

Intelligent Routing Algorithm Using Antnet

Aneke Israel Chinagolum¹, Chineke Amaechi Hyacenth², Udeh Chukwuma Callistus. W³

¹Computer Science Department, Institute of Management and Technology Enugu, Enugu, Nigeria ²Computer Engineering Department, Micheal Okpara University of Agriculture Umudike, Abia, Nigeria ³ICT Department, Enugu State University of Science and Technology Teaching Hospital, Enugu, Nigeria

ABSTRACT

The delay in the transporting packets or data from one point to the other has become a big problem in communication network. This can be surmounted by characterizing a data network with a view in finding out the throughput performance, modeling a dynamic routing algorithm that provides paths that change dynamically in response to network traffic and congestion, thereby increasing network performance because data travel less congested paths, simulating the intelligence routing algorithm using Ant net; that has properties like learning, reasoning and decision making with respect to packet transmission in a data network using MATLAB/SIMULINK as a tool and comparing the performance of the model to existing routing algorithm Resear

Keywords: Routing, intelligent, ANTNET

1. INTRODUCTION:

Large-scale, wide area data networks are a part of communication today's global infrastructure. Networks such as the Internet have become an integral medium of information transfer, ranging from personal communication to electronic commerce and entertainment. The importance of such networks will only increase as the electronic world becomes more prevalent. The basic function of a data network is very simple: delivering data from one network node to another. Achieving this goal requires many network components, including physical computers and links, signaling protocols between computers, and data packaging protocols. This thesis addresses one such component, routing; the process that logically connects network nodes by calculating paths between nodes so that data sent by one node traverses the calculated path to its destination.

Although many algorithms in graph and operational research literature calculate paths between nodes, the challenge in developing network routing algorithms is in dealing with the scale and distribution of the physical network. Because typical wide area networks have nodes on the order of tens of thousands, routing algorithms must be scalable. In addition, routing algorithms must be able to calculate paths in a distributed manner due to the global and distributive nature of physical networks. Moreover, because of the actual physical network, routing algorithms need to cope with events such as physical component failures and recalculate paths whenever such events occur. Finally, routing algorithms need to calculate paths to allow nodes to achieve high throughput performance.

Develo In general, routing algorithms view a network as a weighted graph, where network links are represented as graph edges and network routers as graph vertices. Network routers are network nodes that execute routing algorithms and ensure that data travel the calculated paths. In the weighted graph, the assignment of edge weights depends on the specific routing algorithm; typically, the assignment reflects the latency and bandwidth of the link (Atul, 1999).

After a routing algorithm makes these link cost assignments, it then computes paths between nodes. Thus, the specific routing algorithm that routers execute determines the paths that data will travel in the network.

Routing algorithms in today's Internet base their implementations on the static metric single shortest pathrouting model. Single shortest path means that routing algorithms provide, at any given time, the least-cost path between nodes. Static metric refers to link cost assignments which are based on static properties of a link, such as its bandwidth or latency. As shown later, the main drawback of this model is that static metric shortest paths do not always provide good network performance.

1. Problem Statement

The general problem of routing packets in transport networks is in itself nothing new. The shortest path problem is a basic part of graph theory, with multiple solutions and countless applications in different fields. Previous implementations suffer two problems: routing instability and high routing overheads. Routing instability occurs when paths are constantly being recomputed and do not stabilize. This instability degrades network performance and increases the probability of network congestion and failures. The second problem is high routing overheads. The overheads are in terms of the CPU cycles and messages required for path re-computation.

So, one of the fast changing areas in internetwork routing is the application of intelligence into it. Among the major challenges that exist in network, the coexistence of multiple infrastructure systems and different models are some of the prime issues. The existing infrastructure lacks the intelligent awareness and coordination of numerous components and applications running on the network and it has opened up various complexities. Also, the coordination with different models needs a good understanding of the services provided by the layers. These two criteria had led the researchers to think of making the network nodes more intelligent. It is reasonable to say that intelligence in the nodes must include properties like learning, reasoning and decision making. To establish accurate results for optimal path, a network must be made aware of its environment. This can be realized by helping the network to learn, think and remember and hence making it intelligent.

