

@ IJTSRD | Available Online @ www

 ISSN No: 2456

International

Research

HBA: Distributed Metadata Man

Lecturer (Senior Grade),
Sakthi Polytechnic

ABSTRACT
An efficient and distributed scheme for file mapping
or file lookup is critical in decentralizing metadata
management within a group of metadata servers. This
paper presents a novel technique called Hierarchical
Bloom Filter Arrays (HBA) to map filenames to the
metadata servers holding their metadata. Two levels
of probabilistic arrays, namely, the Bloom filter arrays
with different levels of accuracies, are used on each
metadata server. One array, with lower accuracy and
representing the distribution of the entire metadata,
trades accuracy for significantly reduced memory
overhead, whereas the other array, with higher
accuracy, caches partial distribution information and
exploits the temporal locality of file access patterns.
Both arrays are replicated to all metadata servers to
support fast local lookups. We evaluate HBA through
extensive trace-driven simulations and
implementation in Linux. Simulation results show our
HBA design to be highly effective and efficient in
improving the performance and scalability of file
systems in clusters with 1,000 to 10,000 nodes (or
super clusters) and with the amount of data in the peta
byte scale or higher. Our implementation indicates
that HBA can reduce the metadata operation time of a
single-metadata-server architecture by a factor of up
to 43.9 when the system is configured with 16 Meta
data servers.

Keywords: HB, Nodes, GPFS, PVFS, Mapping

I. INTRODUCTION
Rapid advances in general-purpose communication
networks have motivated the employment of
inexpensive components to build competitive cluster
based storage solutions to meet the increasing demand
of scalable computing. In the recent years, the

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug 2018

ISSN No: 2456 - 6470 | www.ijtsrd.com | Volume

International Journal of Trend in Scientific

Research and Development (IJTSRD)

International Open Access Journal

HBA: Distributed Metadata Management for Large Cluster
Storage Systems

M S Nirmala

, Department of Electronics Communication Engineering,
Sakthi Polytechnic College, Erode, Tamil Nadu, India

An efficient and distributed scheme for file mapping
or file lookup is critical in decentralizing metadata
management within a group of metadata servers. This

a novel technique called Hierarchical
Bloom Filter Arrays (HBA) to map filenames to the
metadata servers holding their metadata. Two levels
of probabilistic arrays, namely, the Bloom filter arrays
with different levels of accuracies, are used on each

data server. One array, with lower accuracy and
representing the distribution of the entire metadata,
trades accuracy for significantly reduced memory
overhead, whereas the other array, with higher
accuracy, caches partial distribution information and

oits the temporal locality of file access patterns.
Both arrays are replicated to all metadata servers to
support fast local lookups. We evaluate HBA through

driven simulations and
implementation in Linux. Simulation results show our

sign to be highly effective and efficient in
improving the performance and scalability of file
systems in clusters with 1,000 to 10,000 nodes (or
super clusters) and with the amount of data in the peta
byte scale or higher. Our implementation indicates

t HBA can reduce the metadata operation time of a
server architecture by a factor of up

to 43.9 when the system is configured with 16 Meta

Mapping

purpose communication
networks have motivated the employment of
inexpensive components to build competitive cluster-
based storage solutions to meet the increasing demand
of scalable computing. In the recent years, the

bandwidth of these networks has been increased by
two orders of magnitude, which greatly narrows the
performance gap between them and the dedicated
networks used in commercial storage systems. Since
all I/O requests can be classified into two categories,
that is, user data requests and metadata requests, the
scalability of accessing both data and metadata has to
be carefully maintained to avoid any potential
performance bottleneck along all data paths. This
paper proposes a novel scheme, called Hierarchical
Bloom Filter Arrays (HBA), to evenly distribute the
tasks of metadata management to a group of MSs. A
Bloom filter (BF) is a succinct data structure for
probabilistic membership query. A straightforward
extension of the BF approach to decentralizing
metadata management onto multiple MSs is to use an
array of BFs on each MS. The metadata of each file is
stored on some MS, called the home MS.

In Login Form module presents site visitors with a
form with username and password fields. If the user
enters a valid username/password combination they
will be granted access to additional resources on
website. Which additional resources they will have
access to can be configured separately.

In this module we are going to find out the available
computers from the network. And
share some of the folder in some computers. We are
going to find out the computers those having the
shared folder. By this way will get all the information
about the file and we will form the Meta data.

