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ABSTRACT 
This paper is concerned with a new development of a 
delay-robust stabilizing feedback control law for 
linear ordinary differential equation coupled with two 
linear first order hyperbolic equations in the actuation 
path. A second change of variables that reduce
stabilization problem of the PDE-ODE system to that 
of a time-delay system for which a forecaster can be 
constructed. Hence, by choosing the pole placement 
on the ODE when constructing the forecaster, 
enabling a trade-off between convergence rate and
delay-robustness. The proposed feedback law is 
finally proved to be robust to small delays in the 
actuation. 

Keyword: Hyperbolic partial differential equation, 
Time-delay systems, Stabilization. 

INTRODUCTION 
In this paper we develop a linear feedback 
that achieves delay-robust stabilization of a system of 
two hetero directional first-order hyperbolic Partial 
Differential Equations (PDEs) coupled through the 
boundary to an Ordinary Differential Equation 
(ODE). It has been observed, that for many feedback 
systems, the introduction of arbitrarily small time
delays in the loop may cause instability under linear 
state feedback. In particular, for coupled linear 
hyperbolic systems, recent contributions have 
highlighted the necessity of a change of
order to achieve delay-robust stabilization. The main 
contribution of this paper is to provide a new design 
for a state-feedback law for a PDE-ODE system that 
ensures the delay-robust stabilization. The original 
system can then be rewritten as a distributed delay 
equation for which it is possible to derive a stabilizing 
control law. 
 

 
 

@ IJTSRD  |  Available Online @ www.ijtsrd.com |  Volume – 2  |  Issue – 5  | Jul-Aug 2018

ISSN No: 2456 - 6470  |  www.ijtsrd.com  |  Volume 

International Journal of Trend in Scientific 
Research and Development  (IJTSRD)

International Open Access Journal

 
 

ODE System with Delay-Robust Stabilization
 

R. Priyanka, S. Ramadevi 

Department of Mathematics, Vivekanandha College of Arts and Sciences for Women
Elayampalayam, Thiruchengode, Namakkal, Tamil Nadu

paper is concerned with a new development of a 
robust stabilizing feedback control law for 

linear ordinary differential equation coupled with two 
linear first order hyperbolic equations in the actuation 
path. A second change of variables that reduces the 

ODE system to that 
delay system for which a forecaster can be 

constructed. Hence, by choosing the pole placement 
on the ODE when constructing the forecaster, 

off between convergence rate and 
robustness. The proposed feedback law is 

finally proved to be robust to small delays in the 

Hyperbolic partial differential equation, 

In this paper we develop a linear feedback control law 
robust stabilization of a system of 

order hyperbolic Partial 
Differential Equations (PDEs) coupled through the 
boundary to an Ordinary Differential Equation 

many feedback 
systems, the introduction of arbitrarily small time-
delays in the loop may cause instability under linear 
state feedback. In particular, for coupled linear 
hyperbolic systems, recent contributions have 
highlighted the necessity of a change of paradigm in 

robust stabilization. The main 
contribution of this paper is to provide a new design 

ODE system that 
robust stabilization. The original 

a distributed delay 
equation for which it is possible to derive a stabilizing 

Problem Formulation 
In this section we detail the notations used through 
this paper. For any integer 
classical euclidean norm on  
𝐿 ([0,1], ℝ), or 𝐿 ([0,1]) if no confusion arises, the 
space of real-valued functions defined on 
absolute value is integrable. This space is equipped 
with the standard 𝐿  norm, that is, for any 
𝐿 ([0,1])  

∥ 𝑓 ∥ = |𝑓

 
We denote 𝐿 ([0,1], ℝ) the space of real
square-integrable functions defined on 
standard 𝐿  norm, i.e., for any 
 

∥ 𝑓 ∥ = 𝑓

 
The set 𝐿∞([0,1], ℝ) denotes the space of bounded 
real-valued functions defined on 
standard 𝐿∞ norm, i.e., for any 
 

∥ 𝑓 ∥ = 𝑠𝑢𝑝 ∈[

 

In the following, for (𝑢, 𝑣, 𝑋)

define the norm   ∥ (𝑢, 𝑣,
∥ 𝑋 ∥ℝ .                                                       
 
The set 𝑐 ([0,1]) stands for the space of real valued 
functions defined on [0,1
differentiable and whose 𝑃𝑡ℎ 
The set 𝜏 is defined as  
 

𝜏 = {(𝑥, 𝜉) ∈ [0,1]
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In this section we detail the notations used through 
this paper. For any integer 𝑝 > 0, ∥. ∥ℝ  is the 
classical euclidean norm on  ℝ . We denote by 

if no confusion arises, the 
valued functions defined on [0,1] whose 

absolute value is integrable. This space is equipped 
norm, that is, for any 𝑓 ∈

𝑓(𝑥)| 𝑑𝑥. 

the space of real-valued 
integrable functions defined on [0,1] with the 

norm, i.e., for any 𝑓 ∈ 𝐿 ([0,1]), ℝ) 

(𝑥) 𝑑𝑥. 

denotes the space of bounded 
valued functions defined on [0,1]with the 

norm, i.e., for any 𝑓 ∈ 𝐿∞([0,1], ℝ) 

[ , ]|𝑓(𝑥)|. 

