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ABSTRACT 
Roots of Mesh-free methods go back to the seventies. 
The major difference to finite element methods is that 
the domain of interest is discretized only with nodes, 
often called particles. These particles interact via 
mesh-free shape functions in a continuum framework 
similar as finite elements do although particle 
“connectivity” can change over the course of a 
simulation. This flexibility of mesh-free methods has 
been exploited in applications with large deformations 
in fluid and solid mechanics, e.g. to name a few, free
surface flow, metal forming, fracture and 
fragmentation, to name a few. Though there are a few 
publications on mesh-free methods formulated in an 
Eulerian (or ALE) description, e.g. Fries 2005, most 
mesh-free methods are pure Lagrangian in character. 
The non negligible advantages of mesh
as compared to finite elements are: their higher order 
continuous shape functions that can be exploited e.g. 
for thin shells; higher smoothness; certain adv
in crack propagation problems. The most unhidden 
drawback of mesh-free methods is probably their 
higher computational cost, regardless of some 
instabilities that certain mesh-free methods have. The 
paper deals with the basic methodology of mesh
methods along with the mathematics involved.
 
KEYWORD: discretization, FDM, FEM, FVM, 
Eigen-value, triangulation, shape function, 
collocation, SPH 
 
I. INTRODUCTION 
In the traditional FEM [1, 3], the FDM [5], and the 
FVM [6], the spatial domain in problem is 
into meshes. A mesh is defined as any of the open 
spaces or interstices between the strands of a net that 
is formed by connecting nodes in a predefined 
manner. 
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is formed by connecting nodes in a predefined 

 
In FDM, the meshes used are also often called grids; 
in the FVM, the meshes are cal
and in FEM, the meshes are called elements. The 
terminologies of grids, volumes, cells, and elements 
carry sometimes certain physical meanings as they are 
defined for different physical problems. All these 
grids, volumes, cells, and elements can be termed 
meshes in accordance with the definition of mesh. 
The mesh must be predefined to provide a certain 
relationship between the nodes, which becomes the 
building blocks of the formulation procedure of the 
well known conventional numerical
 
The mesh-free methods establish a system of 
algebraic equations for the whole problem domain 
without the use of a predefined mesh, or use easily 
generable meshes in a much more flexible or ‘‘freer’’ 
manner. Mesh-free methods essentially use a se
nodes scattered within the problem domain as well as 
on the boundaries to represent the problem domain 
and its boundaries. The field functions are then 
approximated locally using these nodes.
 
Some of the mesh-free methods are often termed 
mesh-less method. The ideal requirement for a 
‘‘mesh-less’’ method is: 
� No mesh is necessary at all throughout the process 

of solving the problem of given arbitrary 
geometry governed by partial differential system 
equations subject to all kinds of boundary 
conditions. 

� The work published so far conclude that the mesh
free methods developed so far are not entirely 
‘‘mesh-less’’ and fall in one of the following 
categories: 

� Methods that require background cells for the 
integration of system matrices derived from the 
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weak form over the problem domain. EFG 
methods may belong to this category. These 
methods are practical in many ways, as the 
creation of a background mesh is generally more 
feasible and can be much more easily automated 
using a triangular mesh for 2D domains and a 
tetrahedral mesh for 3D domains. 

� Methods that require background cells locally for 
the integration of system matrices over the 
problem domain. These methods require only a 
local mesh and are easier to generate. 

� Methods that do not require a mesh at all, but that 
are less stable and less accurate. Local point 
collocation methods using irregular grids may 
belong to this category. Automation of nodal 
selection and improving the stability of the 
solution are still some of the challenges in these 
kinds of methods. 

� Particle methods that require a predefinition of 
particles for their volumes or masses. The 
algorithm will then carry out the analyses even if 
the problem domain undergoes extremely large 
deformation and separation. SPH methods belong 
to this category. This type of method suffers from 
problems in the imposition of boundary 
conditions. SPH simulates well the overall 
behaviors of certain class of problems such as 
highly nonlinear and momentum-driven problems. 

