

ISSN No: 2456 - 6470 | Volume - 2 | Issue - 6 | Sep - Oct 2018

Contra μ-β-Generalized α-Continuous Mappings in Generalized Topological Spaces

Kowsalya M¹, **Sentamilselvi M²** ¹M.Phil Mathematics, ²Assistant Professor of Mathematics, Vivekanandha College of Arts and Sciences for Women [Autonomous], Tiruchengode, Namakkal, Tamil Nadu, India

i.

ABSTRACT

In this paper, we have introduced contra μ - β generalized a-continuous maps and also introduced almost contra μ - β -generalized α -continuous maps in generalized topological spaces by using μ - β - called μ -closed sets. generalized α -closed sets (briefly μ - β G α CS). Also we have introduced some of their basic properties.

Generalized topology, Keywords: generalized topological spaces, μ - α -closed sets, μ - β -generalized α -closed sets, μ - α -continuous, μ - β -generalized α continuous, contra µ-a-continuous, almost contra µ- β -generalized α -continuous. of Trend ir

1. INTRODUCTION

In 1970, Levin [6] introduced the idea of continuous function. He also introduced the concepts of semiopen sets and semi-continuity [5] in a topological space. Mashhour [7] introduced and studied α -4 continuous function in topological spaces. The notation of μ - β -generalized α -closed sets (briefly μ - $\beta G\alpha CS$) was defined and investigated by Kowsalya. M and Jayanthi. D[4]. Jayanthi. D [2, 3] also introduced contra continuity and almost contra continuity on generalized topological spaces. In this paper, we have introduced contra μ - β -generalized α continuous maps.

2. PRELIMINARIES

Let us recall the following definitions which are used in sequel.

Definition 2.1: [1] Let X be a nonempty set. A collection μ of subsets of X is a generalized topology (or briefly GT) on X if it satisfies the following:

- 1. $\emptyset, X \in \mu$ and
- **2.** If $\{M_i : i \in I\} \subseteq \mu$, then $\bigcup_{i \in I} M_i \in \mu$.

If μ is a GT on X, then (X, μ) is called a generalized topological space (or briefly GTS) and the elements of μ are called μ -open sets and their complement are

Definition 2.2: [1] Let (X, μ) be a GTS and let $A \subseteq X$. Then the μ -closure of A, denoted by $c_{\mu}(A)$, is the intersection of all μ -closed sets containing A.

Definition 2.3: [1] Let (X, μ) be a GTS and let $A \subseteq X$. Then the μ -interior of A, denoted by $i_{\mu}(A)$, is the union of all µ-open sets contained in A.

ESEA Definition 2.4: [1] Let (X, μ) be a GTS. A subset A of X is said to be

- μ -semi-closed set if $i_{\mu}(c_{\mu}(A)) \subseteq A$
- μ -pre-closed set if $c_{\mu}(i_{\mu}(A)) \subseteq A$ ii.
- μ - α -closed set if $c_{\mu}(i_{\mu}(c_{\mu}(A))) \subseteq A$ iii.64
- μ - β -closed set if $i_{\mu}(c_{\mu}(i_{\mu}(A))) \subseteq A$ iv.
- v. μ -regular-closed set if $A = c_{\mu}(i_{\mu}(A))$

Definition 2.5: [7] Let (X, μ_1) and (Y, μ_2) be GTSs. Then a mapping f: $(X, \mu_1) \rightarrow (Y, \mu_2)$ is called

- μ -Continuous mapping if f⁻¹(A) is μ -closed in i. (X, μ_1) for each μ -closed in (Y, μ_2) .
- μ -Semi-continuous mapping if f⁻¹(A) is μ ii. semi-closed in (X, μ_1) for every μ -closed in $(Y, \mu_2).$
- μ -pre-continuous mapping if $f^{-1}(A)$ is μ -preiii. closed in (X, μ_1) for every μ -closed in (Y. μ_2).
- μ - α -continuous mapping if f⁻¹(A) is μ - α -closed iv. in (X, μ_1) for every μ -closed in (Y, μ_2) .
- μ - β -continuous mapping if f⁻¹(A) is μ - β -closed v. in (X, μ_1) for every μ -closed in (Y, μ_2) .

