 1. Using
PMCMD command. 2. Using Control task 3. Using workflow
monitor.

Difference between stop and abort –

Stopping the session –
1. stop reading data from source.
2. Wait till rollback complete.
3. Cleans buffer memory, so data remain un-written inn

database.

Aborting the session – it has time out of 60 seconds. If it can’t
finish processing and committing data within timeout period
it kills the dtm process and terminate session. This leaves the
memory block and causes memory issues in server and leads
to poor performance.

12. Concurrent run of workflow –

Say, when processing transactions using w/f, data belonging
to multiple entities (eg. Regions) may be present in different
flat-files and available for processing at the same time. The
usual approach is to process them sequentially by running
same w/f for each flat-file to reduce processing time it’s
required to run a separate instance of w/f for each flat file
concurrently by using concurrent execution feature of the
w/f.

A w/f configured for concurrent execution can run multiple
instances concurrently.
� w/fs => edit => configure concurrent execution _ (click

onn concurrent execution).

In concurrent execution configuration window will chose
any one of below:-
1. allow concurrent run with same instance

name.(different run-ids)
2. allow concurrent run only with unique instance

name.(different instance names).

Add instance name and param file path as many that many
youu want to run parallel.

Eg .
Instance name parameter file
CA_Order $PmSourceFileDir\param_ca.txt
RI_Order $PmSourceFileDir\param_ri.txt

These kind of w/f are called concurrent w/f and run
concurrently.

13. Commit types –

There are 3 types of commits – source based, target based
and user defined.

Target based commit –
1. Commit interval – it’s the interval at which server

commits data to relational target during a session.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Reference Paper ID – IJTSRD19045 | Volume – 3 | Issue – 2 | Jan-Feb 2019 Page: 1065

2. Commit point depends upon buffer block size and
commit interval. Server commits data based on the
number of target rows and key constraints on target
table.

3. during a session, server continues to fill writer buffer
after it reaches the commit interval. When buffer block
is full. Informatica server issues a commit command. As
a result commit point generally exceeds the commit
interval.

4. server commits data to each target based on pk-fk key.
� Session => edit => properties
A. commit type – target/source.
B. commit interval – 10000

5. commit interval depends upon –
A. commit interval
B. writer wait timeout
C. buffer blocks.

6. when you run a target based commit session, i.s. may
issue commit on after or before the configured time
interval. i.s. issues following process to issue commit –
A. i.s. reaches commit interval, still continues to fill the

writer buffer block, after this fills it issues commit
command.

B. if writer buffer block fills before commit interval i.s.
starts to write on target. But it waits to issue
commit, it issues commit when one of the following
condition is true –

I. the writer idle for an amount of time specified by i.s.
‘writer wait timeout’ option.

II. i.s. reaches the commit interval and fills another buffer.
Source based commit –

I. configured as per (iv) above.
II. commit point is the commit interval. Server commits

data based on number of source rows, from active
sources in a single pipeline. A pipeline consists of source
qualifier and all transformations except active
transformation viz filter, router etc. and target.

III. when server runs a session, it identifies active rows for
each pipeline in the mapping. The server generates a
commit row from active source at every commit interval
and when target receives it perform commit.

User Defined Commit –

i.s. commits data based on transactions defined in mapping
properties. you can also commit and rollback options in
sessions.

14. Tracing Level Types –

A. Normal
B. Terse
C. Verbose Initilization
D. Verbose Data

15. Error Handling –

A. Error Handling – when you run a session following
errors can come –

I. fatal exception – stops running workflow. Eg. Db
connection error.

II. non-fatal exception – error that can be ignored by
Informatica power center and cause records to drop out
from target table, otherwise handled in etl logic. Eg. Pk
violation, data conversion error etc.

III. user defined exception – data issues critical to data
quality, which might get loaded to db unless explicitly
checked for data quality.

User defined exception – we can handle this exception using-
I. error handling functions – error, abort.
II. user defined error tables.

Error () – this function causes i.s. to skip a row and issue an
error message, which you define. The error message display
either in session log or written to the error log table based
on error logging type configuration in session. You can use
error () in expression transformation to validate data.
Generally, you use error() within an iif or decode function to
set rules for skipping rows.