 
This loose definition of mesh-free method recognizes 
the fact: 
1. Many mesh-free methods (often more robust, 

reliable, and effective ones) do use some kind of 
mesh, but the mesh is used in much more flexible 
and ‘‘freer’’ ways;  

2. Most important motivation of developing mesh-
free methods was to reduce the reliance on the use 
of ‘‘quality’’ meshes that are difficult or 
expensive to create for practical problems of 
complicated geometries 

 
II. THE IDEA OF MESH FREE METHODS: 
A close examination of the difficulties [1,3] 
associated with FEM pinpoints at the root of the 
problem: the heavy and rigid reliance on the use of 
quality elements that are the building blocks of FEM. 
A mesh with a predefined connectivity is required to 
form the elements that are used for both field variable 
interpolation and energy integration. As long as 
elements are used in such a rigid manner, the 
problems shall not be easy to solve. And, the idea of  
liminating or reducing the reliance on the elements 

and more flexible ways to make use of mesh has 
evolved. The concept of element-free, mesh-less, or 
mesh-free method was proposed, in which the domain 
of the problem is represented, ideally, only by a set of 
arbitrarily distributed nodes. 
 
The mesh-free methods have shown great potential 
for solving the difficult problems mentioned above. 
Triangular types of mesh that can be much more 
easily created automatically for complicated 2D and 
3D domains, as shown in Figures 1 and 2. These types 
of triangular background cells are sufficient for 
necessary numerical operations in mesh-free methods. 
This provides flexibility in adding or deleting 
points/nodes whenever and wherever needed. For 
stress analysis of a solid domain, for example, there 
are often areas of stress concentration. One can 
relatively freely add nodes in the stress concentration 
area without worrying too much about their 
relationship with the other existing nodes. 

 
Figure - 1 a triangular mesh of elements or 

background cells for a complicated 2D domain 
 
In crack growth problems, nodes can be easily added 
around the crack tip to capture the stress concentration 
with desired accuracy. This nodal refinement can be 
moved with a propagation crack through background 
cells associated with the global geometry. Adaptive 
meshing for a large variety of problems, 2D or 3D, 
including linear and nonlinear, static and dynamic 
stress analysis, can be very effectively treated in 
mesh-free methods in a relatively simple manner. 
Because there is no need to create a quality mesh, and 
the nodes can be created by a computer in a much 
more automated manner, much of the time an 
engineer spending on conventional mesh generation 
can be saved. This can result in to substantial cost and 
time savings in modeling and simulation projects. 
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Figure - 2: a tetrahedral mesh of elements or 
background cells for a complicated 3D domain

 
III. BASIC TECHNIQUES FOR MESH

METHODS: 
The general procedure and basic steps for mesh
methods are presented here under through an example 
of structural problem. 
 
A. Basic steps: 
Step 1: Domain representation or discretization:
The geometry of the solid or structure is first created 
in a CAE code or pre processor, and is triangulated to 
produce a set of triangular type cells with a set of 
nodes scattered in the problem domain and its 
boundary. Boundary conditions and loading 
conditions are then specified for the model. The 
density of the nodes depends on the
accuracy of the geometry, the accuracy requirement of 
the solution, and the limits of the computer resources 
available. The nodal distribution is usually not 
uniform and a denser distribution of nodes is often 
used in the area where the displacement gradient is 
larger. Because adaptive algorithms can be used in 
mesh-free methods, the density is eventually 
controlled automatically and adaptively in the code of 
the mesh-free method, we do not have to worry too 
much about the distribution quality of the initial nodes 
used in usual situations. In addition, as a mesh
method, it should not demand too much for the pattern 
of nodal distribution. It should be workable withi
reason for arbitrarily distributed nodes. Because the 
nodes shall carry the values of the field variables in a 
mesh-free formulation, they are often called field 
nodes. 
 
Step 2: Displacement interpolation: 
The field variable (say, a component of the 
displacement vector) u at any point at x=(x, y, z) 
within the problem domain is approximated or 
interpolated using the displacements at its nodes 
within the support domain of the point at x that is 
usually a quadrature point, i.e., 
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of nodal distribution. It should be workable within 
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The field variable (say, a component of the 
displacement vector) u at any point at x=(x, y, z) 
within the problem domain is approximated or 
interpolated using the displacements at its nodes 
within the support domain of the point at x that is 

Where, 
Sn is the set of local nodes included in a ‘‘small local 
domain’’ of the point x, such a local domain is called 
support domain, and the set of local nodes are called 
support nodes 
 
ui is the nodal field variable at the i
support domain 
 
ds is the vector that collects all the nodal field 
variables at these support nodes
 