) ∈ 𝐿 ([0,1]) 𝑋ℝ , we 
𝑋) ∥=∥ 𝑢 ∥ +∥ 𝑣 ∥ +

                                                        

stands for the space of real valued 
1] that are 𝑃 times 
derivative is continuous. 

]  𝑠. 𝑡. 𝜉 ≤ 𝑥}. 
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𝑐(𝜏) stands for the space of real-valued continuous 
functions on 𝜏. For a positive real 𝑘 and two reals 
𝑎 < 𝑏, a function 𝑓defined on [𝑎, 𝑏] is said to 𝑘-
Lipschitz if for all (𝑥, 𝑦) ∈ [𝑎, 𝑏] , it satisfies 
|𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝑘|𝑥 − 𝑦|. The symbol 𝐼  (or I if no 
confusion arises) represents the 𝑝𝑋𝑝 identity matrix. 
We use the notation 𝑓(𝑠) for the Laplace transform of 
a function 𝑓(𝑡), provided it is well defined. The set 𝒜 
stands for the convolution Banach algebra of BIBO –
stable generalized functions in the sense of 
Vidyasagar.  A function g(.) belongs to 𝒜 if it can be 
expressed as 

𝑔(𝑡) = 𝑔 (𝑡) + 𝑔

∞

𝛿(𝑡 − 𝑡 ), 

 
Where 𝑔 ∈ 𝐿 (ℝ , ℝ), ∑ |𝑔 | < ∞, 0 = 𝑡 < 𝑡 <
⋯ 𝑎𝑛𝑑 𝛿(. ) is the direct distribution? The associated 
norm is 

∥ 𝑔 ∥𝒜=∥ 𝑔 ∥ + |𝑔 |. 

 
The set 𝒜 of Laplace transforms of elements in 𝒜 is 
also Banach algebra with associated norm  

∥ 𝑔 ∥𝒜=∥ 𝑔 ∥𝒜 . 
 
System Under Consideration 
We consider a class of systems consisting of an ODE 
coupled to two hetero directional first-order linear 
hyperbolic systems in the actuation path. We consider 
systems of the form:   
     𝑢 (𝑡, 𝑥) + 𝜆𝑢 (𝑡, 𝑥) = 𝜎 (𝑥)𝑣(𝑡, 𝑥)    
       𝑣 (𝑡, 𝑥) − 𝜇𝑣 (𝑡, 𝑥) = 𝜎 (𝑥)𝑢(𝑡, 𝑥)  
                          �̇�(𝑡) = 𝐴𝑋(𝑡) + 𝐵𝑣(𝑡, 0), 
 
Evolving in {(𝑡, 𝑥)𝑠. 𝑡 𝑡 > 0, 𝑥 ∈ [0,1]}, with the 
boundary conditions 
          𝑢(𝑡, 0) = 𝑞𝑣(𝑡, 0) + 𝐶𝑋(𝑡) 
          𝑣(𝑡, 1) = 𝜌𝑢(𝑡, 1) + 𝑈(𝑡),  
 
Where 𝑋 ∈ ℝ  is the ODE state, 𝑢(𝑡, 𝑥) ∈
ℝ 𝑎𝑛𝑑 𝑣(𝑡, 𝑥) ∈ ℝ are the PDE states and 𝑈(𝑡) is the 
control input. The in-domain coupling terms 𝜎  and 
𝜎  belong to 𝒞 ([0,1]), the boundary coupling 
terms 𝑞 ≠ 0 (distal reflexion) and 𝜌 (proximal 
reflexion), and the velocities 𝜆 and 𝜇 are constants. 
Furthermore, the velocities verify  

−𝜇 < 0 < 𝜆. 
 
The initial conditions of the state (𝑢, 𝑣) are denoted 
𝑢  and 𝑣  and are assumed to belong to 𝐿 ([0,1], ℝ) 

and we consider only weak 𝐿  solutions to the system. 
The initial condition of the ODE is denoted 𝑋 . 
Remark that this system naturally features several 
couplings that can be extended to the case 𝑞 = 0 with 
a slight modification of the backstepping 
transformation.  
 
