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ABSTRACT 
In this paper, we have introduced contra µ
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almost contra µ-β-generalized α-continuou
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1. INTRODUCTION 
In 1970, Levin [6] introduced the idea of continuous 
function. He also introduced the concepts of semi
open sets and semi-continuity [5] in a topological 
space. Mashhour [7] introduced and studied 
continuous function in topological spaces. The 
notation of µ-β-generalized α-closed sets (briefly µ
βGαCS) was defined and investigated by Kowsalya. 
M and Jayanthi. D[4]. Jayanthi. D [2, 3] also 
introduced contra continuity and almost contra 
continuity on generalized topological spaces. In this 
paper, we have introduced contra µ-β-
continuous maps. 
 
2.  PRELIMINARIES 
Let us recall the following definitions wh
in sequel. 
 
Definition 2.1: [1] Let X be a nonempty set. A 
collection µ of subsets of X is a generalized topology 
(or briefly GT) on X if it satisfies the following:
1. Ø, X∊ µ and 
2. If {M i :i∊ I} ⊆ µ, then ∪i∊ IM i∊ µ. 
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In this paper, we have introduced contra µ-β-
continuous maps and also introduced 

continuous maps in 
generalized topological spaces by using µ-β-

βGαCS). Also we 
have introduced some of their basic properties. 

Generalized topology, generalized 
closed sets, µ-β-generalized 

generalized α-
continuous, almost contra µ-

In 1970, Levin [6] introduced the idea of continuous 
function. He also introduced the concepts of semi-

continuity [5] in a topological 
space. Mashhour [7] introduced and studied α-
continuous function in topological spaces. The 

closed sets (briefly µ-
CS) was defined and investigated by Kowsalya. 

Jayanthi. D [2, 3] also 
introduced contra continuity and almost contra 
continuity on generalized topological spaces. In this 

-generalized α-

Let us recall the following definitions which are used 

[1] Let X be a nonempty set. A 
collection µ of subsets of X is a generalized topology 
(or briefly GT) on X if it satisfies the following: 

 
If µ is a GT on X, then (X, µ) is called a 
topological space (or briefly GTS) and the elements of 
µ are called µ-open sets and their complement are 
called µ-closed sets. 
 
Definition 2.2: [1] Let (X, µ) be a GTS and let A
Then the µ-closure of A, denoted by c
intersection of all µ-closed sets containing A.
 
Definition 2.3: [1] Let (X, µ) be a GTS and let A
Then the µ-interior of A, denoted by i
union of all µ-open sets contained in A.
 
Definition 2.4: [1] Let (X, µ) be a GTS. A subset A 
of X is said to be 

i. µ-semi-closed set if  iµ

ii.  µ-pre-closed set if  cµ(i
iii.  µ-α-closed set if  cµ(iµ(c
iv. µ-β-closed set if  iµ(cµ(i
v. µ-regular-closed set if  A = 

 
Definition 2.5: [7] Let (X, µ1

Then a mapping f: (X, µ1) → (Y, µ
i. µ-Continuous mapping if f

(X, µ1) for each µ-closed in (Y, µ
ii.  µ-Semi-continuous mapping if f

semi-closed in (X, µ1
(Y, µ2). 

iii.  µ-pre-continuous mapping if f
closed in (X, µ1) for every µ
µ2). 

iv. µ-α-continuous mapping if f
in (X, µ1) for every µ-closed in (Y, µ

v. µ-β-continuous mapping if f
in (X, µ1) for every µ-closed in (Y, µ
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If µ is a GT on X, then (X, µ) is called a generalized 
topological space (or briefly GTS) and the elements of 

open sets and their complement are 

(X, µ) be a GTS and let A⊆ X. 
closure of A, denoted by cµ(A), is the 

closed sets containing A. 

(X, µ) be a GTS and let A⊆ X. 
interior of A, denoted by iµ(A), is the 

open sets contained in A. 