Eg. – IIF (trans_date > sysdate, error(‘trans_date invalid));

Abort () – stops the session and issues a specified error
message to session log file or written to error log tables
based on error logging type configuration in the session.

Eg. – IIF (ISNULL (creditcard_number), abort (‘empty credit
card’));

Non-Fatal Exception – helps in capturing errors not
considered during design phase; can be handled using:-
I. default port value setting. Eg. Set default value for nulls.
II. row error logging.
III. error handling settings.

Fatal Exception – can be handled using –

Restartability – ability to restart processes at the step where
it failed as well as ability to restart entire session.
W/f recovery – allows to continue processing workflow and
w/f tasks from the point of interruption. During this process
i.s. access w/f state, that is stored in memory or on disk
based on recovery configuration. The w/f state of operation
includes status of tasks in w/f and w/f variable values.

WorkFlow Recovery –

The configuration includes –

1. w/f configuration for recovery.
2. session and task configuration for recovery.
3. Recovering task from failure.

w/f configuration for recovery =>
workflow => edit => properties

I. Enable HA recovery -__
II. Automatic recovery terminated task - ___
III. Maximum automatic recovery attempts - ___

Enable Recovery – when you enable w/f for recovery, i.s.
saves the w/f state of operation in a shared location. You can
recover w/f if it’s stops, terminates or aborts.

Note – An option HA license is required for this check box to
be available for the selection. w/o HA option w/f must
recover manually either in w/f monitor or using command
line to recover workflow.

Suspend –

I. w/f => Edit => General => Suspend mail
II. ___ suspend on error.

When you configure a w/f to suspend on error the i.s. stores
the w/f state of operation in memory. You can recover
suspended w/f if a task fails. You can fix the task error and
recover the w/f. if w/f is not able to recover automatically

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Reference Paper ID – IJTSRD19045 | Volume – 3 | Issue – 2 | Jan-Feb 2019 Page: 1066

from failure within maximum allowed number of attempts it
goes to suspended state.

Session and Task Configuration for recovery –

Task => edit => Recovery Strategy

In the drop-down menu chose the recovery strategy, for

each task it differs:-

1. Restart Task – available for all tasks.
2. Fail task and continue w/f – session and command tasks

only.
3. Resume from task checkpoint – session task only.

When workflow recovers, it recover tasks and sessions on
the basis of recovery strategy.

When you configure the session recovery strategy to ‘resume
from task checkpoint’, i.s. stores the session state of
operation in the shared location, $PMStorageDir and also it’s
written to the recovery tables to determine from where to
begin loading data to target tables, in case of recovery.

Recovering w/f from failure –

I. Recover automatically – using HA option.
II. Recovering manually – using w/f manager or monitor.

Open w/f manager or monitor – right click and select:-

1. Recover Task. (task level)
2. Recover w/f from task. (task level)
3. Recover Workflow. (workflow level)

Unrecoverable tasks –

1. if session uses non-pass through partitioning.
2. if session uses database partitioning.
3. if you want to debug mapping, you can’t perform

recovery from debugger.
4. If you want to perform test data load. If you enable

recovery, w/f manager disables test data load option.
5. any changes in mapping afterwards.

16. Target Load Plan –

if there are multiple targets then to define which is the load
order of targets.

17. Constraint Based Loading –

if there is constraint based dependency between tables like
pk-fk relationship then first table having pk will loaded then
table having fk will be loaded.

18. Unit testing vs System testing –

unit testing => Integration testing => System testing.

19. Push Down Optimization –

to convert etl logic to the sql and fire it against the database
to improve performance. PDO are of three types – 1. Source
based 2. Target Based 3. Full PDO. Source based means fire
sql against source. Target based means fire sql against target.
A common use case for full pushdown optimization is when
the source and target databases are in the same relational
database management system. For example, configure full
pushdown optimization to push all the transformation logic
from a Teradata source to a Teradata target. When you run a
session configured for full pushdown optimization, the
Integration Service analyzes the mapping from the source to
the target. When the Integration Service reaches a

downstream transformation that it cannot push to the target
database, it generates and executes SQL statements against
the source or target based on the transformation logic that it
can push to the database. Push Down Optimization Viewer is
there to see which transformation will go to source/target.