2. Research Objective

This research is focused on proposing an intelligent routing algorithm for data network using path vector technique. Its main objective includes:

- 1. To characterize a data network with a view in finding out the throughput performance.
- 2. To model a dynamic routing algorithm that provides paths that change dynamically in response to network traffic and congestion, thereby increasing network performance because data travel less congested paths.

- 3. To simulate the intelligence routing algorithm using Antnet; that has properties like learning, reasoning and decision making with respect to packet transmission in a data network using MATLAB/SIMULINK as a tool
- 4. To compare the performance of the model to existing routing algorithm

3. Methodology

To characterize a data network with a view in finding out the throughput performance

Table 1 : DATA COLLECTION ON PACKET LOSS DUE TO CONGESTION WITH DATE OF DATA COLLECTION: 1th TO 8th of FEBUARY, 2018

Time	Packet Transferred Data	Packet Retransmitted	Packet Loss
12.00 AM	30	25	0.8
1.00 AM	28	24	0.833
2.00 AM	26	20	0.7
3.00 AM	rnal ₂₆	18	0.556
4.00 AM	24	16	0.5
5.00 AM	24	14	0.2858
6.00 AM70	22	A 12	0.167
7.00 AM	22	3 11	0.167
8.00 AM	122	11	0.182
9.00 AM	20	12	0.2
10.00 AM	18	13	0.6154
11.00 AM	18	14	0.7143

To calculate the efficiency in 12.00 AM Recall

Efficiency = 100% x (transferred-retransmitted)/ Transferred Efficiency = $100 \times (30 - 25)/25$ Efficiency = $100 \times 5/25$ Efficiency = 100/5 = 20Then, to calculate the network loss in 12.00AM Naturally loss or packet loss = 100 - efficiency

Network loss or packet loss = 100 - efficiencyNetwork loss = 100 - 20 = 80 = 0.8

To calculate the efficiency in 1.00 AM Efficiency = 81.8= 100% x (transmitted-retransmitted)/ Efficiency Network loss = 100 - 81.8 = 18.2Transmitted Network loss = 0.182= 100 x (28 - 24)/24Efficiency Efficiency = 100 x 4 / 24To calculate the efficiency at 9.00 AM Efficiency =16.7 = 0.1671Efficiency = 100 x (22 - 10)/10Efficiency = 800/10 = 80To calculate the network loss Network loss = 100 - 80Network loss = 20 = 0.2Network loss = 100 - 16.7Network loss = 83.3Network loss = 0.833To calculate the efficiency at 9.00 AM Efficiency = 100 x (20 - 12)/12Efficiency = 800 / 12 = 66.67 To calculate the efficiency in 2.00 AM = 100% x (26 - 20)/20Network loss = 100 - 66.67Efficiency Efficiency $= 100 \times 6/20 = 30$ Network loss = 33.3 = 0.333Network loss = 100 - 30 = 70 = 0.7To calculate the efficiency at 10.00 AM To calculate the efficiency in 3.00AM Efficiency = 100 x (18 - 13)/13• • • Efficiency = 100% X (26 -18)/18 Efficiency = 500/13= 38.46 $= 100 \times 8 / 18$ Efficiency Efficiency Network loss = 100 - 38.46Efficiency = 800/18 = 44.4Network loss = 100 - 44.4Network loss = 61.54 = 0.6154Network loss = 55.6 = 0.556Internation To calculate the efficiency at 11.00 AM To find the Efficiency at 4.00 AM Efficiency = 100 x (18 - 14)/14= 100% X (24 - 16)/16 of Trend in Efficiency if = 400/14 = 28.57Efficiency = 800/16 = 50Network loss = 100 - 28.57Efficiency Resear Network loss = 71.43 = 0.7143Network loss = 100 - 50 = 50 = 0.5Development Table 2: DATA COLLECTION ON PACKET LOSS To find the Efficiency at 5.00 AM Efficiency = 100 x (24 - 14)/14DUE TO CONGESTION PER HOUR ·•••• ۲ 2456-= 1000/14 = 71.42Efficiency **Packet loss** Congestion Network loss = 100 - 71.42experienced hourly experienced hourly 0744 Network loss = 28.58 = 0.28580.8 2.04 0.833 1.96 To calculate the efficiency at 6.00 AM 0.7 2.33 Efficiency = 100 x (22 - 12)/120.556 2.94 Efficiency = 1000/120.5 3.266 Efficiency = 83.3 0.2858 5.67 Network loss = 100 - 83.30.167 9.78 Network loss = 16.7 = 0.1670.167 9.78 0.182 8.97 To calculate the efficiency at 7.00 AM = 100 x (22 - 12)/12Efficiency 0.2 8.17 Efficiency = 1000/120.6154 4.6 Efficiency =83.3 0.7143 2.29 Network loss = 100 - 83.3Network loss = 16.7 = 0.167To find the congestion at 12.00 AM The mathematical model for congestion control in To calculate the efficiency at 8.00 AM improving optimized real time monitoring and Efficiency =100 x (20 - 11)/11evaluation of GSM quality of service using intelligent Efficiency = 900 / 11agent is as shown in equation 3.2

