

@ IJTSRD | Available Online @ www.ijtsrd.com

 ISSN No: 2456

International

Research

Fast Modular Multiplication u
Sanduri Akshitha

1

Dept of ECE
Kandlakoya(V),

ABSTRACT:
Public key cryptography applications involve use of
large integer arithmetic operations which are compute
intensive in term of power, delay and area. Modular
multiplication, which is frequently, used most
resource hungry block. Generally, last stage of
modular multiplication is implemented by using carry
propagate adder whose long carry chain takes more
time. In this paper, modulo multiplication
architectures using Carry Save and Kogge
parallel prefix adder are presented to reduce this
problem. Proposed implementations are faster as
compared to conventional carry save adder and carry
propagate adder implementations.

1. INTRODUCTION
Modular arithmetic is a system of arithmetic for
integers, which considers the remainder
arithmetic, numbers "wrap around" upon reaching a
given fixed quantity (this given quantity is known as
the modulus) to leave a remainder. Modular
arithmetic is often tied to prime numbers, for instance,
in Wilson's theorem, Lucas's theorem, and
lemma, and generally appears in fields
cryptography, computer science, and computer
algebra.

An intuitive usage of modular arithmetic is with a 12
hour clock. If it is 10:00 now, then in 5 hours the
clock will show 3:00 instead of 15:00. 3 is the
remainder of 15 with a modulus of 12.

A number x mod N is the equivalent of asking for the
remainder of when divided by . Two integers and are
said to be congruent (or in the same equivalence
class) modulo if they have the same remainder upon

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug

ISSN No: 2456 - 6470 | www.ijtsrd.com | Volume

International Journal of Trend in Scientific

Research and Development (IJTSRD)

International Open Access Journal

Fast Modular Multiplication using Parallel Prefix Adder

Sanduri Akshitha1, Mrs. P. Navitha2, Mrs. D. Mamatha
1PG Scholar, 2Assistant Professor

f ECE (VLSI),CMR Institute of Technology,
Kandlakoya(V), Medchal-Road, Hyderabad, Telangana, India

Public key cryptography applications involve use of
large integer arithmetic operations which are compute
intensive in term of power, delay and area. Modular
multiplication, which is frequently, used most

ngry block. Generally, last stage of
modular multiplication is implemented by using carry
propagate adder whose long carry chain takes more
time. In this paper, modulo multiplication
architectures using Carry Save and Kogge-Stone

presented to reduce this
problem. Proposed implementations are faster as
compared to conventional carry save adder and carry

is a system of arithmetic for
remainder. In modular

arithmetic, numbers "wrap around" upon reaching a
given fixed quantity (this given quantity is known as
the modulus) to leave a remainder. Modular
arithmetic is often tied to prime numbers, for instance,

, and Hensel's
, and generally appears in fields like

, and computer

usage of modular arithmetic is with a 12-
hour clock. If it is 10:00 now, then in 5 hours the
clock will show 3:00 instead of 15:00. 3 is the

A number x mod N is the equivalent of asking for the
ded by . Two integers and are

said to be congruent (or in the same equivalence
ey have the same remainder upon

division by N. In such a case, we say that a=b (mod
N).

2. MONTGOMERY
 MULTIPLICATION
In modular arithmetic computation,
modular multiplication, more commonly referred to as
Montgomery multiplication, is a method for
performing fast modular multiplication. It was
introduced in 1985 by the American mathematician
Peter L. Montgomery.

Given two integers a and b
classical modular multiplication algorithm computes
the double-width product ab
performs a division, subtracting multiples of
cancel out the unwanted high bits until the remainder
is once again less than N.
instead adds multiples of N to cancel out the
until the result is a multiple of a convenient (i.e.
power of two) constant R > N
discarded, producing a result less than
conditional subtract reduces this to less t
procedure avoids the complexity of quotient digit
estimation and correction found in standard
algorithms.