20. Flat Files –

I. it can be: -
1. delimited flat-file
2. fixed-width flat file

II. Direct and Indirect flat-file: -
you need to declare following things in session, while
working with flat-file –
1. Source file name – file name, being loaded to target.
2. Source file directory – directory name, where file is

resided.
3. Source file type – direct/Indirect.

III. In the indirect loading file path name list is given in the

file and this file path is given in the session, it’s used to
handle say 100 files in source side so it can be used:-

eg. > cat cust_list.dat

$PMSourceFileDir/cust_us.dat

$PMSourceFileDir/cust_uk.dat

$PMSourceFileDir/cust_india.dat

IV. Expression transformation can be used to generate

flag and transaction control transformation to
perform tc_commit_before, tc_commit_after and so
on when to generate files in the target side.

V. whenever cobol file is placed Informatica add
normalizer transformation automatically, If not add
it.

VI. remove duplicates –
I. for relational tables – I) by sql override. II) in S.Q. select

‘distinct’ option.
II. for flat-files or other sources – I) sorter with distinct II)

aggregator with group by funda.

21. Command Line Utility –

Informatica provides four built-in command line programs
or utilities to interact with Informatica features. They are
PMCMD, PMREP, INFACMD and INFASETUP. PM stands for
Power Mart.

1. PMCMD is used to perform following tasks: -

I. Start task
II. Start w/f from specific task.
III. Stop, Abort w/f and sessions.
IV. Schedule the w/f.

2. Common Syntax for PMCMD –

I. PMCMD cmd_name –

service Informatica_integration_service –d domain_name –u
user_name –p password –f folder_name –w workflow_name;

CMD_NAME =>
1. Scheduleworkflow
2. Startworkflow
3. Stopworkflow
4. Abortworkflow

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Reference Paper ID – IJTSRD19045 | Volume – 3 | Issue – 2 | Jan-Feb 2019 Page: 1067

II. Start w/f from specific task –

PMCMD starttask –service Informatica_integration_service –
d domain_name –u user_name –p password –f folder_name –
w workflow_name –startfrom task_name;

iii. Abort task –

PMCMD aborttask –service Informatica_integration_service –
d domain_name –u user_name –p password –f folder_name –
w workflow_name task_name;

3. PMCMD is program command utility to communicate

with Informatica servers. PMCMD command is used to
control Informatica repository events through unix,
when Informatica server is on unix server.

Location of PMCMD –

<installed drive>\informatica\server\bin\pmcmd

Syntax –
PMCMD command_name [-option1] arg1 [-option2] arg2
Some of the commands used in Informatica –
Pmcmd> connect –sv service –d domain_name –u user_name
–p password
Pmcmd> startworkflow/ getworkflowdetails/
gettaskdetails/ stoptask/ getsessionstatistics/
scheduleworkflow/ unscheduleworkflow -f folder_name
workflow;

Pmcmd> disconnect –sv service –d domain_name –u
user_name –p password

4. Pmcmd command with parameter file –
Pmcmd startworkflow –s $server_name –u $user_name –p
$password –f $folder_name –paramfile param_file_name –
wait $wkf

5. to run pmcmd command, it’s required to set

following given environment variables –

I. INFA_HOME – absolute path to dictionary of Informatica
client.

II. INFA_DOMAINS_FILE – absolute path to the domains
infa file.

III. INFA_USER – username to connect to Informatica.
IV. INFA_PASS – password to go with username in

INFA_USER.

Tip – set environment variables inside your script so that
you won’t require each user to set-up it’s environment
variables to use script.

6. Connecting through pmcmd – (connecting to i.s.) –

C:\user\ramakantt> pmcmd [enter]
Pmcmd> connect [enter]
Username>danger [enter]
Usersecuritydomain: [enter]
Password: [enter]
Domainname: danger [enter]
 Servicename: infm_integration [enter]
Connected to integration service: [infm_integration]
Pmcmd>

22. Different types of cache memory: -

1. persistent vs non-persistent cache – if after completion
of session, cache stays/hold the data it’s persistent else
not.