(X, µ) be a GTS. A subset A 

µ(cµ(A)) ⊆ A 
(iµ(A)) ⊆ A 
(cµ(A))) ⊆ A 
(iµ(A))) ⊆ A 

closed set if  A = cµ(iµ(A)) 

1) and (Y, µ2) be GTSs. 
→ (Y, µ2) is called 

Continuous mapping if f-1(A) is µ-closed in 
closed in (Y, µ2). 

continuous mapping if f-1(A) is µ-
1) for every µ-closed in 

continuous mapping if f-1(A) is µ-pre-
) for every µ-closed in        (Y, 

continuous mapping if f-1(A) is µ-α-closed 
closed in (Y, µ2). 

continuous mapping if f-1(A) is µ-β-closed 
closed in (Y, µ2). 
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Definition 2.6: [9] Let (X, µ1) and (Y, µ
Then a mapping f: (X, µ1) → (Y, µ2) is called

i. contra µ-Continuous mapping if f 
closed in (X, µ1) for every µ-open in (Y, µ

ii.  contra µ-semi continuous mappings if f 
is µ-semi closed in (X, µ1) for every µ
(Y, µ2). 

iii.  contra µ-pre-continuous mappings if f 
µ-pre closed in (X, µ1) for every µ
closed set A of (Y, µ2). 

iv. contra µ-α-continuous mapping if f
α-closed in (X, µ1) for every µ-open in (Y, µ

v. contra µ-β-continuous mapping if f 
β-closed in (X, µ1) for every µ
µ2). 

 
Definition 2.7: [3] Let (X, µ1) and (Y, µ
Then a mapping f: (X, µ1) → (Y, µ2) is called

i. almost contra µ-Continuous mapping if f 
is µ-closed in (X, µ1) for every µ
in (Y, µ2). 

ii.  almost contra µ-semi continuous mappings if f 
-1 (A) is µ-semi closed in (X, µ1
regular open in(Y, µ2). 

iii.  almost contra µ-pre-continuous mappings if f 
1 (A) is µ-pre closed in (X, µ1) for every µ
regular open in (Y, µ2). 

iv. almost contra µ-α-continuous mapping if f
1(A) is µ-α-closed in (X, µ1) for every µ
regular open in (Y, µ2). 

v. Almost contra µ-β-continuous mapping if f 
(A) is µ-β-closed in (X, µ1) for every 
open in (Y, µ2). 

 
3. CONTRA µ-β-GENERALIZED  
α - CONTINUOUS MAPPINGS  

In this chapter we have introduced contra µ
generalized α-continuous mapping in generalized 
topological spaces and studied their properties.
 
Definition 3.1: A mapping f: (X, µ1) 
called a contra µ-β-generalized α-continuous mapping 
if  f -1 (A) is a µ-β-generalized α-closed set in (X, µ
for each µ-open set A in (Y, µ2). 
 
Example 3.2: Let X = Y= {a, b, c} with µ
{b}, {a, b}, X} and µ 2= {Ø, {c}, Y}. Let f: 
(Y, µ2) be a mapping defined by f(a) = a, f(b) = b, f(c) 
= c. Now, 
 
µ-βO(X) = {Ø, {a}, {b}, {a, b}, {b, c}, {a, c}, X}.
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) and (Y, µ2) be GTSs. 
) is called 

Continuous mapping if f -1 (A) is µ-
open in (Y, µ2). 

ous mappings if f -1 (A) 
) for every µ-open in 

continuous mappings if f -1 (A) is 
) for every µ-regular 

continuous mapping if f-1(A) is µ-
open in (Y, µ2). 

continuous mapping if f -1 (A) is µ-
) for every µ-open in  (Y, 

) and (Y, µ2) be GTSs. 
) is called 

uous mapping if f -1 (A) 
) for every µ-regular open 

semi continuous mappings if f 
1) for every µ-

continuous mappings if f -

) for every µ-

continuous mapping if f-

) for every µ-

continuous mapping if f -1 

) for every µ-regular 

In this chapter we have introduced contra µ-β-
continuous mapping in generalized 

topological spaces and studied their properties. 