The result is the desired product divide
is less inconvenient than it might appear. To multiply
a and b, they are first converted to
or Montgomery representation
N. When multiplied, these produce
the following Montgomery reduction produces
mod N, the Montgomery form of the desired
product.(A final second Montgomery reduction
converts out of Montgomery form.)Converting to and

 2018 Page: 1770

6470 | www.ijtsrd.com | Volume - 2 | Issue – 5

Scientific

(IJTSRD)

International Open Access Journal

sing Parallel Prefix Adder

Mamatha2

division by N. In such a case, we say that a=b (mod

MODULAR

computation, Montgomery
, more commonly referred to as

, is a method for
performing fast modular multiplication. It was

d in 1985 by the American mathematician

b and modulus N, the
classical modular multiplication algorithm computes

ab mod N, and then
performs a division, subtracting multiples of N to
cancel out the unwanted high bits until the remainder

. Montgomery reduction
to cancel out the low bits

until the result is a multiple of a convenient (i.e.
N. Then the low bits are

discarded, producing a result less than 2N. One final
conditional subtract reduces this to less than N. This
procedure avoids the complexity of quotient digit
estimation and correction found in standard division

The result is the desired product divided by R, which
is less inconvenient than it might appear. To multiply

, they are first converted to Montgomery form
Montgomery representation aR mod N and bR mod

. When multiplied, these produce abR2 mod N, and
the following Montgomery reduction produces abR

, the Montgomery form of the desired
product.(A final second Montgomery reduction
converts out of Montgomery form.)Converting to and

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug 2018 Page: 1771

from Montgomery form makes this slower than the
conventional or Barrett reduction algorithms for a
single multiply. However, when performing many
multiplications in a row, as in modular
exponentiation, intermediate results can be left in
Montgomery form, and the initial and final
conversions become a negligible fraction of the
overall computation. Many important cryptosystems
such as RSA and Diffie–Hellman key exchange are
based on arithmetic operations modulo a large
number, and for these cryptosystems, the computation
by Montgomery multiplication is faster than the
available alternatives.

An example
Let x = 43, y = 56, p = 97, R = 100. You want to
compute x * y (mod p). First you convert x and y to
the Montgomery domain. For x, compute x’ = x * R
(mod p) = 43 * 100 (mod 97) = 32, and for y, compute
y’ = y * R (mod p) = 56 * 100 (mod 97) = 71.

Compute a:= x’ * y’ = 32 * 71 = 2272.
In order to zero the first digit, compute
a:= a + (4p) = 2272 + 388 = 2660.
In order to zero the second digit, compute
a:= a + (20p) = 2660 + 1940 = 4600.
Compute a:= a / R = 4600 / 100 = 46.

We have that 46 is the Montgomery representation of
x * y (mod p), that is, x * y * R (mod p). In order to
convert it back, compute a * (1/R) (mod p) = 46 * 65
(mod 97) = 80. You can check that 43 * 56 (mod 97)
is indeed 80.

3. CARRY SAVE ADDER
A Carry-Save Adder is just a set of one-bit full
adders, without any carry-chaining. Therefore, an n-
bit CSA receives three n-bit operands, namely A(n-
1)..A(0), B(n-1)..B(0), and CIN(n-1)..CIN (0), and
generates two n-bit result values, SUM(n-1)..SUM (0)
and COUT(n-1)..COUT (0).

The most important application of a carry-save adder
is to calculate the partial products in integer
multiplication. This allows for architectures, where a
tree of carry-save adders (a so called Wallace tree) is
used to calculate the partial products very fast. One
'normal' adder is then used to add the last set of carry
bits to the last partial products to give the final
multiplication result. Usually, a very fast carry-look
ahead or carry-select adder is used for this last stage,
in order to obtain the optimal performance.

Using carry save addition, the delay can be reduced
further still. The idea is to take 3 numbers that we
want to add together, x + y + z, and convert it into 2
numbers c+ S such that x + y + z = c + s, and do this
in O (1) time. The reason why addition cannot be
performed in O(1)time is because the carry
information must be propagated. In carry save
addition, we refrain from directly passing on the carry
information until the very last step. We will first
illustrate the general concept with a base 10 example.