2. Static vs dynamic cache – if cache changes during run
time it’s dynamic else it’s static cache.

3. named vs un-named cache and shared vs non-shared
cache – if the cache memory is designed for one look up
in one mapping then it will be used by all other look ups
in the same mapping and then it’s un-named cache. But
it’s area of usage is limited for only one mapping. If you
want to use it for another mapping, then click on the
‘persistent cache’ and make it as persistent and give the
‘name to the cache’ and call it to the other mapping from
the session properties by using name. so it will be used
across mappings. It’s called as shared cache else it’s
called as non-shared cache.

23. Parameters and Variables –

1. to go to parameters/variables.
Mapping => parameters and variables
Set following values, that are as: -
I. name - $$<parameter_name>
II. type – parameter/variable
III. datatype
IV. iv)prescision
V. scale
VI. aggregation – max/min
VII. initial value – any value.

2. after declaration, you can use parameters/variables

inside expression transformation.
3. how to make parameter file –
I. open a notepad and type (folder.workflow.session)

eg. – [folder_name.wf:workflow_name.st:session_name]
II. place parameter values inside of this and save with

extension .prm;

4. I. edit the session and in properties tab give param file
name with full path.
II. edit w/f and in properties tab also set param file

name.
5. parameter – constant value; variable – changes between

sessions.
6. I.S. looks values in following order –
I. value in param file => ii) value in pre-session variable

assignment => iii) initial values defined in repo (for
variables).

7. can be seen by => session, right click => view persistent

value.

8. power center default values: -
Data type values
String empty string
Number 0
Date time 1/1/1

9. I.S. holds two values for a mapping during session run

for variable => 1. Start value 2. Current value.
10. different types of variable functions –
Setvariable, setmaxvariable, setminvariable,
setcountvariable;

11. Use of mapping variable –
I. to pass value from one session to another.
II. Incremental data load.
III. in lookup override where you want to use dynamic sql

override.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Reference Paper ID – IJTSRD19045 | Volume – 3 | Issue – 2 | Jan-Feb 2019 Page: 1068

12. $ - session variable; $$ - mapping variable; $$$ - system
variable;

24. Designer tips and tricks –

1. Search tools – in tool bar.
2. Auto link ports by position and/or by name. (right click

to workspace, layout - autolink)
3. propagating port attributes (right click on column and

propagate it)
4. Dependencies – right click on tables and ___; mapping =>

Dependencies
5. Link path – to view forward/backward link paths

from/to a particular port.
6. Overview window – view =>overview window.
7. Iconize workspace objects – iconize mapping objects.
8. Table definition options – (tools => options => table

tab).
9. Copying designer objects – ctrlC+ctrlV
10. Compare objects.

25. Sessions –

Using session properties you can configure various session
characteristics like pre and post sql scripts, log file name,
path and memory properties.

Session => right click => edit => properties tab

1. I. treat source rows as –insert/update/delete/data

driven
 II. commit interval
 III. Enable test load __; no. of rows set to test= 1;
 IV. Session log file name and session log file directory
 V. Log file options 6. Error handling
2. Mapping properties – give flexibility to fine tune

memory allocated to Informatica for performance
optimization in ‘config object’ tab.

3. mapping and source/target properties – i) set
connections. ii) place table suffix and table name.

4. session => success or failure of session task – (in general
tab).

I. fail parent if task fails
II. fail parent if tast does not run.
III. disable this task.

26. shared folder –

Create shared folder in Informatica –
1. if a new folder being designed create => new folder in

repo manager, and then right click on it and place ‘IS
SHARED’ as yes.

2. if folder is already existing, then right click on it and set
properties. ‘IS SHARED’ is just a property to show it’s
shared. Enable ‘allow shortcut ___’, to make folder as
shared.

Folder creation in repo manager –
Folder => create => set properties => name, description,
owner, group, permission.

Note – import and export can be done by xml files.