Definition 2.6: [9] Let (X, μ_1) and (Y, μ_2) be GTSs. Then a mapping f: $(X, \mu_1) \rightarrow (Y, \mu_2)$ is called

- contra μ -Continuous mapping if f⁻¹ (A) is μ i. closed in (X, μ_1) for every μ -open in (Y, μ_2) .
- contra μ -semi continuous mappings if f⁻¹ (A) ii. is μ -semi closed in (X, μ_1) for every μ -open in $(Y, u_2).$
- contra μ -pre-continuous mappings if f⁻¹ (A) is iii. μ -pre closed in (X, μ_1) for every μ -regular closed set A of (Y, μ_2) .
- contra μ -a-continuous mapping if f⁻¹(A) is μ iv. α -closed in (X, μ_1) for every μ -open in (Y, μ_2).
- contra μ - β -continuous mapping if f⁻¹ (A) is μ v. β -closed in (X, μ_1) for every μ -open in (Y, μ_2).

Definition 2.7: [3] Let (X, μ_1) and (Y, μ_2) be GTSs. Then a mapping f: $(X, \mu_1) \rightarrow (Y, \mu_2)$ is called

- almost contra μ -Continuous mapping if f⁻¹ (A) i. is μ -closed in (X, μ_1) for every μ -regular open in (Y, μ_2) .
- ii. almost contra µ-semi continuous mappings if f ⁻¹ (A) is μ -semi closed in (X, μ_1) for every μ regular open in(Y, μ_2).
- almost contra u-pre-continuous mappings if f iii. ¹ (A) is μ -pre closed in (X, μ_1) for every μ -in Scienti regular open in (Y, μ_2) .
- iv. ¹(A) is μ -a-closed in (X, μ_1) for every μ regular open in (Y, μ_2) .
- Almost contra μ - β -continuous mapping if f⁻¹ v. (A) is μ - β -closed in (X, μ_1) for every μ -regular open in (Y, μ_2) .

3. CONTRA μ - β -GENERALIZED **α** - CONTINUOUS MAPPINGS

In this chapter we have introduced contra μ - β generalized α -continuous mapping in generalized topological spaces and studied their properties.

Definition 3.1: A mapping f: $(X, \mu_1) \rightarrow (Y, \mu_2)$ is called a contra μ - β -generalized α -continuous mapping if $f^{-1}(A)$ is a μ - β -generalized α -closed set in (X, μ_1) for each μ -open set A in (Y, μ_2).

 $\{b\}, \{a, b\}, X\}$ and $\mu_2 = \{\emptyset, \{c\}, Y\}$. Let f: $(X, \mu_1) \rightarrow (X, \mu_2)$ (Y, μ_2) be a mapping defined by f(a) = a, f(b) = b, f(c)= c. Now,

 μ - β O(X) = { \emptyset , {a}, {b}, {a, b}, {b, c}, {a, c}, X}.

Let A = {c}, then A is a μ -open set in (Y, μ_2). Then f⁻ ¹({c}) is a μ - β -generalized α -closed set in (X, μ_1). Hence f is a contra μ - β -generalized α -continuous mapping.

Theorem 3.3: Every contra µ-continuous mapping is a contra μ - β -generalized α -continuous mapping but not conversely in general.

Proof: Let f: $(X, \mu_1) \rightarrow (Y, \mu_2)$ be a contra μ continuous mapping. Let A be any μ -open set in (Y, μ_2). Since f is a contra μ -continuous mapping, f⁻¹(A) is a μ -closed set in (X, μ_1). Since every μ -closed set is a μ - β -generalized α -closed set, f⁻¹(A) is a μ - β generalized α -closed set in (X, μ_1). Hence f is a contra μ - β -generalized α -continuous mapping.