ɸi(x) is the shape function of the i
all the support nodes in the support domain and is 
often called nodal shape function
 
A support domain of a point x determines the number 
of nodes to be used to approximate the function value 
at x. A support domain can be weighted using 
functions that vanish on the boundary of the support 
domain, as shown in Figure-
shapes and its dimension and shape can be different 
for different points of interest x, as shown in Figure
The shapes most often used are circular or 
rectangular, or any shape to include desired 
supporting nodes. The concept of support domain 
works well if the nodal density does not vary too 
drastically in the problem domain. However, in 
solving practical problems, such as problems with 
stress singularity, the nodal density can vary 
drastically. The use of a support domain based on the 
current point of interest can lead to spatially biased 
selection of nodes for the construction of shape 
functions. 

Figure -
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Figure - 4 

 
In extreme situations, all the nodes used could be 
located on one side only, and the shape functions so 
constructed can result in serious error, due to 
extrapolation. To prevent this kind of problem, the 
concept of influence domain of a node should be used. 
The concept of influence domain is explained later on 
in the discussion. The interpolation, defined in 
Equation (1), is generally performed for all the 
components of all the field variables in the same 
support domain. For an example taking a 3D solid 
mechanics problem, the displacement is usually 
chosen as the field variable, and the displacement 
would have three components: displacements in the x-
, y-, and z-directions. The same shape function is used 
for all three displacement components in the support 
domain of the same point. However, there are 
situations where different shape functions are used for 
different field variables. For example, for bending 
problems of beams, plates, and shells, it is 
advantageous to use different shape functions, 
respectively, for deflection and rotation, in 
overcoming the so-called shear and membrane 
locking issues. 
 
Step 3: Formation of system equations: 
The discrete equations of a mesh-free method can be 
formulated using the shape functions and weak or 
weakened-weak forms. These equations are often 
written in nodal matrix form and are assembled into 
the global system matrices for the entire problem 
domain. The procedures for forming system equations 
are different for different mesh-free methods. 
 
Step 4: Solving the global mesh-free equations: 
Solving the set of global mesh-free equations, we 
obtain solutions for different types of problems. 
 
1. For static problems, the displacements at all the 

nodes in the entire problem domain are first 

obtained. The strain and stress can then be 
retrieved using strain– displacement relations and 
constitutive equations. A standard linear algebraic 
equation solver, such as a Gauss elimination 
method, LU decomposition method, and iterative 
methods, can be used. 

 
2. For free-vibration and buckling problems, Eigen 

values and corresponding eigenvectors can be 
obtained using the standard Eigen-value equation 
solvers. Some of the commonly used methods are 
the following:  

� Jacobi’s method 
� Given’s method  
� The bisection method  
� Inverse iteration 
� Subspace iteration 
� Lanczos method 

 
3. For dynamics problems, the time history of 

displacement, velocity, and acceleration are to be 
obtained. The following standard methods of 
solving dynamics equation systems can be used: 

� The modal superposition method can be used for 
vibration types of problems and problems of far 
field response to low speed impact with many load 
cases. 

� For problems with a single load or few loads, the 
direct integration method can be used, which uses 
the FDM for time stepping with implicit and 
explicit approaches. 

� The implicit method is more efficient for 
relatively slow phenomena of vibration types of 
problems. 

� The explicit method is more efficient for very fast 
phenomena, such as impact and explosion. 

 
For computational fluid dynamics problems, the 
discretized system equations are basically nonlinear, 
and one needs an additional iteration loop to obtain 
the results. 
 
B. Triangulation:  
Consider a d-dimensional problem domain of Ω Є Rd 
bounded by Γ. By default, we speak of ‘‘open’’ 
domain that does not include the boundary of the 
domain. When we refer to a ‘‘closed’’ domain we will 
specifically use a box: Ω = Ω ∩ Γ.  
 
Triangulation is the most flexible way to create 
background triangular cells for mesh-free operations. 
The process can be almost fully automated for 2D and 
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even 3D domains with complicated geometry. 
Therefore, it is used in most commercial pre
processors using processes such as the widely used 
Delaunay triangulation.  
 