27. Version Control –

It’s a paid utility. It works upon three things
I. check in
II. check out
III. undo checkout we can also see versioning history.

28. Partitioning –

We can create/define up to 64 partitions at any point in a
pipeline. By partitioning we can make parallel reader writer
and transformation threads that is more than 1. This
increase the performance by making the parallelism. There
are two types of partitioning first is static and second is
dynamic partitioning.

Type of static partitioning –

1. Hash Key Partitioning 2. Round Robin Partitioning 3.
Pass Through Partitioning 4. Key Range Partitioning.

Type of dynamic partitioning –
1. Based on source partitioning
2. Based on number of CPUs.
3. Based on number of nodes in grid
4. Based on number of partitions (defined in the session

parameter $dynamicpartitioncount >1)

Note –
1. dynamic partition can be used if source qualifier not

include the source query or source filter.
2. dynamic partition can’t be used with xml source or

target.
3. dynamic partition can’t be used for session where

manual partition has been done else session will fail.
4. dynamic partition uses same connection for each

partition.

Note – instead of debugger we can use the verbose data as

tracing level.

29. Incremental aggregation –

In this incremental aggregation is performed. For example,
we want to have load of data as 10,20,30 so the aggregate
value will be 10+20+30/3 = 20, it will be stored in the cache
memory now the next data has come which is 30 so now in
the incremental aggregation it would be 20+30/2 = 25 so
now it’s 25 so on.

Note –
1. don’t delete cache files or change in the no. of partitions.
2. if you are using percentile or median function, don’t use

incremental aggregation because i.s. uses system
memory to process these functions in addition to cache
memory configured in session property.

30. Aggregate cache in aggregator transformation –

Power center server stores data in the aggregate cache until
it completes aggregate calculations.

Note – incremental aggregation make session invalid, if
mapping include aggregator with transaction control
transformation.

Reinitilize aggregate cache – overwrite whole cache memory
once again, till this is done so it’s required to disable it after
data loading.

31. How to use persistent cache –

Check following options in lkp –
1. look up cache persistent - _____
2. cache file name prefix- _______ (write the name)
3. recache from look-up source - _______ (to rebuild cache)
[after session first time run, uncheck 3rd option so that table
can be used after build of cache from session to session.]

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Reference Paper ID – IJTSRD19045 | Volume – 3 | Issue – 2 | Jan-Feb 2019 Page: 1069

32. Index and Data cache –

1. these caches are stored in $PMCacheDir with *.idx and
*.dat format respectively. After successful execution of
session Informatica server deletes these cache files. It’s used
in aggregator, rank, joiner and lkp transformations.

33. Worklet variables –

1. pre variable worklet assignment 2. Post variable worklet
assignment

34. There are different types of transformations –

Aggregator, Expression, filter, router, joiner, look up, rank,
sorter, update strategy, sequence generator, source qualifier,
union, transaction control, sql and normalizer
transformation

35. There are different types of tasks –

Command, session, email, event raise, event wait, control,
link, decision, timer, assignment task.

Note –
1. Joiner transformation is known as blocking

transformation.

36. Performance Tuning –

To see bottlenecks below things can be used –
I. session thread statistics.

II. session performance counter.

III. workflow monitor properties.

I. Session thread statistics – there are three types of

threads – Reader, Writer and Transformation thread.

Gathering thread statistics => we can gather three
informations of it;

I. Run Time ii) Idle Time iii) Busy time = [(Runtime-

idletime)/runtime] * 100 iv) thread worktime
II. Gathering performance counters –

For this tick on the session properties –
1. Collect performance data.
2. Write data to repository____.

Understanding performance counter –
w/f monitor => session => run properties.
a non-zero count for read-from-disk and write-to-disk
indicate sub optimal settings – for transformation index or
data caches. This may indicate to tune session performance
cache manually.

A non-zero count for error rows:- indicates you should
eliminate transformation error to increase performance.

Error rows – remove error increase performance.

Read from disk and write to disk => if not equals to zero,
increase cache size to increase performance.

Session bottleneck using session log file – when i.s. initializes
a session, it allocates a block of memory to hold source or
target data. Not having enough buffer memory for dtm
process, slow down etl process and causes large fluctuations
in performance. If not so we get warning; then work upon it.