Example 5.1.4: Let $X = Y = \{a, b, c, d\}$ with $\mu_1 = \{\emptyset, d\}$ $\{a\}, \{c\}, \{a, c\}, X\}$ and $\mu_2 = \{\emptyset, \{d\}, Y\}$. Let f: (X, μ_1) \rightarrow (Y, μ_2) be a mapping defined by f(a) = a, f(b) = ab, f(c) = c, f(d) = d. Now,

 μ - β O(X) = {Ø, {a}, {c}, {a, b}, {a, c}, {a, d}, {b, c}, Internation {c, d}, {a, b, c}, {b, c, d},

 $\{a, c, d\}, \{a, b, d\}, X\}.$

Let A = {d}, then A is a μ -open set in (Y, μ_2). Then f⁻ almost contra μ - α -continuous mapping if f ({d}) is a μ - β -generalized α -closed set, but not μ closed as $c_{\mu}(f^{-1}(A)) = c_{\mu}(\{d\}) = \{b, d\} \neq f^{-1}(A)$ in (X, μ_1). Hence f is a contra μ - β -generalized α -continuous mapping, but not a contra μ -continuous mapping.

> **Theorem 3.5:** Every contra μ - α -continuous mapping is a contra μ - β -generalized α -continuous mapping in general.

> **Proof:** Let f: $(X, \mu_1) \rightarrow (Y, \mu_2)$ be a μ - α -contra continuous mapping. Let A be any μ -open set in (Y, μ_2). Since f is a μ - α -contra continuous mapping, f⁻¹ (A) is a μ - α -closed set in (X, μ_1). Since every μ - α closed set is a μ - β -generalized α -closed set, f⁻¹ (A) is a μ - β -generalized α -closed set in (X, μ_1). Hence f is a contra μ - β -generalized α -continuous mapping.

> **Remark 3.6:** A contra µ-pre-continuous mapping is not a contra μ - β -generalized α - continuous mapping in general.

> **Example 3.7:** Let X = Y = {a, b, c} with $\mu_1 = \{\emptyset, \{a, b, c\}\}$ b}, X} and $\mu_2 = \{\emptyset, \{a\}, Y\}$. Let f: $(X, \mu_1) \rightarrow (Y, \mu_2)$ be a mapping defined by f(a) = a, f(b) = b, f(c) = c. Now.

•••

 $\mu - \beta O(X) = \{ \emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}, X \}.$

Let A= {a}, then A is a μ -open set in (Y, μ_2). Then f⁻¹ ({a}) is a μ -pre closed set as $c_{\mu}(i_{\mu}(f^{-1}(A))) = c_{\mu}(i_{\mu}(\{a\})) = \emptyset \subseteq f^{-1}(A)$, but not a μ - β -generalized α -closed set as $\alpha c_{\mu}(f^{-1}(A)) = X \nsubseteq U = \{a, b\}$ in (X, μ_1). Hence f is a contra μ -pre-continuous mapping, but not a contra μ - β -generalized α -continuous mapping.

Remark 3.8: A contra μ - β -continuous mapping is not a contra μ - β -generalized α -continuous mapping in general.

Example 3.9: Let $X = Y = \{a, b, c\}$ with $\mu_1 = \{\emptyset, \{a, b\}, X\}$ and $\mu_2 = \{\emptyset, \{a\}, Y\}$. Let f: $(X, \mu_1) \rightarrow (Y, \mu_2)$ be a mapping defined by f(a) = a, f(b) = b, f(c) = c. Now,

 $\mu - \beta O(X) = \{ \emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}, X \}.$

Let $A = \{a\}$, then A is a μ -open set in (Y, μ_2) . Then f generalized α -continuous mapping. $i_1(\{a\})$ is a μ - β -closed set as $i_\mu(c_\mu(i_\mu (f^{-1}(A)))) = (Z, \mu_3)$ is a μ -continuous mapping. $i_\mu(c_\mu(i_\mu(\{a\}))) = \emptyset \subseteq f^{-1}(A)$, but not μ - β -generalized $\rightarrow (Z, \mu_3)$ is a μ -continuous mapping. Hence f is a contra μ - β -continuous mapping. Hence f is a contra μ - β -continuous mapping. Hence f is a contra μ - β -continuous mapping. Hence f is a contra μ - β -continuous mapping.

