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ABSTRACT: 
Public key cryptography applications involve use of 
large integer arithmetic operations which are compute 
intensive in term of power, delay and area. Modular 
multiplication, which is frequently, used most 
resource hungry block. Generally, last stage of 
modular multiplication is implemented by using carry 
propagate adder whose long carry chain takes more 
time. In this paper, modulo multiplication 
architectures using Carry Save and Kogge
parallel prefix adder are presented to reduce this 
problem. Proposed implementations are faster as 
compared to conventional carry save adder and carry 
propagate adder implementations.  
 
1. INTRODUCTION 
Modular arithmetic is a system of arithmetic for 
integers, which considers the remainder
arithmetic, numbers "wrap around" upon reaching a 
given fixed quantity (this given quantity is known as 
the modulus) to leave a remainder. Modular 
arithmetic is often tied to prime numbers, for instance, 
in Wilson's theorem, Lucas's theorem, and 
lemma, and generally appears in fields
cryptography, computer science, and computer 
algebra. 
 
An intuitive usage of modular arithmetic is with a 12
hour clock. If it is 10:00 now, then in 5 hours the 
clock will show 3:00 instead of 15:00. 3 is the 
remainder of 15 with a modulus of 12. 
 
A number x mod N is the equivalent of asking for the 
remainder of when divided by . Two integers and are 
said to be congruent (or in the same equivalence 
class) modulo if they have the same remainder upon 
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Public key cryptography applications involve use of 
large integer arithmetic operations which are compute 
intensive in term of power, delay and area. Modular 
multiplication, which is frequently, used most 

ngry block. Generally, last stage of 
modular multiplication is implemented by using carry 
propagate adder whose long carry chain takes more 
time. In this paper, modulo multiplication 
architectures using Carry Save and Kogge-Stone 

presented to reduce this 
problem. Proposed implementations are faster as 
compared to conventional carry save adder and carry 
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, and computer 
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clock will show 3:00 instead of 15:00. 3 is the 

A number x mod N is the equivalent of asking for the  
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division by N. In such a case, we say that a=b (mod 
N). 
 
2. MONTGOMERY 
 MULTIPLICATION 
In modular arithmetic computation, 
modular multiplication, more commonly referred to as 
Montgomery multiplication, is a method for 
performing fast modular multiplication. It was 
introduced in 1985 by the American mathematician 
Peter L. Montgomery.  
 
Given two integers a and b
classical modular multiplication algorithm computes 
the double-width product ab
performs a division, subtracting multiples of 
cancel out the unwanted high bits until the remainder 
is once again less than N. 
instead adds multiples of N to cancel out the 
until the result is a multiple of a convenient (i.e. 
power of two) constant R > N
discarded, producing a result less than 
conditional subtract reduces this to less t
procedure avoids the complexity of quotient digit 
estimation and correction found in standard 
algorithms.  
 
The result is the desired product divide
is less inconvenient than it might appear. To multiply 
a and b, they are first converted to 
or Montgomery representation
N. When multiplied, these produce 
the following Montgomery reduction produces 
mod N, the Montgomery form of the desired 
product.(A final second Montgomery reduction 
converts out of Montgomery form.)Converting to and 
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computation, Montgomery 
, more commonly referred to as 

, is a method for 
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d in 1985 by the American mathematician 

b and modulus N, the 
classical modular multiplication algorithm computes 

ab mod N, and then 
performs a division, subtracting multiples of N to 
cancel out the unwanted high bits until the remainder 

. Montgomery reduction 
to cancel out the low bits 

until the result is a multiple of a convenient (i.e. 
N. Then the low bits are 

discarded, producing a result less than 2N. One final 
conditional subtract reduces this to less than N. This 
procedure avoids the complexity of quotient digit 
estimation and correction found in standard division 

The result is the desired product divided by R, which 
is less inconvenient than it might appear. To multiply 

, they are first converted to Montgomery form 
Montgomery representation aR mod N and bR mod 

. When multiplied, these produce abR2 mod N, and 
the following Montgomery reduction produces abR 

, the Montgomery form of the desired 
product.(A final second Montgomery reduction 
converts out of Montgomery form.)Converting to and 
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from Montgomery form makes this slower than the 
conventional or Barrett reduction algorithms for a 
single multiply. However, when performing many 
multiplications in a row, as in modular 
exponentiation, intermediate results can be left in 
Montgomery form, and the initial and final 
conversions become a negligible fraction of the 
overall computation. Many important cryptosystems 
such as RSA and Diffie–Hellman key exchange are 
based on arithmetic operations modulo a large 
number, and for these cryptosystems, the computation 
by Montgomery multiplication is faster than the 
available alternatives. 
 