To add three numbers by hand, we typically align the
three operands, and then proceed column by column
in the same fashion that we perform addition with two
numbers. The three digits in a row are added, and any
overflow goes into the next column. Observe that
when there is some non-zero carry, we are really
adding four digits (the digits of x, y and z, plus the
carry).

carry: 1 1 2 1
x: 1 2 3 4 5
y: 3 8 1 7 2
z: +2 0 5 8 7

sum: 7 1 1 0 4

The carry save approach breaks this process down
into two steps. The first is to compute the sum
ignoring any carries:

x: 1 2 3 4 5
y: 3 8 1 7 2
z: + 2 0 5 8 7

s: 6 0 9 9 4

Each si is equal to the sum of xi +yi +ziModulo 10.
Now, separately, we can compute the carry on a
column bycolumn basis:

x: 1 2 3 4 5
y: 3 8 1 7 2
z: + 2 0 5 8 7

c: 1 0 1 1

In this case, each ci is the sum of the bits from the
previous column divided by 10 (ignoring any
remainder). Another way to look at it is that any carry
over from one column gets put into the next column.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug 2018 Page: 1772

Now, we can add together c and s, and we’ll verify
that it indeed is equal to x + y + z.

Figure 1: The carry save adder block is the same

circuit as the full adder

Figure 2:Truth table

4. RIPPLE CARRY ADDER
At the point when numerous full adders are utilized
with the carry ins and carry outs anchored together
then this is known as a Ripple carry adder inspight of
the fact that the right estimation of the carry bit swells
starting with one piece then onto the next (allude to
figure 2.16). It is conceivable to make a coherent
circuit utilizing a few full adders to include numerous
piece numbers. Each full adder inputs a Cin, which is
the Cout of the past input. This sort of carry is a ripple
carry adder, since each carry bit "ripples" to the
following full adder. Note that the first (and just the
principal) full adder might be supplanted by a half
adder.

The format of a ripple carry adder is basic, which
takes into consideration quick outline time; be that as
it may, the ripple carry adder is generally moderate,
since each full adder must sit tight for the carry bit to

be figured from the past full adder. The door
postponement can undoubtedly be figured by review
of the full adder circuit. Following the way from Cin
to Cout indicates 2 doors that must be gone through.

Figure 3: 4-bit ripple carry adder circuit diagram

5. PIPELINING
As the frequency of operation is increased, the cycle
time measured in gate delays continues to shrink.
Pipelining has emerged as the design technique of
choice that helps to achieve high throughput digital
systems. This technique breaks down a single
complex computational block into discrete blocks
separated by clock storage elements (CSE) -like
flip-flops, latches. Pipelining improves throughput at
the expense of latency, however once the pipe is
filled we can expect one data item per unit of time.
The gain in speed is achieved by clocking sub-
circuits faster and also achieves path delay
equalization by inserting registers. As result, it
achieve performance gains also the propagation
delay and delay variation decreasing. The project
used the applications of pipeline to achieve the
objective.

Figure 4: Pipeline applications in 16-bit CSA

Figure 2.13 shows how pipeline applications in CSA
circuit based on CSA per stage. The design is in 3
stages of 6 operands 16-bit CSA. Latches between
stages 1 and 2 store intermediate results of step 1
“Used by stage 2 to execute step 2 of algorithm”.
Stage 1 starts executing step 1 on next set of

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug 2018 Page: 1773

operands X, Y. Pipeline was just another
transformation which is adding the delay and
retiming it based on clock using D-flip- flop.

Figure 5: Pipelining Timing Diagram

Pipeline shows how it reduces delay by multiple are
overlap in execution. Based on the figure 2.14,
when the inputs were given, the operation 1
execute at the 0 time in ladder. The process
transforms continuously at the end of 3 times at the
stage 3 of pipeline. Without pipeline, the operation
2 would execute at the 3 times. But in this
diagram, the operation 2 execute next to the operation
1 has begun. Thus, the delay can be reduced. The
process continuously executes per stage as explained.