In the following diagram, we have provided the relation between various types of contra μ -continuous mappings.

contra
$$\mu$$
- continuous
contracontra
 μ - α -continuous

 $contra \mu - \beta G \alpha$ continuous

contra μ -pre- continuous

Theorem 3.10: A mapping f: $(X, \mu_1) \rightarrow (Y, \mu_2)$ is a contra μ - β -generalized α -continuous mapping if and only if the inverse image of every μ -closed set in (Y, μ_2) is a μ - β -generalized α -open set in (X, μ_1) .

Proof: Necessity: Let F be a μ-closed set in (Y, μ_2). Then Y-F is a μ-open in (Y, μ_2). Then f⁻¹ (Y-F) is a μ-β-generalized α-closed set in (X, μ_1), by hypothesis. Since f⁻¹ (Y-F) = X - f⁻¹(F). Hence f⁻¹(F) is a μ-β-generalized α-open set in (X, μ_1).

Sufficiency: Let F be a μ -open set in (Y, μ_2). Then Y-F is a μ -closed in (Y, μ_2). By hypothesis, f⁻¹ (Y-F) is a μ - β -generalized α -open set in (X, μ_1). Since f⁻¹ (Y-F) = X - f⁻¹ (F) is a μ - β -generalized α -open set in (X, μ_1). Therefore f⁻¹ (F) is a μ - β -generalized α -closed set in (X, μ_1). Hence f is a contra μ - β -generalized α continuous mapping.

Theorem 3.11: Let f: $(X, \mu_1) \rightarrow (Y, \mu_2)$ be a mapping and let f⁻¹ (V) be a μ -open set in (X, μ_2) for every closed V set in (Y, μ_2) . Then f is a contra μ - β generalized α -continuous mapping.

Proof: Let V be a μ -closed set in (Y, μ_2). Then f⁻¹ (V) be a μ -open set in (X, μ_1), by hypothesis. Since every μ -open set is μ - β -generalized α -open set in X. Hence f⁻¹ (V) is a μ - β -generalized α -open set in (X, μ_1). Hence f is a contra μ - β -generalized α -continuous mapping.

Theorem 3.12: If f: $(X, \mu_1) \rightarrow (Y, \mu_2)$ is a contra μ - β -generalized α -continuous mapping and g: $(Y, \mu_2) \rightarrow (Z, \mu_3)$ is a μ -continuous mapping then g \circ f: $(X, \mu_1) \rightarrow (Z, \mu_3)$ is a contra μ - β -generalized α -continuous mapping.

Proof: Let V be any μ -open set in (Z, μ_3). Then g⁻¹(V) is a μ -open set in (Y, μ_2), since g is a μ -continuous mapping. Since f is a contra μ - β -generalized α -continuous mapping, (g \circ f)⁻¹(V) = f⁻¹(g⁻¹(V)) is a μ - β -generalized α -closed set in (X, μ_1). Therefore g \circ f is a contra μ - β -generalized α -continuous mapping.

Theorem 3.13: If f: $(X, \mu_1) \rightarrow (Y, \mu_2)$ is a contra μ continuous mapping and g: $(Y, \mu_2) \rightarrow (Z, \mu_3)$ is a contra μ -continuous mapping then g \circ f: $(X, \mu_1) \rightarrow (Z, \mu_3)$ is a μ - β -generalized α -continuous mapping.

Proof: Let V be any μ -open set in (Z, μ_3). Since g is a contra μ -continuous mapping, g ⁻¹(V) is a μ -closed set in (Y, μ_2). Since f is a contra μ -continuous mapping, (g \circ f)⁻¹ (V) = f ⁻¹(g ⁻¹(V)) is a μ -open set in (X, μ_1). Since every μ -open set is a μ - β -generalized α -open set, (g \circ f) ⁻¹(V) is a μ - β -generalized α -open set in (X, μ_1). Therefore g \circ f is a μ - β -generalized α -continuous mapping.