Concept of the Influence Domain: 
The support domain is defined as a domain in the 
vicinity of a point of interest xQ that can be, but does 
not have to be, at a node. It is used to include the
nodes for shape function construction for x
extended concept of the support domain means a 
particular way to select those nodes, not necessarily 
just by distance.  
 
The influence domain is defined as a domain that a 
node exerts an influence upon. It works well for very 
irregularly distributed nodes. Influence domains are 
defined for each node in the problem domain, and 
they can be different from node to node to represent 
the area of influence of the node, as shown in Figure
6. 

Figure - 6:  Influence domains of nodes
 
In constructing shape functions for point at xQ 
(marked with x), nodes whose influence domains 
covers x are to be used for construction of shape 
functions. For example, nodes 1 and 2 are included, 
but node 3 is not included. 
 
Node 1 has an influence radius of r1, and node 2 has 
an influence radius of r2, etc. The node will be 
involved in the shape function construction for any 
point that is within its influence domain. For example, 
in constructing the shape functions for the point 
marked with x at point xQ (see Figure 
and 2 will be used, but node 3 will not be used. 
 
The formula to compute the dimension of the 
influence domain of that node is 
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Where 
rI is the radius of the influence domain of node I
nI is the number of surrounding triangular cells
ai is the area of the ith cell 
αs is a constant scaling with the domain size
 
The fact is that the dimension of the influence 
domain, which can be different from node to node, 
allows some nodes to have further
others and prevents unbalanced nodal distribution for 
constructing shape functions. 
 
As shown in Figure - 6, node 1 is included for 
constructing shape functions for the point at point x
but node 3 is not included, even though node 3 is 
closer to xQ compared with node 1.
 
T-Schemes for Node Selection:
Since the background cells are needed for integration 
for weak or weakened-weak form mesh
background cells are often already made available. 
Therefore, it is natural to make 
the selection of supporting nodes for shape function 
construction. Background cells of triangular type 
generated by triangulation have been found most 
practical, robust, reliable, and efficient for local 
supporting node selection. Tria
selection schemes are termed as T
listed in Table 1. 
 

Table 1- T-Schemes for Node Selection Based on 
Triangular Background Cells
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is the radius of the influence domain of node I 
is the number of surrounding triangular cells 

is a constant scaling with the domain size 

The fact is that the dimension of the influence 
domain, which can be different from node to node, 
allows some nodes to have further influence than 
others and prevents unbalanced nodal distribution for 

 

6, node 1 is included for 
constructing shape functions for the point at point xQ, 
but node 3 is not included, even though node 3 is 

compared with node 1. 

Schemes for Node Selection: 
Since the background cells are needed for integration 

weak form mesh-free methods, 
background cells are often already made available. 
Therefore, it is natural to make use of them also for 
the selection of supporting nodes for shape function 
construction. Background cells of triangular type 
generated by triangulation have been found most 

reliable, and efficient for local 
supporting node selection. Triangular cell-based node 
selection schemes are termed as T-schemes, and are 

Schemes for Node Selection Based on 
Triangular Background Cells 
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In the definition of types of T-schemes, a home cell 
refers to the cell which hosts the point of interest 
(usually the quadrature sampling point). An interior 
home cell is a home cell that has no edge on the 
boundary of the problem domain and a boundary 
home cell is a home cell which has at least one edge 
on the boundary. A neighboring cell of a home cell 
refers to the cell which shares one edge with the home 
cell. 
 
Figure-7 shows the background triangular cells for 2D 
domain. The node selection is then performed as 
follows. 
 
T3-Scheme: 
In the T3-scheme, we simply select three nodes of the
home cell of the point of interest. As illustrated in 
Fig-7 (a), no matter the point of interest x located in 
an interior home cell (cell i) or a boundary home cell 
(cell j), only the three nodes of the home cell (i
j1_j3) are selected. T3-scheme is used only for 
creating linear PIM (Point Interpolation Method) 
shape functions by using polynomial basis functions. 
Note that the linear PIM shape functions so 
constructed are exactly the same as those in FEM 
using linear triangular elements. 
 
T4-Scheme: 
T4-scheme is the analogy of the T3-scheme, but of 
node selection for 3D domains with tetrahedral 
background cells. 
 