In Informatica at following level performance tuning can

be done –

1. source level

2. target level

3. mapping level

4. session level

5. system level

Session bottleneck using workflow monitor –
Session => run properties => partition details

I. cpu%
II. memory usage
III. swap usage.

System level –
This bottleneck can be seen by i) cpu ii) memory usage iii)
swap usage.

Session bottleneck –

Due to small cache size, small buffer memory and small
commit intervals can cause session bottleneck.

To remove this problem –
I. use terse mode in tracing level.
II. disable high precision if not required.
III. use pipeline partitioning.
IV. increase commit interval.
V. use bulk loading, external loading etc.
VI. run sessions concurrently, if they are independent from

each other.

Db optimization –
I. optimize target db.
II. increase n/w packet size.
III. if source/targets are flat files it should present in the

system where Informatica server is resided.

Target bottleneck –

when much time is consumed in writing target db. You can
identify target bottlenecks by configuring the session to
write a flat-file target. If performance increases it’s target
bottleneck.

To increase performance –
I. drop index and key constraints.
II. increase checkpoint interval.
III. use bulk load, external load etc.
IV. increase db n/w packet size.
V. optimize target db.

Source bottleneck –

Identifying source bottlenecks –
I. using filter transformations.
II. Read test session.
III. by extracting query and run against db and check for all.

To improve performance -
I. optimize query using optimizer hint.
II. use conditional filters, at source db itself.
III. increase db n/w packet size.
IV. configure source db torun parallel queries.
V. connect to oracle db using ip protocol.
VI. proper indexing for group by or order by clause.

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Reference Paper ID – IJTSRD19045 | Volume – 3 | Issue – 2 | Jan-Feb 2019 Page: 1070

At mapping level –

I. reduce transformations and delete un-necessary links.
II. for transformations that uses data cache eg. Joiner,

aggregator limit connected i/o ports.
III. consider single pass reading. (for one source and

multiple mappings).
IV. optimize sql overrides to raise performance.
V. increase partitioning in session.
VI. optimize the expressions, joiner, aggregators, look ups

etc. for example
VII. sort data before sending it to the transformations.
VIII. reduce number of i/o nodes. And so on.

37. References -

[1] Informatica-10.1-developer tool guide
https://kb.informatica.com/proddocs/Product%20Doc
umentation/5/IN_101_DeveloperToolGuide_en.pdf

[2] Informatica-10.1- developer transformation guide
https://kb.informatica.com/proddocs/Product%20Doc
umentation/5/IN_101_DeveloperTransformationGuide
_en.pdf

[3] Informatica-10.1-developer mapping guide
https://kb.informatica.com/proddocs/Product%20Doc
umentation/5/IN_101_DeveloperMappingGuide_en.pdf

[4] Informatica power center-10.1-transformation guide
https://kb.informatica.com/proddocs/Product%20Doc
umentation/5/PC_101_TransformationGuide_en.pdf

[5] Informatica power center-10.1-designer guide
https://kb.informatica.com/proddocs/Product%20Doc
umentation/5/PC_101_DesignerGuide_en.pdf

[6] Informatica power center-10.1-developer workflow
guide
https://kb.informatica.com/proddocs/Product%20Doc
umentation/5/IN_101_DeveloperWorkflowGuide_en.p
df

[7] Informatica power center-10.1-getting started
https://kb.informatica.com/proddocs/Product%20Doc
umentation/5/PC_101_GettingStarted_en.pdf

[8] Informatica ETL: A Beginner’s Guide To Understanding
ETL Using Informatica PowerCenter
https://www.edureka.co/blog/informatica-etl/

[9] Informatica Tutorials & Interview Questions

https://tekslate.com/tutorials/informatica/

[10] INFORMATICA TUTORIAL: Complete Online

Training https://www.guru99.com/informatica-
interview-questions.html

[11] Informatica PowerCenter (Version 10.1)
https://kb.informatica.com/proddocs/Product%20Doc
umentation/5/PC_101_DesignerGuide_en.pdf