An example 
Let x = 43, y = 56, p = 97, R = 100. You want to 
compute x * y (mod p). First you convert x and y to 
the Montgomery domain. For x, compute x’ = x * R 
(mod p) = 43 * 100 (mod 97) = 32, and for y, compute 
y’ = y * R (mod p) = 56 * 100 (mod 97) = 71. 
 
Compute a:= x’ * y’ = 32 * 71 = 2272. 
In order to zero the first digit, compute  
a:= a + (4p) = 2272 + 388 = 2660. 
In order to zero the second digit, compute  
a:= a + (20p) = 2660 + 1940 = 4600. 
Compute a:= a / R = 4600 / 100 = 46. 
 
We have that 46 is the Montgomery representation of 
x * y (mod p), that is, x * y * R (mod p). In order to 
convert it back, compute a * (1/R) (mod p) = 46 * 65 
(mod 97) = 80. You can check that 43 * 56 (mod 97) 
is indeed 80. 
 
3.  CARRY SAVE ADDER 
A Carry-Save Adder is just a set of one-bit full 
adders, without any carry-chaining. Therefore, an n-
bit CSA receives three n-bit operands, namely A(n-
1)..A(0), B(n-1)..B(0), and CIN(n-1)..CIN (0), and 
generates two n-bit result values, SUM(n-1)..SUM (0) 
and COUT(n-1)..COUT (0).  
 
The most important application of a carry-save adder 
is to calculate the partial products in integer 
multiplication. This allows for architectures, where a 
tree of carry-save adders (a so called Wallace tree) is 
used to calculate the partial products very fast. One 
'normal' adder is then used to add the last set of carry 
bits to the last partial products to give the final 
multiplication result. Usually, a very fast carry-look 
ahead or carry-select adder is used for this last stage, 
in order to obtain the optimal performance.  

Using carry save addition, the delay can be reduced 
further still. The idea is to take 3 numbers that we 
want to add together, x + y + z, and convert it into 2 
numbers c+ S such that x + y + z = c + s, and do this 
in O (1) time. The reason why addition cannot be 
performed in O(1)time is because the carry 
information must be propagated. In carry save 
addition, we refrain from directly passing on the carry 
information until the very last step. We will first 
illustrate the general concept with a base 10 example. 
 
To add three numbers by hand, we typically align the 
three operands, and then proceed column by column 
in the same fashion that we perform addition with two 
numbers. The three digits in a row are added, and any 
overflow goes into the next column. Observe that 
when there is some non-zero carry, we are really 
adding four digits (the digits of x, y and z, plus the 
carry). 
 
carry:      1 1 2 1 
x:      1 2 3 4 5 
y:      3 8 1 7 2 
z:       +2 0 5 8 7 
 
sum:     7 1 1 0 4 
 
The carry save approach breaks this process down 
into two steps. The first is to compute the sum 
ignoring any carries: 
 
x:     1 2 3 4 5 
y:     3 8 1 7 2 
z:  + 2 0 5 8 7 
 
s:      6 0 9 9 4 
 
Each si is equal to the sum of xi +yi +ziModulo 10. 
Now, separately, we can compute the carry on a 
column bycolumn basis: 
 
x:     1 2 3 4 5 
y:     3 8 1 7 2 
z:  + 2 0 5 8 7 
 
c:      1 0 1 1 
 
In this case, each ci is the sum of the bits from the 
previous column divided by 10 (ignoring any 
remainder). Another way to look at it is that any carry 
over from one column gets put into the next column. 
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Now, we can add together c and s, and we’ll verify 
that it indeed is equal to x + y + z. 
          