) → (Y, µ2) is 
continuous mapping 
closed set in (X, µ1) 

Let X = Y= {a, b, c} with µ1 = {Ø, {a}, 
= {Ø, {c}, Y}. Let f: (X, µ1) → 

) be a mapping defined by f(a) = a, f(b) = b, f(c) 

Ø, {a}, {b}, {a, b}, {b, c}, {a, c}, X}.  

Let A = {c}, then A is a µ-open set in (Y, µ
1({c}) is a µ-β-generalized α
Hence f is a contra µ-β-generalized 
mapping.  
 
Theorem 3.3: Every contra µ
a contra µ-β-generalized α-continuous mapping but 
not conversely in general. 
 
Proof: Let f: (X, µ1) → (Y, µ
continuous mapping. Let A be any µ
µ2). Since f is a contra µ-continuous mapping, f 
is a µ-closed set in (X, µ1). Since every µ
a µ-β-generalized α-closed set, f 
generalized α-closed set in (X, µ
µ-β-generalized α-continuous mapping.
 
Example 5.1.4: Let X = Y = {a, b, c, d} with µ
{a}, {c}, {a, c}, X} and µ 2 = {Ø, {d}, Y}. Let f: (X, 
µ1) → (Y, µ2) be a mapping defined by f(a) = a, f(b) = 
b, f(c) = c, f(d) = d. Now, 
 
µ-βO(X) = {Ø, {a}, {c}, {a, b}, {a, c}, {
{c, d}, {a, b, c}, {b, c, d},    
                  {a, c, d}, {a, b, d}, X}.
  
Let A = {d}, then A is a µ-open set in (Y, µ
1 ({d}) is a µ-β-generalized α
closed as cµ(f 

-1(A)) = cµ({d}) = {b, d} 
µ1). Hence f is a contra µ-β-generalized 
mapping, but not a contra µ-continuous mapping. 
 
Theorem 3.5: Every contra µ
is a contra µ-β-generalized α
general. 
 
Proof: Let f: (X, µ1) → (Y, µ
continuous mapping. Let A be any µ
µ2). Since f is a µ-α-contra continuous mapping, f 
(A) is a µ-α-closed set in (X, µ
closed set is a µ-β-generalized 
a µ-β-generalized α-closed set in (X, µ
contra µ-β-generalized α-continuous mapping.
 
Remark 3.6: A contra µ-pre
not a contra µ-β-generalized α
in general. 
 
Example 3.7: Let X =Y = {a, b, c} with µ
b}, X} and µ2 = {Ø, {a}, Y}. Let f: (X, µ
be a mapping defined by f(a) = a, f(b) = b, f(c) = c. 
Now, 
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open set in (Y, µ2). Then f -

generalized α-closed set in (X, µ1). 
generalized α-continuous 

Every contra µ-continuous mapping is 
continuous mapping but 

(Y, µ2) be a contra µ-
continuous mapping. Let A be any µ-open set in (Y, 

continuous mapping, f -1(A) 
). Since every µ-closed set is 

closed set, f -1(A) is a µ-β-
closed set in (X, µ1). Hence f is a contra 

continuous mapping. 

Let X = Y = {a, b, c, d} with µ1 = {Ø, 
= {Ø, {d}, Y}. Let f: (X, 

) be a mapping defined by f(a) = a, f(b) = 

Ø, {a}, {c}, {a, b}, {a, c}, { a, d}, {b, c}, 

{a, c, d}, {a, b, d}, X}. 

open set in (Y, µ2). Then f -

generalized α-closed set, but not µ-
({d}) = {b, d} ≠ f -1 (A) in (X, 

generalized α-continuous 
continuous mapping.  

Every contra µ-α-continuous mapping 
generalized α-continuous mapping in 

(Y, µ2) be a µ-α-contra 
continuous mapping. Let A be any µ-open set in (Y, 

contra continuous mapping, f -1 

closed set in (X, µ1). Since every µ-α-
generalized α-closed set, f -1 (A) is 

set in (X, µ1). Hence f is a 
continuous mapping. 

pre-continuous mapping is 
generalized α- continuous mapping 

Let X =Y = {a, b, c} with µ1 = {Ø, {a, 
{Ø, {a}, Y}. Let f: (X, µ 1) → (Y, µ2) 

be a mapping defined by f(a) = a, f(b) = b, f(c) = c. 
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µ-βO(X) = {Ø, {a}, {b}, {a, b}, {b, c}, {a, c}, X}.
 