To find the congestion at 12.00 AM	Congestion in 7A.M
$L = 8/3W^2 - 1$	W8 = $8/3 \times 0.167^2$
Where L is packet loss	W8 =8/0.0837
W is the network congestion	W8 = 8/0.0837
	W8 = $\sqrt{95.57}$
Then, make W the subject formula in equation 1	W8 = 9.78
The mathematical model for congestion in the	
network is as shown in equation 2	Congestion in 8A.M
$W = Square root of 8/3W^22$	W8 = $8/3 \times 0.182^2$
	W8 = 8/0.099372
To find the network congestion in 12.00 AM	W8 = 80.5
W1 = square root $8/3 \ge 0.8^2$	W8 = $\sqrt{80.5}$
W1 = square root 8 /3 x $0.64 = 8/1.92$	W8 =8.97
W1 = $\sqrt{4.17}$	
W1 =2.04	Congestion in 9 A.M
and the second s	$W9 = 8/3 \ge 0.2^2$
Congestion in 1.00 AM	W9 = 8/0.12
W2 = square root $8/3 \ge 0.833^2 = 8 / 3 \ge 0.833^2 = 10^{-3}$	W9 = $\sqrt{66.7}$
8/2.081667	W9 = 8.167
W2 = $\sqrt{3.84}$	
W2 = 1.96	Congestion in 10 A.M
$\beta \circ \bullet$	$W10 = 8/3 \ge 0.6154^2$
Congestion in 2.00 AM	W10 = 8 /0.378717
W3 = Square root of 8/3 x $0.7^2 = 8/1.47$ remation	$W10 = \sqrt{21.12}$
W3 = square root of $8/1.47 = 5.442$	W10 = 4.6
W3 = $\sqrt{5.442}$ / 5 • of Frend II	n Scientific 🖕 😤 💋
W3 = 2.33	Congestion in 11 A.M
Kesed	$W11 = 8/3 \ge 0.7143^2$
Congestion in 3.00 AM	W11 = 8/1.53
W4 = Square root of $8/3 \times 0.556^2$	W11 = 5.23
W4 = square root of $8/0.927$	$W11 = \sqrt{5.23}$
$W4 = \sqrt{8.63}$ (155N: 24	W 11= 2.29
W4 = 2.94	
W4 = 2.94	To determine an ideal bit error rate convenient for the
	characterized network
Congestion in 4 A.M	5
W5 = square root of $8/3 \ge 0.5^2$	Taking into consideration the worst case scenario, the
W5 = Square root of 8/ 0.75 =10.67	linear relationship between BER and packet error rate
W5 = $\sqrt{10.67}$	(PER) is expressed as:
W5 = 3.266	PER= 8 × BER ×MTU ×66/643
Congestion in 5 A.M	Where the MTU is the maximum transmission unit,
W6 = Square root $8 / 3 \ge 0.2858^2$	and using the Ethernet standards it is set to 1500 bytes
W6 = Square root $8 / 0.25$	for the simulations and then the MTU is increased to
W6 = $\sqrt{32}$	improve performance. A conversion from 8 bits to 1
W6 = 5.67	byte is shown,
	Recall 1 byte = 8bits
Congestion in 6 A.M	1500 by tes = 8 x $1500 = 12000$ bits
W7 = Square root 8/3 x 0.167 ²	MTU = 12000 bits
W7 = Square root $8/0.0837$	PER is packet loss and BER is bit error rate
W7 = $\sqrt{95.57}$	To evaluate the bit error rate in 12 A.M when the
W7 = 9.78	packet loss is 0.8
	-