T6/3-Scheme: 
The T6/3-scheme selects six nodes to interpolate a 
point of interest located in an interior cell and three 
nodes for those located in boundary home cells. As 
illustrated in Figure-7 (b), when the point of interest 
xQ is located in an interior home cell (cell i), we select 
six nodes: three nodes of the home cell (i
another three nodes located at the remote vertices of 
the three neighboring cells (i4_i6). When the point of 
interest at xQ is located in a boundary home cell (cell 
j), we select only three nodes of the home cell, i.e., 
j1_j3. 
 
T6/3-scheme was purposely devised for creating high
order PIM shape functions, where 
interpolations are performed for the interior home 
cells and linear interpolations for boundary home 
cells. This scheme was first used in the NS
It can not only successfully overcome the singular 
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boundary of the problem domain and a boundary 
home cell is a home cell which has at least one edge 

ll of a home cell 
refers to the cell which shares one edge with the home 

7 shows the background triangular cells for 2D 
domain. The node selection is then performed as 

scheme, we simply select three nodes of the 
home cell of the point of interest. As illustrated in 

7 (a), no matter the point of interest x located in 
an interior home cell (cell i) or a boundary home cell 
(cell j), only the three nodes of the home cell (i1_i3 or 

s used only for 
creating linear PIM (Point Interpolation Method) 
shape functions by using polynomial basis functions. 
Note that the linear PIM shape functions so 
constructed are exactly the same as those in FEM 

scheme, but of 
node selection for 3D domains with tetrahedral 

scheme selects six nodes to interpolate a 
point of interest located in an interior cell and three 

ated in boundary home cells. As 
7 (b), when the point of interest 

is located in an interior home cell (cell i), we select 
six nodes: three nodes of the home cell (i1_i3) and 
another three nodes located at the remote vertices of 

). When the point of 
is located in a boundary home cell (cell 

j), we select only three nodes of the home cell, i.e., 

scheme was purposely devised for creating high-
order PIM shape functions, where quadratic 
interpolations are performed for the interior home 
cells and linear interpolations for boundary home 
cells. This scheme was first used in the NS-PIM [11]. 
It can not only successfully overcome the singular 

problem but also improve the efficiency 
method. 

Figure - 7 (a) T3 Scheme, (b) 
Scheme ,  (d) & (e) 

 
T6-Scheme: 
Similar to T6/3-scheme, T6
Figure-7 (c), also selects six nodes for an interior 
home cell: three nodes of the home cell and
vertexes at the remote vertices of the three neigh
boring cells (i1_i6 for cell i). However, for a boundary 
cell (cell j), T6-scheme still selects six nodes: three 
nodes of the home cell (j1_j3
the neigh boring cells (j4 and j
(j6) which is nearest to the centroid of the home cell 
excepting the five nodes that have been selected.
 
T6-scheme is purposely devised for constructing 
radial PIM (RPIM) shape functions on considering 
both accuracy and efficiency. Dif
scheme, this scheme selects six nodes for all home 
cells containing the point of interest.
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problem but also improve the efficiency of the 

 
7 (a) T3 Scheme, (b) T6/3-Scheme,  (c) T6-

,  (d) & (e) T2L-Scheme 

scheme, T6-scheme, as shown in 
7 (c), also selects six nodes for an interior 

home cell: three nodes of the home cell and three 
vertexes at the remote vertices of the three neigh 

for cell i). However, for a boundary 
scheme still selects six nodes: three 

3), two remote nodes of 
and j5), and one field node 

) which is nearest to the centroid of the home cell 
excepting the five nodes that have been selected. 

scheme is purposely devised for constructing 
radial PIM (RPIM) shape functions on considering 
both accuracy and efficiency. Different from T6/3-
scheme, this scheme selects six nodes for all home 
cells containing the point of interest. 
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T2L-Scheme: 
T2L-scheme selects two layers of nodes to perform 
interpolation based on triangular meshes. As shown in  
Figure-7 (d) and (e), the first layer of nodes refers the  
three nodes of the home cell, and the second layer 
contains those nodes which are directly connected to 
the three nodes of the first layer. This scheme usually 
selects much more nodes than the T6-scheme and 
leads to more time consumption. We can use this 
scheme to create RPIM shape functions with high 
order of consistence and for extremely irregularly 
distributed nodes. Such RPIM shape functions can 
also be used for strong form mesh-free method 
methods where higher order of consistence is 
required. T2L-scheme can also be used for creating 
moving least squares (MLS) shape functions. 
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