6. EXTENSION METHOD
The CSA tree proposed in the paper will be enhanced
by adding faster adder like parallel prefix adder which
would further reduce the delay and increase the speed
of operation. The parallel prefix operation is done in 3 stages.
i.e. pre processing stage, calculation of carries, post
processing stage.

Fig 6: Parallel prefix adder operation

In the pre calculation stage propagate and generate
terms are calculated.
i.e. Pi= ai xor bi
 gi= ai and bi

The calculated values are passed to next stage i.e.
calculation of carries. In this the components are seen
in the prefix graph.

Fig 7 Carry calculation of parallel prefix adder

The execution is done in parallel by decomposing into smaller
pieces. The combining operator consists of two AND
gates and the OR gate. Each vertical stage produces
respective propagate and generate values.
G2 = G1 OR (G0 AND P1)
P2 = P1 AND P0

The calculated carry values are forwarded to the post
processing stage. In this stage the final sum values are
calculated.

Sn =Pn XOR Cin
Here in this we are using kogge stone adder. One of
the parallel prefix adder is kogge stone adder. Kogge
stone adder is used for high speed applications but it
consumes more area.

Fig 8 Kogge Stone adder

REFERENCES
1. R. L. Rivest, A. Shamir, and L. Adleman, “A

method for obtaining digital signatures and public-
key cryptosystems,” Commun. ACM, vol. 21, no.
2, pp. 120–126, Feb. 1978.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug 2018 Page: 1774

2. V. S. Miller, “Use of elliptic curves in

cryptography,” in Advances in Cryptology. Berlin,
Germany: Springer-Verlag, 1986, pp. 417–426.

3. N. Koblitz, “Elliptic curve cryptosystems,” Math.

Comput., vol. 48, no. 177, pp. 203–209, 1987.

4. P. L. Montgomery, “Modular multiplication
without trial division,” Math. Comput., vol. 44,
no. 170, pp. 519–521, Apr. 1985.

5. Y. S. Kim, W. S. Kang, and J. R. Choi,

“Asynchronous implementation of 1024-bit
modular processor for RSA cryptosystem,” in
Proc. 2nd IEEE Asia-Pacific Conf. ASIC, Aug.
2000, pp. 187–190.

6. V. Bunimov, M. Schimmler, and B. Tolg, “A

complexity-effective version of Montgomery’s
algorihm,” in Proc. Workshop Complex. Effective
Designs, May 2002.

7. H. Zhengbing, R. M. Al Shboul, and V. P.

Shirochin, “An efficient architecture of 1024-bits
cryptoprocessor for RSA cryptosystem based on
modified Montgomery’s algorithm,” in Proc. 4th
IEEE Int. Workshop Intell. Data Acquisition Adv.
Comput. Syst., Sep. 2007, pp. 643–646.

8. Y.-Y. Zhang, Z. Li, L. Yang, and S.-W. Zhang,

“An efficient CSA architecture for Montgomery
modular multiplication,” Microprocessors
Microsyst., vol. 31, no. 7, pp. 456–459, Nov.
2007.

9. C. McIvor, M. McLoone, and J. V. McCanny,

“Modified Montgomery modular multiplication
and RSA exponentiation techniques,” IEE Proc.-
Comput. Digit. Techn., vol. 151, no. 6, pp. 402–
408, Nov. 2004.

Author profile:
Sanduri Akshitha, she received
bachelors of degree in 2015 from
Electronics and Communication of
engineering from Sudheer Reddy
college of engineering and
ctechnoogy for women. She is
pursuing M.Tech in VLSI System

Design from CMR Institute of Technology.

Mrs. P. Navitha
She is working as Assistant professor
in CMR Institute of Technology and
has 6 years experience in teaching
field.

Mrs. D. Mamatha
She is working as Assistant professor in
CMR institute of Technology nd has 4
years experience in teaching field