Make BER the subject formula in equation 3.3 BER1 = $PER/8 \times MTU \times 1.03125$ ------4 BER1 = $0.8/8 \times 12000 \times 1.03125$ BER1 = 0.8/9900BER1 = 0.000081 bits

•

To find the bit error rate in 1 A.M BER2 = **0.833/9900** BER2 = 0.000084 bits

Bit error rate in 2 A.M BER3 = 0.7/9900**BER3** = 0.000071bits

Bit error rate in 3 A.M BER4 = 0.556/9900**BER4** = 0.0000562bits

Bit error rate in 4A.M BER5 = 0.5/9900**BER5** = 0.000051 bits

Bit error rate in 5A.M BER6 = 0.2858/9900BER6 = 0.000030 bits

Bit error rate in 6A.M BER7 = 0.167/9900BER7 = 0.000017 bits

Bit error rate in 7A.M BER8 = 0.167/9900**BER8** = 0.000017bits

Bit error rate in 8A.M BER9 = 0.182/9900= 0.000018bits

Bit error rate in 9 A.M BER10 = 0.2/9900= 0.000020 bits

Bit error rate in 10A.M BER11 = 0.6154/9900= 0.000062bits

Bit error rate in 11A.M **BER12** = 0.7143/9900 = 0.000072bits

Table 3: DATA COLLECTION ON PACKET LOSS DUE TO CONGESTION PER HOUR WITH BIT

	m	ERROR RATE	
s in Scie	Packet Loss Experienced Hourly	Congestion Experienced Hourly	Bit Error Rate
- CO	0.8	2.04	0.000081bits
(⁶ .	0.833	1.96	0.000084bits
	0.7	2.33	0.000071bits
🍋 J Si	0.556	2.94	0.0000562bits
	0.5	3.266	0.000051bits
Internationa	0.28582	5.67	0.000030bits
of Trond in	0.167	9.78	0.000017bits
or rrend m	0.167	9.78	0.000017bits
Researc	0.182	8.97	0.000018bits
	0.2	8.17	0.000020bits
Develop	0.6154	4.6	0.000062bits
	0.7143	2.29	0.000072bits
• ISSN: 245	o model a dynam	ic routing algorit	hm that provides

To model a dynamic routing algorithm that provides paths that change dynamically in response to network traffic and congestion, thereby increasing network performance because data travel less congested paths

Fig 1: Designed model for a dynamic routing algorithm that provides paths that change dynamically in response to network traffic and congestion

Fig 1 shows designed model for a dynamic routing algorithm that provides paths that change dynamically in response to network traffic and congestion. In fig 1 the design was done in mat lab software with the necessary blocks like channel, scope, and transmitter. The empirical data collected from the GLO network were inserted inside the designed model.

To simulate the intelligence routing algorithm using Antnet; that has properties like learning, reasoning and decision making with respect to packet transmission in a data network using MATLAB/SIMULINK as a tool

Fig 2 Simulated result of development of improving of throughput in data network without using intelligent routing.