In this module we are creating a met
system files. The module is going to save all file
names in a database. In addition to that, it also saves

Aug 2018 Page: 1966

6470 | www.ijtsrd.com | Volume - 2 | Issue – 5

Scientific

(IJTSRD)

International Open Access Journal

agement for Large Cluster-Based

nics Communication Engineering,

of these networks has been increased by
which greatly narrows the

performance gap between them and the dedicated
networks used in commercial storage systems. Since
all I/O requests can be classified into two categories,

ser data requests and metadata requests, the
scalability of accessing both data and metadata has to
be carefully maintained to avoid any potential
performance bottleneck along all data paths. This
paper proposes a novel scheme, called Hierarchical

lter Arrays (HBA), to evenly distribute the
tasks of metadata management to a group of MSs. A
Bloom filter (BF) is a succinct data structure for
probabilistic membership query. A straightforward
extension of the BF approach to decentralizing

ement onto multiple MSs is to use an
array of BFs on each MS. The metadata of each file is
stored on some MS, called the home MS.

In Login Form module presents site visitors with a
form with username and password fields. If the user

e/password combination they
will be granted access to additional resources on
website. Which additional resources they will have
access to can be configured separately.

In this module we are going to find out the available
computers from the network. And we are going to
share some of the folder in some computers. We are
going to find out the computers those having the
shared folder. By this way will get all the information
about the file and we will form the Meta data.

In this module we are creating a metadata for all the
system files. The module is going to save all file
names in a database. In addition to that, it also saves

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug 2018 Page: 1967

some information from the text file. This mechanism
is applied to avoid the long run process of the existing
system.

In this module the user going to enter the text for
searching the required file. The searching mechanism
is differing from the existing system. Whenever the
user gives their searching text, it is going to search
from the database. At first, the search is based on the
file name. After that, it contains some related file
name. Then it collects some of the file text, it makes
another search. Finally it produces a search result for
corresponding related text for the user.

Here we are using the new approaches called
HIERARCHICAL BLOOM FILTER ARRAYS
(HBA), efficiently route metadata request within a
group of metadata servers. There are two arrays used
here. First array is used to reduce memory overhead,
because it captures only the destination metadata
server information of frequently accessed files to keep
high management efficiency. And the second one is
used to maintain the destination metadata information
of all files. Both the arrays are mainly used for fast
local lookup.

A BF is a loss but succinct and efficient data structure
to represent a set S, which processes the membership
query, “Is x in S?” for any given element x with a
time complexity. It was invented by Burton Bloom in
1970 and has been widely used for Web caching,
network routing, and prefix matching. The storage
requirement of a BF falls several orders of magnitude
below the lower bounds of error-free encoding
structures. This space efficiency is achieved at the
cost of allowing a certain (typically nonzero)
probability of false positives or false hits; that is, it
may incorrectly return a “yes,” although x is actually
not in S. A straightforward extension of the BF
approach to decentralizing metadata management
onto multiple MSs is to use an array of BFs on each
MS. The metadata of each file is stored on some MS,
called the home MS. In this design, each MS builds a
BF that represents all files whose metadata is stored
locally and then replicates this filter to all other MSs.
Including the replicas of the BFs from the other
servers, a MS stores all filters in an array. When a
client initiates a metadata request, the client randomly
chooses a MS and asks this server to perform the
membership query against this array. The BF array is
said to have a hit if exactly one filter gives a positive
response. A miss is said to have occurred whenever
no hit or more than one hit is found in the array.

II. COMPARISON OF DECENTRALIZATION
SCHEMES

Many cluster-based storage systems employ
centralized metadata management. Experiments in
GFS show that a single MS is not a performance
bottleneck in a storage cluster with 100 nodes under a
read-only Google searching workload. PVFS, which
is a RAID-0-style parallel file system, also uses a
single MS design to provide a cluster wide shared
namespace. As data throughput is the most important
objective of PVFS, some expensive but indispensable
functions such as the concurrent control between data
and metadata are not fully designed and implemented.
In CEFT, which is an extension of PVFS to
incorporate a RAID-10-style fault tolerance and
parallel I/O scheduling, the MS synchronizes
concurrent updates, which can limit the overall
throughput under the workload of intensive
concurrent metadata updates. In Lustre, some low-
level metadata management tasks are offloaded from
the MS to object storage devices, and ongoing efforts
are being made to decentralize metadata management
to further improve the scalability.