Control Problem 
The goal of this paper is to design a feedback control 

law 𝑈 = 𝒦[(𝑢, 𝑣, 𝑋)] where 𝒦: 𝐿 ([0,1]) 𝑋ℝ →

ℝ is a linear operator, such that: 
 
The state (𝑢, 𝑣, 𝑋) of the resulting feedback system 
exponentially converges to its zero equilibrium 
(stabilization problem), i.e. there exist 𝑘 ≥ 0 and 
𝑣 > 0 such that for any initial condition (𝑢 , 𝑣 , 𝑋 ) ∈
(𝐿 [0,1]) 𝑋ℝ  
          
∥ (𝑢, 𝑣, 𝑋) ∥≤ 𝑘 𝑒 ∥
                                  (𝑢 , 𝑣 , 𝑋 ) ∥ ,    𝑡 ≥ 0.  
 
The resulting feedback system is robustly stable with 
respect to small delays in the loop (delay-
robustness), i.e. there exists 𝛿∗ > 0 such that for any 
𝛿 ∈ [0, 𝛿∗], the control law 𝑈(𝑡 − 𝛿) still stabilizes. 
 
A control law that satisfies these two constraints is 
said to delay-robustly stabilize system  
 
In this paper, we make the two following 
assumptions:  
 
Assumption 1: 
The pair (𝐴, 𝐵) is stabilizable, i.e. there exists a 
matrix 𝐾 such that 𝐴 + 𝐵𝐾 is Hurwitz. 
 
Assumption 2: 
The proximal reflection 𝜌 and the distal reflection 𝑞 
satisfy |𝜌𝑞| < 1.   
 
The first assumption is necessary for the 
stabilizability of the whole system, while the second 
assumption is required for the existence of a delay-
robust linear feedback control. This second 
assumption is not restrictive since, if is not fulfilled, 
one could prove using arguments similar to those in 
Auriol that the open-loop transfer function has an 
infinite number of poles in the complex closed right 
half-plane. Consequently, one cannot find any linear 
state feedback law 𝑈(. ) that delay robustly stabilizes.  
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Lemma 
Take A,B and K verifying Assumption 1 and any k 
such that holds. Then, the control law 

𝐾 𝑒 𝑌(𝑡) + ∫ 𝑒 ( ) 𝐵 𝑈 (𝑣)𝑑𝑣

 
Exponentially stabilizes𝑌(𝑡). Furthermore, the state 
feedback  

𝑈 (𝑡) = 𝑈 (𝑡) − (𝜌 − 𝑘)𝐶𝑋

Exponentially stabilizes 𝑋(𝑡
 
Proof 
For the state-forecaster feedback 𝑈 (
loop system in  

         �̇�(𝑡) = 𝐴𝑌(𝑡) + 𝐵𝑈 𝑡 − ,

        �̇�(𝑡) = (𝐴 + 𝐵𝐾)𝑌(𝑡),    𝑡 ≥ .  

 
Exponential stability is guaranteed by the fact that 
(𝐴 + 𝐵𝐾) is Hurwitz. By construction of 
using 𝜙(𝑠) = 1 − (𝜌 − 𝑘)𝑞𝑒 , we have that 
solution of 
 

�̇�(𝑡) − (𝜌 − 𝑘)𝑞�̇�(𝑡 − 𝜏) =             
(𝜌 − 𝑘)𝑞𝐴𝑋(𝑡 − 𝜏) +                        

𝑘𝐵𝐶𝑋𝑡−𝜏+ 𝐵𝑈𝑂𝐷𝐸𝑡−1𝜇, satisfies for any 

 
𝑋(𝑡) = (𝜌 − 𝑘)𝑞𝑋(𝑡 − 𝜏) + 𝑌

Since |(𝜌 − 𝑘)𝑞| < 1𝑏𝑦 |𝑘𝑞| + |𝜌𝑞| <
exponentially stable.  
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Take A,B and K verifying Assumption 1 and any k 
such that holds. Then, the control law 𝑈 (𝑡) =

)𝑑𝑣 ,  

. Furthermore, the state 

)𝐶𝑋(𝑡 − )           

(𝑡). 

(. ), the closed-

𝑡 ≥  satisfies  

Exponential stability is guaranteed by the fact that 
is Hurwitz. By construction of 𝑌(𝑡) and 

we have that 𝑋(𝑡), 

   𝐴𝑋(𝑡) −
         (𝜌 −

satisfies for any 𝑡≥𝜏, 

𝑌(𝑡). 
1, 𝑋(𝑡) is also 

CONCLUSION 
In this paper, a delay-robust stabilizing feedback 
control law was developed for a coupled hyperbolic 
PDE-ODE system. The proposed method combines 
using the back stepping approach with a second 
forecaster-type feedback. The second feedback 
control is obtained after a suitable change of variables 
that reduces the stabilization problem of the PDE
ODE system.  
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