Let A= {a}, then A is a µ-open set in (Y, µ
({a}) is a µ-pre closed set as cµ(i
cµ(iµ({a})) = Ø		⊆ f -1 (A), but not a µ
α-closed set as αcµ(f

 -1 (A)) = X ⊈ U = {a, b} 
µ1). Hence f is a contra µ-pre-continuous mapping, 
but not a contra µ-β-generalized 
mapping. 
 
Remark 3.8: A contra µ-β-continuous mapping is not 
a contra µ-β-generalized α-continuous mapping in 
general. 
 
Example 3.9: Let X = Y= {a, b, c} with µ
b}, X} and µ2 = {Ø, {a}, Y}. Let f: (X, µ
be a mapping defined by f(a) = a, f(b) = b, f(c) = c. 
Now, 
 
µ-βO(X) = {Ø, {a}, {b}, {a, b}, {b, c}, {a, c}, X}.
 
Let A= {a}, then A is a µ-open set in (Y, µ
1({a}) is a µ-β-closed set as iµ(cµ(iµ 

iµ(cµ(iµ({a})))= Ø ⊆ f -1 (A), but not µ
α-closed set αcµ(f

 -1 (A)) = X ⊈ U = {a, b} 
Hence f is a contra µ-β-continuous mapping, but not a 
contra µ-β-generalized α-continuous mapping.
 
In the following diagram, we have provided the 
relation between various types of contra µ
mappings. 

contra µ- continuous 
 
contracontra 
µ-α-continuous                                 µ-β-

contra µ-βGα- 
continuous 

 
 

contra µ-pre- continuous 
 
Theorem 3.10: A mapping f: (X, µ1) →
contra µ-β-generalized α-continuous mapping if and 
only if the inverse image of every µ-closed set in (Y, 
µ2) is a µ-β-generalized α-open set in (X, µ
 
Proof: Necessity: Let F be a µ-closed set in (Y, 
µ2).Then Y-F is a µ-open in (Y, µ2). Then f 
a µ-β-generalized α-closed set in (X, µ
hypothesis. Since f -1 (Y-F) = X - f -1(F). Hence f 
is a µ-β-generalized α-open set in (X, µ1
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Ø, {a}, {b}, {a, b}, {b, c}, {a, c}, X}.  

open set in (Y, µ2). Then f -1 

(iµ(f 
-1(A))) = 

(A), but not a µ-β-generalized 
U = {a, b} in (X, 

continuous mapping, 
generalized α-continuous 

mapping is not 
continuous mapping in 

Let X = Y= {a, b, c} with µ1 = {Ø, {a, 
= {Ø, {a}, Y}. Let f: (X, µ 1) → (Y, µ2) 

be a mapping defined by f(a) = a, f(b) = b, f(c) = c. 

}, {b}, {a, b}, {b, c}, {a, c}, X}.  

open set in (Y, µ2). Then f-

µ ( f -1(A)))) = 
(A), but not µ-β-generalized 

U = {a, b} in (X, µ1). 
continuous mapping, but not a 

continuous mapping. 

In the following diagram, we have provided the 
relation between various types of contra µ-continuous 

- continuous 

 

→ (Y, µ2) is a 
continuous mapping if and 

closed set in (Y, 
open set in (X, µ1). 

closed set in (Y, 
). Then f -1 (Y-F) is 

closed set in (X, µ1), by 
(F). Hence f -1(F) 

1). 

Sufficiency: Let F be a µ-open set in (Y, µ
F is a µ-closed in (Y, µ2). By hypothesis, f 
a µ-β-generalized α-open set in (X, µ
F) = X - f -1 (F) is a µ-β-generalized 
µ1). Therefore f -1 (F) is a µ-β-
in (X, µ1). Hence f is a contra µ
continuous mapping. 
 