Some other systems have addressed metadata
scalability in their designs. For example, GPFS uses
dynamically elected “met anodes” to manage file
metadata. The election is coordinated by a centralized
token server. Ocean Store, which is designed for
LAN-based networked storage systems, scales the
data location scheme by using an array of BFs, in
which the ith BF is the union of all the BFs for all of
the nodes within i hops. The requests are routed to
their destinations by following the path with the
maximum probability. Panasas Active Scale not only
uses object storage devices to offload some metadata
management tasks but also scales up the metadata
services by using a group of directory blades. Our
target systems differ from the three systems above.
Although GPFS and Panasas Active Scale need to use
their specially designed commercial hardware, our
target systems only consist of commodity
components. Our system is also different from Ocean
Store in that the latter focuses on geographically
distributed storage nodes, whereas our design targets
cluster-based storage systems, where all nodes are
only one hop away.

The following summarizes other research projects in
scaling metadata management, including table-based
mapping, hash-based mapping, static tree partitioning,
and dynamic tree partitioning.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug 2018 Page: 1968

TABLE: 1 Comparison of HBA with Existing
Decentralization Schemes

2.1 Table-Based Mapping
Globally replicating mapping tables is one approach
to decentralizing metadata management. There is a
salient trade-off between the space requirement and
the granularity and flexibility of distribution. A fine-
grained table allows more flexibility in metadata
placement. In an extreme case, if the table records the
home MS for each individual file, then the metadata
of a file can be placed on any MS. However, the
memory space requirement for this approach makes it
unattractive for large-scale storage systems. A back
of-the-envelope calculation shows that it would take
as much as 1.8 Gbytes of memory space to store such
a table with 108 entries when 16 bytes are used for a
filename and 2 bytes for an MS ID. In addition,
searching for an entry in such a huge table consumes a
large number of precious CPU cycles. To reduce the
memory space overhead, xFS proposes a coarse-
grained table that maps a group of files to an MS. To
keep a good trade-off, it is suggested that in xFS, the
number of entries in a table should be an order of
magnitude larger than the total number of MSs.

2.2 Hashing-Based Mapping
Modulus-based hashing is another decentralized
scheme. This approach hashes a symbolic pathname
of a file to a digital value and assigns its metadata to a
server according to the modulus value with respect to
the total number of MSs. In practice, the likelihood of
serious skew of metadata workload is almost
negligible in this scheme, since the number of
frequently accessed files is usually much larger than
the number of MSs. However, a serious problem
arises when an upper directory is renamed or the total
number of MSs Changes: the hashing mapping needs
to be re implemented, and this requires all affected
metadata to be migrated among MSs. Although the

size of the metadata of a file is small, a large number
of files may be involved. In particular, the metadata of
all files has to be relocated if an MS joins or leaves.
This could lead to both disk and network traffic
surges and cause serious performance degradation.

Figure 1: Cluster-based storage architecture.

III. ARCHITECTURAL CONSIDERATIONS

AND DESIGN
In this paper, we focus on a generic cluster, where a
number of commodity PCs are connected by a high-
bandwidth low latency switched network. Each node
has its own storage devices. There are no functional
differences between all cluster nodes. The role of
clients, MSs, and data servers can be carried out by
any node. A node may not be dedicated to a specific
role. It can act in multiple roles simultaneously. Fig
shows the architecture of a generic cluster targeted in
this study. In this study, we concentrate on the
scalability and flexibility aspects of metadata
management. Some other important issues such as
consistency maintenance, synchronization of
concurrent accesses, file system security and
protection enforcement, free-space allocation (or
garbage collection), balancing of the space
utilizations, management of the striping of file
contents, and incorporation of fault tolerance are
beyond the scope of this study. Instead, the following
objectives are considered in our design:

Single shared namespace. All storage devices are
virtualized into a single image, and all clients share
the same view of this image. This requirement
simplifies the management of user data and allows a
job to run on any node in a cluster.

Scalable service. the throughput of a metadata
management system should scale with the
computational power of a cluster. It should not

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug 2018 Page: 1969

become a performance bottleneck under high I/O
access workloads. This requires the system to have
low management overhead.
Zero metadata migration. Although the size of
metadata is small, the number of files in a system can
be enormously large. In a metadata management
system that requires metadata to migrate to other
servers in response to the file system’s evolution such
as renaming of files or directories, or topology
changes involving server arrivals or departures, the
computational overhead of checking whether a
migration is needed and the network traffic overhead
due to metadata migration may be prohibitively high,
hence limiting the efficiency and scalability.