Fig 2 shows simulated result of development of improving of throughput in data network without using intelligent routing. In fig 2 the simulated result is a high bit error rate coupled with congestion that make the network not to function effectively well.

Fig 3 Simulated result of development of improving of throughput in data network using intelligent routing.

Fig 3 shows simulated result of development of improving of throughput in data network using intelligent routing. Fig 3 when simulated reduced both bit error rate and congestion concurrently thereby making the network to be free.

To compare the performance of the model to existing routing algorithm

Fig 3 gives a better result by reducing congestion and bit error rate than figure 2.

4. Result Analysis

 Table 4:
 CONVENTIONAL CONGESTION VS NUMBER OF USERS

Fig 4 shows conventional congestion vs number of users. The lowest coordination of congestion vs number of users is (1.96, 2) while the highest coordination of congestion vs number of users (8.97,8).

Table 5: CONVENTIONAL CONGESTION VS NUMBER OF USERS USING INTELLIGENT ROUTING

THE CONCEPTION OF CONEPERCON CONCEPTION	
CONVENTIONAL CONGESTION	NUMBER OF
USING INTELLIGENT ROUTING	USERS
1.442	1
1.386	2
1.648	3
2.079	4
2.312	5
4.009	6
6.916	7
6.916	8
6.343	9
5.777	10
5.253	11
1.619	12

Fig 5 CONVENTIONAL CONGESTION VS NUMBER OF USERS USING INTELLIGENT ROUTING

Fig 5 shows conventional congestion vs number of users using intelligent routing. The highest coordination of congestion vs number of users is (6.916,7) and (6.916,7). The lowest coordination is (1.442, 2). This shows that there will be free communication network that its congestion is free.

Table 6: COMPARING CONVENTIONAL CONGESTION AND CONVETIONAL CONGESTION VS NUMBER OF USERS WITH INTELLIGENT ROUTING ALGORITHM

CONVENTIONAL	CONVENTIONAL CONGESTION	NUMBER OF
CONGESTION	USING INTELLIGENT ROUTING	USERS
2.06	1.442	
1.96	of Trend in 386cientific	2
2.33	1.648	3
2.94	Resea _{2.079} and	4
3.27	Devel 2.312 pent	5
5.67	4.009	6
9.78	6.916	
9.78	• 133N. 26.9160470	8
8.97	6.343	9
8.17	5.777	10
4.60	5.253	11
2.29	1.619	12

Fig 6 COMPARING CONVENTIONAL CONGESTION AND CONVETIONAL

CONGESTION VS NUMBER OF USERS WITH INTELLIGENT ROUTING ALGORITHM.

Fig 6 shows comparing conventional congestion and conventional congestion vs number of users with intelligent routing algorithm. The highest coordination of conventional approach and intelligent routing approach are(9.78,7) and (.6.916.7). This shows that there is free network in communication network when intelligent routing is used.

5. Conclusion

The manner by which free communication network is easily noticed in our communication network has arisen as a result of high bit error rate, that constitutes interference and congestion which has led to economic degradation among the subscribers that in bark in business and the country at large can be overcome by development of intelligent routing algorithm for the improvement of throughput in data 3. Leonard Anderson routing network. This can be overcome in this manner. Characterizing a data network with a view in finding out the throughput performance. Modeling a dynamic

y inational Jc

routing algorithm that provides paths that change dynamically in response to network traffic and congestion, thereby increasing network performance because data travel less congested paths.

simulating the intelligence routing algorithm using Antnet; that has properties like learning, reasoning and decision making with respect to packet transmission data network using in a MATLAB/SIMULINK as a tool and comparing the performance of the model to existing routing algorithm

Reference

- 1. Elizabeth E. Peterson routing algorithm using heretical technique 2017
- Joseph, Jack routing algorithm using flat based 2. technique 2014
- algorithm using proportional integral (PI) 2013
- Theodore Samuel routing algorithm using 4. proportional derivative (PD)2016

International Journal of Trend in Scientific Research and Development