Theorem 3.11: Let f: (X, µ1) 
and let f -1 (V) be a µ-open set in (X, µ
closed V set in (Y, µ2). Then f is a contra µ
generalized α-continuous mapping.
 
Proof: Let V be a µ-closed set in (Y, µ
(V) be a µ-open set in (X, µ
every µ-open set is µ-β-generalized 
Hence f -1 (V) is a µ-β-generalized 
µ1). Hence f is a contra µ-β-generalized 
mapping. 
 
Theorem 3.12: If f: (X, µ1) →
generalized α-continuous mapping and    g: (Y, µ
(Z, µ3) is a µ-continuous mappin
→ (Z, µ3) is a contra µ-β-generalized 
mapping. 
 
Proof: Let V be any µ-open set in (Z, µ
1(V) is a µ-open set in (Y, µ
continuous mapping. Since f is a contra µ
generalized α-continuous mapping, (g 
1(g -1 (V)) is a µ-β-generalized α
Therefore g ◦ f is a contra µ
continuous mapping. 
 
Theorem 3.13: If f: (X, µ 1) →
continuous mapping and g: (Y, µ
contra µ-continuous mapping then g 
µ3) is a µ-β-generalized α-continuous mapping. 
 
Proof: Let V be any µ-open set in (Z, µ
contra µ-continuous mapping, g 
in (Y, µ2). Since f is a contra µ
(g ◦ f)-1 (V) = f -1(g -1(V)) is a µ
Since every µ-open set is a µ
set, (g ◦ f) -1(V) is a µ-β-generalized 
µ1). Therefore g ◦ f is a µ-β-generalized 
mapping. 
 
Theorem 3.14: If f: (X, µ1) →
continuous mapping and g: (Y, µ
contra µ-continuous mapping then g 
µ3) is a µ-β-generalized α-continuous mapping. 

ment (IJTSRD) ISSN: 2456-6470 

Oct 2018    Page: 609 

open set in (Y, µ2). Then Y-
). By hypothesis, f -1 (Y-F) is 

open set in (X, µ1). Since f -1 (Y-
generalized α-open set in (X, 

-generalized α-closed set 
). Hence f is a contra µ-β-generalized α-

) → (Y, µ2) be a mapping 
open set in (X, µ2) for every 
). Then f is a contra µ-β-

continuous mapping. 

closed set in (Y, µ2). Then f -1 
open set in (X, µ1), by hypothesis. Since 

generalized α-open set in X. 
generalized α-open set in (X, 

generalized α-continuous 

→ (Y, µ2) is a contra µ-β-
continuous mapping and    g: (Y, µ2) → 
continuous mapping then g ◦ f: (X, µ1) 

generalized α-continuous 

open set in (Z, µ3). Then g -

open set in (Y, µ2), since g is a µ-
continuous mapping. Since f is a contra µ-β-

continuous mapping, (g ◦ f) -1 (V) = f -

generalized α-closed set in (X, µ1). 
 f is a contra µ-β-generalized α- 

→ (Y, µ2) is a contra µ-
continuous mapping and g: (Y, µ2) → (Z, µ3) is a 

continuous mapping then g ◦ f: (X, µ1) → (Z, 
continuous mapping.  

open set in (Z, µ3). Since g is a 
ontinuous mapping, g -1(V) is a µ-closed set 

). Since f is a contra µ-continuous mapping, 
(V)) is a µ-open set in (X, µ1). 

open set is a µ-β-generalized α-open 
generalized α-open set in (X, 

generalized α-continuous 

→ (Y, µ2) is a contra µ-α-
continuous mapping and g: (Y, µ2) → (Z, µ3) is a 

continuous mapping then g ◦ f: (X, µ1) → (Z, 
continuous mapping.  
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Proof: Let V be any µ-closed set in (Z, µ
a µ-contra continuous mapping, g -1 (V) is a µ
set in (Y, µ2). Since f is a µ-α-contra continuous 
mapping, (g ◦ f) -1 (V) = f -1(g -1 (V)) is a 
set in (X, µ1). Since every µ-α-closed set is a µ
generalized α-closed set, (g ◦ f)-1 (V) is a µ
generalized α-closed set in (X, µ1). Therefore g 
µ-β-generalized α-continuous mapping. 
 