Balancing the load of metadata accesses. The
management is evenly shared among multiple MSs to
best leverage the available throughput of these severs.

Flexibility of storing the metadata of a file on any
MS. This flexibility provides the opportunity for fine
grained load balance, simplifies the placement of
metadata replicas, and facilitates some performance
optimizations such as metadata prefacing. In a
distributed system, metadata prefacing requires the
flexibility of storing a group of sequentially accessed
files on the same physical location to save the number
of metadata retrievals.

IV. HIERARCHICAL BLOOM FILTER

ARRAYS
A BF is a lossy but succinct and efficient data
structure to represent a set S, which processes the
membership query, “Is x in S?” for any given element
x with a time complexity. It was invented by Burton
Bloom in 1970 and has been widely used for Web
caching, network routing, and prefix matching. The
storage requirement of a BF falls several orders of
magnitude below the lower bounds of error-free
encoding structures. This space efficiency is achieved
at the cost of allowing a certain (typically nonzero)
probability of false positives or false hits; that is, it
may incorrectly return a “yes,” although x is actually
not in S. A straightforward extension of the BF
approach to decentralizing metadata management
onto multiple MSs is to use an array of BFs on each
MS. The metadata of each file is stored on some MS,
called the home MS. In this design, each MS builds a
BF that represents all files whose metadata is stored
locally and then replicates this filter to all other MSs.
Including the replicas of the BFs from the other
servers, a MS stores all filters in an array. When a

client initiates a metadata request, the client randomly
chooses a MS and asks this server to perform the
membership query against this array. The BF array is
said to have a hit if exactly one filter gives a positive
response. A miss is said to have occurred whenever
no hit or more than one hit is found in the array.

Figure 2: Theoretical hit rates for existing files.

The desired metadata can be found on the MS
represented by the hit BF with a very high probability.
We denote this simple approach as PBA. PBA allows
a flexible metadata placement, has no migration
overhead, and balances metadata workloads. PBA
does not rely on any property of a file to place its
metadata and, thus, allows the system to place any
metadata on any server.

Figure 3: Theoretical false-hit rates for new files.

This makes it feasible to group metadata with strong
locality together for prefetching, a technique that has
been widely used in conventional file systems. During

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug 2018 Page: 1970

the evolution of file system and its cluster topology,
not all metadata needs to migrate to new locations.
When a file or directory is renamed, only the BFs
associated with all the involved files or subdirectories
need to be updated. Although a MS leaves or joins the
system, a single associated BF is added or deleted
from the Bloom arrays on all other MSs. Since each
client randomly chooses a MS to look up for the home
MS of a file, the query workload is balanced on all
Mss. The following theoretical analysis shows that the
accuracy of PBA does not scale well when the
number of MSs increases.

To achieve a sufficiently high hit rate in the PBA
described above, the high memory overhead may
make this approach impractical. A large bit-per-file
ratio needs to be employed in each BF to achieve a
high hit rate when the number of MSs is large. In this
section, we present a new design called HBA to
optimize the trade-off between memory overhead and
high lookup accuracy. The novelty of HBA lies in its
judicious exploitation of the fact that in a typical file
system, a small portion of files absorb most of the I/O
activities. Floyd discovered that 66 percent of all files
had not been accessed in over a month in a Unix
environment, indicating that the entire I/O accesses
were focused on at most 34 percent of the file system.
Staelin found that 0.1 percent of the total space used
by the file system received 30 percent to 60 percent of
the I/O activity. Cate and Gross showed that most
files in Unix file systems were inactive, and only 3.6
percent to 13 percent of the file system data was used
in a given day, and only 0.2 percent to 3.6 percent of
the I/O activity went to the least active 75 percent part
of the file system. A recent study on a file system
trace collected in December 2000 from a medium-
sized file server found that only 2.8 percent and 24.2
percent of files were accessed during a continuous
course of 12 hours and 10 days, respectively.

V. PERFORMANCE EVALUATION
We simulate the MSs by using the two traces
introduced in Section 5 and measure the performance
in terms of hit rates and the memory and network
overhead. Since the decentralized schemes of table-
based mapping and modulus-based hashing are simple
and straightforward and their performance was
already discussed qualitatively, the simulation study
in this paper will be focused on the schemes of PBA,
HBA, and pure LRU BF to obtain quantitative
comparison and conclusions.