Theorem 3.14: If f: $(X, \mu_1) \rightarrow (Y, \mu_2)$ is a contra μ - α continuous mapping and g: $(Y, \mu_2) \rightarrow (Z, \mu_3)$ is a contra μ -continuous mapping then g \circ f: $(X, \mu_1) \rightarrow (Z, \mu_3)$ is a μ - β -generalized α -continuous mapping. **Proof:** Let V be any μ -closed set in (Z, μ_3). Since g is a μ -contra continuous mapping, g⁻¹ (V) is a μ -open set in (Y, μ_2). Since f is a μ - α -contra continuous mapping, (g \circ f)⁻¹ (V) = f⁻¹(g⁻¹ (V)) is a μ - α -closed set in (X, μ_1). Since every μ - α -closed set is a μ - β generalized α -closed set, (g \circ f)⁻¹ (V) is a μ - β generalized α -closed set in (X, μ_1). Therefore g \circ f is a μ - β -generalized α -continuous mapping.

Theorem 3.15: If f: $(X, \mu_1) \rightarrow (Y, \mu_2)$ is a μ continuous mapping and g: $(Y, \mu_2) \rightarrow (Z, \mu_3)$ is a contra μ -continuous mapping then g \circ f: $(X, \mu_1) \rightarrow (Z, \mu_3)$ is a contra μ - β -generalized α -continuous mapping.

Proof: Let V be any μ -open set in (Z, μ_3). Since g is a contra μ -continuous mapping, g⁻¹ (V) is a μ -closed set in (Y, μ_2). Since f is μ -continuous (g \circ f)⁻¹ (V) = f⁻¹(g⁻¹ (V)) is a μ -closed set in (X, μ_1). Since every μ -closed set is a μ - β -generalized α -closed set, (g \circ f)⁻¹ (V) is a μ - β -generalized α -closed set. Therefore g \circ f is a contra μ - β -generalized α -continuous mapping.

4. ALMOST CONTRA μ-β-GENERALIZED α-CONTINUOUS MAPPINGS

In this section we have introduced almost contra μ - β generalized α -continuous mapping in generalized topological spaces and studied some of their basic properties.

Definition 4.1: A mapping f: $(X, \mu_1) \rightarrow (Y, \mu_2)$ is called an almost contra μ - β -generalized α -continuous mapping if f⁻¹ (A) is a μ - β -generalized α -closed set in (X, μ_1) for each μ -regular open set A in (Y, μ_2) .

Example 4.2: Let $X = Y = \{a, b, c\}$ with $\mu_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $\mu_2 = \{\emptyset, \{c\}, \{a, b\}, Y\}$. Let f: (X, μ_1) \rightarrow (Y, μ_2) be a mapping defined by f(a) = a, f(b) = b, f(c) = c. Now,

 $\mu - \beta O(X) = \{ \emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}, X \}.$

Let A = {c}, then A is a μ -regular open set in (Y, μ_2). Then f⁻¹({c}) is a μ - β -generalized α -closed set in (X, μ_1). Hence f is an almost contra μ - β -generalized α -continuous mapping.

Theorem 4.3: Every almost contra μ -continuous mapping is an almost contra μ - β -generalized α -continuous mapping but not conversely.

Proof: Let f: $(X, \mu_1) \rightarrow (Y, \mu_2)$ be an almost contra μ continuous mapping. Let A be any μ -regular open set

in (Y, μ_2). Since f is almost contra μ -continuous mapping, f⁻¹ (A) is a μ -closed set in (X, μ_1). Since every μ -closed set is a μ - β -generalized α -closed set, f ⁻¹(A) is a μ - β -generalized α -closed set in (X, μ_1). Hence f is an almost contra μ - β -generalized α -continuous mapping.