Theorem 3.15: If f: (X, µ 1) → (Y, µ
continuous mapping and g: (Y, µ2) →
contra µ-continuous mapping then g ◦ f: (X, µ
µ3) is a contra µ-β-generalized α-continuous mapping.
 
Proof: Let V be any µ-open set in (Z, µ
contra µ-continuous mapping, g -1 (V) is a µ
set in (Y, µ2). Since f is µ-continuous (g 
1(g -1 (V)) is a µ-closed set in (X, µ1). Since every µ
closed set is a µ-β-generalized α-closed set, (g 
(V) is a µ-β-generalized α-closed set. Therefore g 
is a contra µ-β-generalized α-continuous mapping.
 
4. ALMOST CONTRA µ- β-GENERALIZED 

CONTINUOUS MAPPINGS  
In this section we have introduced almost contra µ
generalized α-continuous mapping in generalized 
topological spaces and studied some of their basic 
properties. 
 
Definition 4.1: A mapping f: (X, µ1) 
called an almost contra µ
α-continuous mapping if f -1 (A) is a µ
α-closed set in (X, µ1) for each µ-regular open set A 
in (Y, µ2). 
 
Example 4.2: Let X = Y= {a, b, c} with µ
{b}, {a, b}, X} and µ 2= {Ø, {c}, {a, b}, Y}. Let f: (X, 
µ1) → (Y, µ2) be a mapping defined by f(a) = a, f(b) = 
b, f(c) = c. Now, 

µ-βO(X) = {Ø, {a}, {b}, {a, b}, {b, c}, {a, c}, X}.
 
Let A = {c}, then A is a µ-regular open set in (Y, µ
Then f -1({c}) is a µ-β-generalized α-closed set in (X, 
µ1). Hence f is an almost contra µ-β-generalized 
continuous mapping.  
 
Theorem 4.3: Every almost contra µ
mapping is an almost contra µ-β-generalized 
continuous mapping but not conversely.
 
Proof: Let f: (X, µ1) → (Y, µ2) be an almost contra µ
continuous mapping. Let A be any µ-regular open set 
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closed set in (Z, µ3). Since g is 
(V) is a µ-open 

contra continuous 
(V)) is a µ-α-closed 
closed set is a µ-β-

(V) is a µ-β-
). Therefore g ◦ f is a 

 

 (Y, µ2) is a µ-
→ (Z, µ3) is a 
◦ f: (X, µ1) → (Z, 

continuous mapping. 

open set in (Z, µ3). Since g is a 
(V) is a µ-closed 

continuous (g ◦ f) -1 (V) = f -

). Since every µ-
closed set, (g ◦ f)-1 

closed set. Therefore g ◦ f 
continuous mapping. 

GENERALIZED α-

In this section we have introduced almost contra µ-β-
continuous mapping in generalized 

topological spaces and studied some of their basic 

) → (Y, µ2) is 
called an almost contra µ-β-generalized                                    

(A) is a µ-β-generalized 
regular open set A 

Let X = Y= {a, b, c} with µ1 = {Ø, {a}, 
= {Ø, {c}, {a, b}, Y}. Let f: (X, 

) be a mapping defined by f(a) = a, f(b) = 

Ø, {a}, {b}, {a, b}, {b, c}, {a, c}, X}.  

regular open set in (Y, µ2). 
closed set in (X, 

generalized α-

Every almost contra µ-continuous 
generalized α-

inuous mapping but not conversely. 

) be an almost contra µ-
regular open set 

in (Y, µ2). Since f is almost contra µ
mapping, f -1 (A) is a µ-closed set in (X, µ
every µ-closed set is a µ-β-generalized 
-1(A) is a µ-β-generalized α
Hence f is an almost contra µ
continuous mapping. 
 