Figure 4: The structure of the HBA design on each

MS, which includes two levels of BF arrays.

V. CONCLUSION
This paper has analyzed the efficiency of using the
PBA scheme to represent the metadata distribution of
all files and accomplish the metadata distribution and
management in cluster-based storage systems with
thousands of nodes. Both our theoretic analysis and
simulation results indicated that this approach cannot
scale well with the increase in the number of MSs and
has very large memory overhead when the number of
files is large. By exploiting the temporal access
locality of file access patterns, this paper has proposed
a hierarchical scheme, called HBA, that maintains two
levels of BF arrays, with the one at the top level
succinctly representing the metadata location of most
recently visited files on each MS and the one at the
lower level maintaining metadata distribution
information of all files with lower accuracy in favor
of memory efficiency. The top-level array is small in
size but has high lookup accuracy. This high accuracy
compensates for the relatively low lookup accuracy
and large memory requirement in the lower level
array. Our extensive trace-driven simulations show
that the HBA scheme can achieve an efficacy
comparable to that of PBA but at only 50 percent of
memory cost and slightly higher network traffic
overhead (multicast). On the other hand, HBA incurs
much less network traffic overhead (multicast) than
the pure LRU BF approach. Moreover, simulation
results show that the network traffic overhead

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug 2018 Page: 1971

introduced by HBA is minute in modern fast
networks. We have implemented our HBA design in
Linux and measured its performance in a real cluster.
The experimental results show that the performance
of HBA is very promising. Under heavy workloads,
HBA with 16MSs can reduce the metadata operation
time of a single-metadata-server architecture by a
factor of up to 43.9

VII. REFERENCES
1. P. J. Braam, “Lustre White Paper,”

http://www.lustre.org/docs/ whitepaper.pdf, 2005.

2. S. A. Brandt, L. Xue, E. L. Miller, and D. D. E.
Long, “Efficient Metadata Management in Large
Distributed File Systems,” Proc. 20th IEEE Mass
Storage Symp./11th NASA Goddard Conf. Mass
Storage Systems and Technologies (MSS/MSST
’03), pp. 290-298, Apr. 2003.

3. P. H. Carns, W. B. Ligon III, R. B. Ross, and R.
Thakur, “PVFS: A Parallel File System for Linux
Clusters,” Proc. Fourth Ann. Linux Showcase and
Conf., pp. 317-327, 2000.

4. S. Ghemawat, H. Gobi off, and S.-T. Leung, “The
Google File System,” Proc. 19th ACM Symp.
Operating Systems Principles (SOSP ’03), pp. 29-
43, 2003.

5. H. Tang and T. Yang, “An Efficient Data
Location Protocol for Self-Organizing Storage

Clusters,” Proc. ACM/IEEE Conf. Super
Computing (SC ’03), p. 53, Nov. 2003.

6. Y. Zhu and H. Jiang, “CEFT: A Cost-Effective,
Fault-Tolerant Parallel Virtual File System,” J.
Parallel and Distributed Computing, vol. 66, no. 2,
pp. 291-306, Feb. 2006.

7. N. J. Boden, D. Cohen, R. E. Felderman, A. E.
Kulawik, C. L. Seitz, J. N. Seizovic, and W.-K.
Su, “Myrinet: A Gigabit-per-Second Local Area
Network,” IEEE Micro, vol. 15, no. 1, pp. 29-36,
1995.

8. D. H. Carrere, “Linux Local and Wide Area
Network Adapter Support,” Int’l J. Network
Management, vol. 10, no. 2, pp. 103-112, 2000.

9. C. Eddington, “Infinibridge: An Infiniband
Channel Adapter with Integrated Switch,” IEEE
Micro, vol. 22, no. 2, pp. 48-56, 2002.

10. Y. Zhu, H. Jiang, X. Qin, D. Feng, and D.
Swanson, “Exploiting Redundancy to Boost
Performance in a RAID-10 Style Cluster Based
File System,” Cluster Computing: The J.
Networks, Software Tools and Applications, vol.
9, no. 4, pp. 433-447, Oct. 2006.

11. M. Vilayannur, A. Sivasubramaniam, M.
Kandemir, R. Thakur, and R. Ross, “Discretionary
Caching for I/O on Clusters,” Proc. Third
IEEE/ACM Int’l Symp. Cluster Computing and
the Grid (CCGRID ’03), pp. 96-103, May 2003