Example 4.4: Let $X = Y = \{a, b, c, d\}$ with $\mu_1 = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$ and $\mu_2 = \{\emptyset, \{d\}, \{a, b, c\}, Y\}$. Let f: $(X, \mu_1) \rightarrow (Y, \mu_2)$ be a mapping defined by f(a) = a, f(b) = b, f(c) = c, f(d) = d. Now,

 $\mu - \beta O(X) = \{ \emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{c, d\}, \{a, b, c\}, \{b, c, d\}, \{a, c, d\}, \{a, c, d\}, \{a, b, d\}, X \}.$

Let $A = \{d\}$, then A is a μ -regular open set in (Y, μ_2) . Then $f^{-1}(\{d\})$ is a μ - β -generalized α -closed set, but not μ -closed as $c_{\mu}(f^{-1}(A)) = c_{\mu}(\{d\}) = \{b, d\} \neq f^{-1}(A)$ in (X, μ_1) . Hence f is an almost contra μ - β generalized α -continuous mapping, but not almost contra μ -continuous mapping.

Theorem 4.5: Every almost contra μ - α -continuous mapping is an almost contra μ - β -generalized α -continuous mapping in general.

Proof: Let f: $(X, \mu_1) \rightarrow (Y, \mu_2)$ be an almost contra μ - α -continuous mapping. Let A be any μ -regular open set in (Y, μ_2) . Since f is an almost contra μ - α continuous mapping, f⁻¹ (A) is a μ - α -closed set in (X, μ_1). Since every μ - α -closed set is a μ - β -generalized α -closed set, f⁻¹ (A) is μ - β -generalized α -closed set in (X, μ_1). Hence f is an almost contra μ - β -generalized α -continuous mapping.

Remark 4.6: An almost contra μ -pre-continuous mapping is not an almost contra μ - β -generalized α -continuous mapping in general.

Example 4.7: Let $X = Y = \{a, b, c\}$ with $\mu_1 = \{\emptyset, \{a, b\}, X\}$ and $\mu_2 = \{\emptyset, \{a\}, \{b, c\}, Y\}$. Let f: $(X, \mu_1) \rightarrow (Y, \mu_2)$ be a mapping defined by f(a) = a, f(b) = b, f(c) = c. Now,

 $\mu - \beta O(X) = \{ \emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}, X \}.$

Let A= {a}, then A is a μ -regular open set in (Y, μ_2). Then f⁻¹ ({a}) is a μ -pre closed as $c_{\mu}(i_{\mu}(f^{-1}(A))) = c_{\mu}(i_{\mu}(\{a\})) = \emptyset \subseteq f^{-1}(A)$, but not μ - β -generalized α closed set as $\alpha c_{\mu}(f^{-1}(A)) = X \nsubseteq U = \{a, b\}$ in (X, μ_1) . Hence f is an almost contra μ -pre-continuous mapping, but not an almost contra μ - β -generalized α -continuous mapping.

Remark 4.8: An almost contra μ - β -continuous mapping is not an almost contra μ - β -generalized α -continuous mapping in general.

Example 4.9: Let $X = Y = \{a, b, c\}$ with $\mu_1 = \{\emptyset, \{a, b\}, X\}$ and $\mu_2 = \{\emptyset, \{a\}, \{b, c\}, Y\}$. Let f: $(X, \mu_1) \rightarrow (Y, \mu_2)$ be a mapping defined by f(a) = a, f(b) = b, f(c) = c. Now,

 $\mu - \beta O(X) = \{ \emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}, X \}.$

Let A= {a}, then A is a μ -regular open set in (Y, μ_2). Then f¹({a}) is a μ - β -closed set as $i_{\mu}(c_{\mu}(i_{\mu}(f^{-1}(A)))) = i_{\mu}(c_{\mu}(i_{\mu}(\{a\}))) = \emptyset \subseteq f^{-1}(A)$, but not a μ - β -generalized α -closed set as $\alpha c_{\mu}(f^{-1}(A)) = X \nsubseteq U = \{a, b\}$ in (X, μ_1). Hence f is an almost contra μ - β -continuous mapping, but not almost contra μ - β -generalized α - continuous mapping.