Example 4.4: Let X = Y = {a, b, c, d} with µ
{a}, {c}, {a, c}, X} and µ 2 = {Ø, {d},   {a, b, c}, Y}. 
Let f: (X, µ1) → (Y, µ2) be a mapping defined by f(a) 
= a, f(b) = b, f(c) = c, f(d) = d. Now,
 
µ-βO(X) = {Ø, {a}, {c}, {a, b}, {a, c}, {a, d}, {b, c}, 
{c, d}, {a, b, c}, {b, c, d}, 
                   {a, c, d}, {a, b, d}, X}.
 
Let A = {d}, then A is a µ-regular open set in (Y, µ
Then f -1 ({d}) is a µ-β-generalized 
not µ-closed as cµ(f 

-1(A)) = cµ

in (X, µ1). Hence f is an almost contra µ
generalized α-continuous mapping, but not 
contra µ-continuous mapping. 
 
Theorem 4.5: Every almost contra µ
mapping is an almost contra µ
continuous mapping in general.
 
Proof: Let f: (X, µ1) → (Y, µ2

α-continuous mapping. Let A be any µ
set in (Y, µ2). Since f is an almost contra µ
continuous mapping, f -1 (A) is a µ
µ1). Since every µ-α-closed set is a µ
α-closed set, f -1 (A) is µ-β-generalized 
(X, µ1). Hence f is an almost contra µ
α-continuous mapping. 
 
Remark 4.6: An almost contra µ
mapping is not an almost contra µ
continuous mapping in general.
 
Example 4.7: Let X =Y = {a, b, c} with µ
b}, X} and µ2 = {Ø, {a} , {b, c}, Y}. Let f: (X, µ
(Y, µ2) be a mapping defined by f(a) = a, f(b) = b, f(c) 
= c. Now, 
 
µ-βO(X) = {Ø, {a}, {b}, {a, b}, {b, c}, {a, c}, X}.
 
Let A= {a}, then A is a µ-regular open set in (Y, µ
Then f -1 ({a}) is a µ-pre closed as c
cµ(iµ({a})) = Ø		⊆ f -1 (A), but not µ
closed set as αcµ(f

 -1 (A)) = X 
Hence f is an almost contra µ
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). Since f is almost contra µ-continuous 
closed set in (X, µ1). Since 

generalized α-closed set, f 
generalized α-closed set in (X, µ1). 

Hence f is an almost contra µ-β-generalized α-

Let X = Y = {a, b, c, d} with µ1 = {Ø, 
= {Ø, {d},   {a, b, c}, Y}. 

) be a mapping defined by f(a) 
= a, f(b) = b, f(c) = c, f(d) = d. Now, 

Ø, {a}, {c}, {a, b}, {a, c}, {a, d}, {b, c}, 

{a, c, d}, {a, b, d}, X}. 

regular open set in (Y, µ2). 
generalized α-closed set, but 

µ({d}) = {b, d} ≠ f -1 (A)  
). Hence f is an almost contra µ-β-

continuous mapping, but not almost 
continuous mapping.  

Every almost contra µ-α-continuous 
mapping is an almost contra µ-β-generalized α- 
continuous mapping in general. 

2) be an almost contra µ-
continuous mapping. Let A be any µ-regular open 

). Since f is an almost contra µ-α-
(A) is a µ-α-closed set in (X, 

closed set is a µ-β-generalized     
generalized α-closed set in 

almost contra µ-β-generalized 

An almost contra µ-pre-continuous 
mapping is not an almost contra µ-β-generalized α-
continuous mapping in general. 

Let X =Y = {a, b, c} with µ1 = {Ø, {a, 
, {b, c}, Y}. Let f: (X, µ1) → 

) be a mapping defined by f(a) = a, f(b) = b, f(c) 

Ø, {a}, {b}, {a, b}, {b, c}, {a, c}, X}.  

regular open set in (Y, µ2). 
pre closed as cµ(iµ(f 

-1 (A))) = 
(A), but not µ-β-generalized α-

= X ⊈ U = {a, b} in (X, µ1). 
Hence f is an almost contra µ-pre-continuous 
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mapping, but not an almost contra µ-β-
continuous mapping. 
 
Remark 4.8: An almost contra µ
mapping is not an almost contra µ-β-generalized 
continuous mapping in general. 
 