 
Figure 1: The carry save adder block is the same 

circuit as the full adder 
 

 
Figure 2:Truth table 

 
4. RIPPLE CARRY ADDER 
At the point when numerous full adders are utilized 
with the carry ins and carry outs anchored together 
then this is known as a Ripple carry adder inspight of 
the fact that the right estimation of the carry bit swells 
starting with one piece then onto the next (allude to 
figure 2.16). It is conceivable to make a coherent 
circuit utilizing a few full adders to include numerous 
piece numbers. Each full adder inputs a Cin, which is 
the Cout of the past input. This sort of carry is a ripple 
carry adder, since each carry bit "ripples" to the 
following full adder. Note that the first (and just the 
principal) full adder might be supplanted by a half 
adder.  
 
The format of a ripple carry adder is basic, which 
takes into consideration quick outline time; be that as 
it may, the ripple carry adder is generally moderate, 
since each full adder must sit tight for the carry bit to 

be figured from the past full adder. The door 
postponement can undoubtedly be figured by review 
of the full adder circuit. Following the way from Cin 
to Cout indicates 2 doors that must be gone through. 
 

 
Figure 3: 4-bit ripple carry adder circuit diagram 

 
5. PIPELINING 
As the frequency of operation is increased, the cycle 
time measured in gate delays continues to shrink. 
Pipelining has emerged as the design technique of 
choice that helps to achieve high throughput digital 
systems. This technique breaks down a single 
complex computational block into discrete blocks 
separated by clock storage elements ( CSE) -like 
flip-flops, latches. Pipelining improves throughput at 
the expense of latency, however once the pipe is 
filled we can expect one data item per unit of time. 
The gain in speed is achieved by clocking sub-
circuits faster and also achieves path delay 
equalization by inserting registers. As result, it 
achieve performance gains also the propagation 
delay and delay variation decreasing. The project 
used the applications of pipeline to achieve the 
objective. 
 

 
Figure 4: Pipeline applications in 16-bit CSA 

 
Figure 2.13 shows how pipeline applications in CSA 
circuit based on CSA per stage. The design is in 3 
stages of 6 operands 16-bit CSA. Latches between 
stages 1 and 2 store intermediate results of step 1 
“Used by stage 2 to execute step 2 of algorithm”. 
Stage 1 starts executing step 1 on next set of 
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operands X, Y. Pipeline was just another 
transformation which is adding the delay and 
retiming it based on clock using D-flip- flop. 
 

 
Figure 5: Pipelining Timing Diagram 

 
Pipeline shows how it reduces delay by multiple are 
overlap in execution. Based on the figure 2.14, 
when the inputs were given, the operation 1 
execute at the 0 time in ladder. The process 
transforms continuously at the end of 3 times at the 
stage 3 of pipeline. Without pipeline, the operation 
2 would execute at the 3 times. But in this 
diagram, the operation 2 execute next to the operation 
1 has begun. Thus, the delay can be reduced. The 
process continuously executes per stage as explained. 
 
6.  EXTENSION METHOD  
The CSA tree proposed in the paper will be enhanced 
by adding faster adder like parallel prefix adder which 
would further reduce the delay and increase the speed 
of operation. The parallel prefix operation is done in 3 stages. 
i.e. pre processing stage, calculation of carries, post 
processing stage. 
 

 
Fig 6: Parallel prefix adder operation 

 
In the pre calculation stage propagate and generate 
terms are calculated.                
i.e. Pi= ai xor bi 
      gi= ai and bi  

The calculated values are passed to next stage i.e. 
calculation of carries. In this the components are seen 
in the prefix graph. 
 

 
Fig 7 Carry calculation of parallel prefix adder 

 
The execution is done in parallel by decomposing into smaller 
pieces. The combining operator consists of two AND 
gates and the OR gate. Each vertical stage produces 
respective propagate and generate values. 
G2 = G1 OR (G0 AND P1) 
P2 = P1 AND P0 
 
The calculated carry values are forwarded to the post 
processing stage. In this stage the final sum values are 
calculated. 

Sn =Pn XOR Cin 
Here in this we are using kogge stone adder. One of 
the parallel prefix adder is kogge stone adder. Kogge 
stone adder is used for high speed applications but it 
consumes more area. 

 
Fig 8 Kogge Stone adder 
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