In the following diagram, we have provided the relation between various types of almost contra μ -continuous mappings.

Almost contra μ - continuous μ - α -continuous contra μ - β G α -Continuous continuous conti

almost contra µ-pre- continuous

Theorem 4.10: A mapping f: $(X, \mu_1) \rightarrow (Y, \mu_2)$ is an almost contra μ - β -generalized α -continuous mapping if and only if the inverse image of every μ -regular closed set in (Y, μ_2) is a μ - β -generalized α -open set in (X, μ_1) .

Proof:

Necessity: Let F be a μ -regular closed set in (Y, μ_2). Then Y-F is a μ -regular open in (Y, μ_2). Since f is an almost contra μ - β -generalized α -continuous, f⁻¹ (Y-F) is μ - β -generalized α -closed set in (X, μ_1). Since f⁻¹(Y-F) = X - f⁻¹(F). Hence f⁻¹(F) is μ - β -generalized α -open set in (X, μ_1).

Sufficiency: Let F be a μ -regular open set in (Y, μ_2) . Then Y-F is a μ -regular closed in (Y, μ_2) . By hypothesis, f⁻¹ (Y-F) is a μ - β -generalized α -open set in (X, μ_1) . Since f⁻¹ (Y-F) = X - f⁻¹ (F) is a μ - β generalized α -open set, f⁻¹ (F) is a μ - β -generalized α - closed set in (X, μ_1). Hence f is an almost contra μ - β -generalized α -continuous mapping.

Theorem 4.11: If f: $(X, \mu_1) \rightarrow (Y, \mu_2)$ is a μ continuous mapping and g: $(Y, \mu_2) \rightarrow (Z, \mu_3)$ is an almost contra μ -continuous mapping then g \circ f: $(X, \mu_1) \rightarrow (Z, \mu_3)$ is an almost contra μ - β -generalized α continuous mapping.

Proof: Let V be any μ -regular open set in (Z, μ_3). Since g is an almost contra μ -continuous mapping, g⁻¹(V) is a μ -closed set in (Y, μ_2). Since f is a μ continuous mapping, (g \circ f)⁻¹(V) = f⁻¹(g⁻¹(V)) is a μ closed in (X, μ_1).Since every μ -closed set is a μ - β generalized α -closed set, (g \circ f)⁻¹(V) is a μ - β generalized α -closed set in (X, μ_1). Therefore g \circ f is an almost contra μ - β -generalized α -continuous mapping.

Theorem 4.12: If f: $(X, \mu_1) \rightarrow (Y, \mu_2)$ is a μ - α continuous mapping and g: $(Y, \mu_2) \rightarrow (Z, \mu_3)$ is an almost contra μ -continuous mapping then g \circ f: $(X, \mu_1) \rightarrow (Z, \mu_3)$ is a contra μ - β -generalized α continuous mapping.

1. Csaszar, A., Generalized topology, generalized continuity, Acta Mathematica Hungar., 96 (4) (2002), 351 - 357.

- 2. Jayanthi, D., Contra continuity on generalized topological spaces, Acta. Math. Hungar., SSN: 2456-134(2012), 263-271.
 - 3. Jayanthi, D., almost Contra continuity on generalized topological spaces, Indian, journal of research., 12(2013), 15-21.
 - 4. Kowsalya, M. And Jayanthi, D., μ - β generalized α -closed sets in generalized topological spaces (submitted).
 - Levine, N., Semi open sets and semi continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
 - 6. Levine, N., Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19 (1970), 89-96.
 - Mashhour, A. S., Hasanein, I. A., and EI-Deeb
 S. N., α- continuous and α-open mappings, Acta. Math. Hungar, 41 (1983), no. 3-4, 213-218.
 - 8. Min. W. K., Almost continuity on generalized topological spaces, Acta. Math. Hungar., 125 (1-2) (2009), 121-125.
 - 9. **Min. W. K.,** Generalized continuous functions defined by generalized open sets on generalized topological spaces, Acta. Math. Hungar., 2009.