Example 4.9: Let X = Y= {a, b, c} with µ
b}, X} and µ2 = {Ø, {a}, {b, c} Y}. Let f: (X, µ
(Y, µ2) be a mapping defined by f(a) = a
= c. Now, 

µ-βO(X) = {Ø, {a}, {b}, {a, b}, {b, c}, {a, c}, X}.

Let A= {a}, then A is a µ-regular open set in (Y, µ
Then f-1({a}) is a µ-β-closed set as iµ(cµ

iµ(cµ(iµ({a})))= Ø ⊆ f -1 (A), but not a µ
α-closed set as αcµ(f

 -1 (A)) = X ⊈ U = {a, b} 
µ1). Hence f is an almost contra µ
mapping, but not almost contra µ-β-generalized 
continuous mapping. 
 
In the following diagram, we have provided the 
relation between various types of alm
continuous mappings. 
 

Almost contra µ- continuous

Almost contra almost 
µ-α-continuous            almost          µ-β-
contra µ-βGα- 

continuous 
 

almost contra µ-pre- continuous
 
Theorem 4.10: A mapping f: (X, µ1) →
almost contra µ-β-generalized α-continuous mapping 
if and only if the inverse image of every µ
closed set in (Y, µ2) is a µ-β-generalized 
(X, µ1). 
 
Proof: 
Necessity: Let F be a µ-regular closed set in (Y, µ
Then Y-F is a µ-regular open in (Y, µ2). Since f is an 
almost contra µ-β-generalized α-continuous, f 
is µ-β-generalized α-closed set in (X, µ
1(Y-F) = X - f -1(F). Hence f -1(F) is µ
α-open set in (X, µ1). 
 
Sufficiency: Let F be a µ-regular open set in (Y, µ
Then Y-F is a µ-regular closed in (Y, µ
hypothesis, f -1 (Y-F) is a µ-β-generalized 
in (X, µ1). Since f -1 (Y-F) = X - f -1 

generalized α-open set, f -1 (F) is a µ-β-
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-generalized α-

almost contra µ-β-continuous 
generalized α-

Let X = Y= {a, b, c} with µ1 = {Ø, {a, 
= {Ø, {a}, {b, c} Y}. Let f: (X, µ 1) → 

) be a mapping defined by f(a) = a, f(b) = b, f(c) 

Ø, {a}, {b}, {a, b}, {b, c}, {a, c}, X}.  

regular open set in (Y, µ2). 
µ(iµ (f 

-1(A)))) = 
(A), but not a µ-β-generalized 

U = {a, b} in (X, 
). Hence f is an almost contra µ-β-continuous 

generalized α-

In the following diagram, we have provided the 
relation between various types of almost contra µ-

continuous 

Almost contra almost contra                                                 
-continuous 

continuous 

→ (Y, µ2) is an 
continuous mapping 

if and only if the inverse image of every µ-regular 
generalized α-open set in 

regular closed set in (Y, µ2). 
). Since f is an 

continuous, f -1 (Y-F) 
closed set in (X, µ1). Since f -

(F) is µ-β-generalized 

regular open set in (Y, µ2). 
regular closed in (Y, µ2). By 

generalized α-open set 
1 (F) is a µ-β-
-generalized α-

closed set in (X, µ1). Hence f is an almost contra µ
generalized α-continuous mapping.
 
Theorem 4.11: If f: (X, µ
continuous mapping and g: (Y, µ
almost contra µ-continuous mapping the
µ1) → (Z, µ3) is an almost contra µ
continuous mapping. 
 
Proof: Let V be any µ-regular open set in (Z, µ
Since g is an almost contra µ-
1(V) is a µ-closed set in (Y, µ
continuous mapping, (g ◦ f)-1 (V) = f 
closed in (X, µ1).Since every µ
generalized α-closed set, (g 
generalized α-closed set in (X, µ
an almost contra µ-β-generalized 
mapping. 
 
Theorem 4.12: If f: (X, µ1) 
continuous mapping and g: (Y, µ
almost contra µ-continuous mapping then g 
µ1) → (Z, µ3) is a contra µ
continuous mapping. 
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