

@ IJTSRD | Available Online @ www.ijtsrd.com

 ISSN No: 2456

International
Research

Floating Point
Elements f

Chinta Sravani
1PG Scholar,

CMR Institute of Technology, Hyderabad,

ABSTRACT
We see that in most computers and applications the
CPU is taxed, first and foremost, before other pieces
of hardware are. As this is seen in most general usage
cases, especially if someone has a strong CPU, there
are others where it might be smart for your
to use other components in your system. This is where
hardware acceleration comes into play.

In computing, hardware acceleration is the use of
computer hardware to perform some functions more
efficiently than is possible in software running on
more general-purpose CPU. To perform operations at
high speeds we require accelerators which can boost
the speed of the circuit. In order to achieve this, we
have custom circuits where flexibility of the circuit is
not possible and soft process approach
only register to register transfer is present.

To overcome these faults in the existing system a
high-performance, fine grained streaming processor,
known as a streaming accelerator element, is proposed
which realizes accelerators as large-
multicore networks. By implementing this approach
with advanced program control and memory
addressing capabilities, we can see that the program
inefficiencies can be almost eliminated to enable
performance and cost, which are not possible amo
other software-programmable solutions. When used to
realize accelerators for matrix multiplication it is
shown how the proposed architecture enables real
time performance.

To support floating point operations we add Floating
Point Unit (FPU) to the ALU of processing elements
which performs IEEE754 2008 single precision

Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug

ISSN No: 2456 - 6470 | www.ijtsrd.com | Volume

International Journal of Trend in Scientific
Research and Development (IJTSRD)

International Open Access Journal

Floating Point Operations Compatible Streaming
Elements for FPGA Accelerators

Chinta Sravani1, Dr. Prasad Janga2, Mrs. S. Sribindu2

PG Scholar, 2Associate Professor
CMR Institute of Technology, Hyderabad, Telangana, India

We see that in most computers and applications the
CPU is taxed, first and foremost, before other pieces
of hardware are. As this is seen in most general usage
cases, especially if someone has a strong CPU, there
are others where it might be smart for your computer
to use other components in your system. This is where

In computing, hardware acceleration is the use of
computer hardware to perform some functions more
efficiently than is possible in software running on a

purpose CPU. To perform operations at
high speeds we require accelerators which can boost
the speed of the circuit. In order to achieve this, we
have custom circuits where flexibility of the circuit is
not possible and soft process approach where there is
only register to register transfer is present.

To overcome these faults in the existing system a
performance, fine grained streaming processor,

known as a streaming accelerator element, is proposed
-scale custom

multicore networks. By implementing this approach
with advanced program control and memory
addressing capabilities, we can see that the program
inefficiencies can be almost eliminated to enable
performance and cost, which are not possible among

programmable solutions. When used to
realize accelerators for matrix multiplication it is
shown how the proposed architecture enables real-

To support floating point operations we add Floating
U of processing elements

which performs IEEE754 2008 single precision

floating point operations addition, multiplication, and
subtraction.

Keywords: Accelerators, Field Programmable Gate
Array (FPGA), Streaming Elements, Floating Point,
Matrix Multiplication.

1. INTRODUCTION
In computers, in order to increase the speed of
operations accelerators are used. Hardware
acceleration is the use of computer hardware circuit
for performing some functions more efficiently than
that is possible in software running on a more general
purpose CPU. Hardware acceleration can be used for
graphics processing units (GPUs). This hardware
which performs the acceleration may be part of a
general-purpose CPU, or it is designed as a separate
unit. In the second case, the circuit is designed as a
separate circuit is referred to as a hardware
accelerator, or as a 3Daccelerator, cryptographic
accelerator, etc.

Initially, processors were designed as sequential a
circuit which executes the instructions one by one,
and these sequential circuits are designe
general purpose algorithms controlled by instruction
fetch which performs operations such as moving
temporary results to and from a register file.
Hardware accelerators improve the performance of an
algorithm by allowing specific data
temporaries and reducing the overhead of instruction
control. We see that the modern processors are multi
core and operate on parallel SIMD units. This
hardware acceleration is used fo
repetitive algorithm. Depending upon the
requirement, hardware acceleration can be designed

 2018 Page: 302

6470 | www.ijtsrd.com | Volume - 2 | Issue – 5

Scientific
(IJTSRD)

International Open Access Journal

Compatible Streaming

floating point operations addition, multiplication, and

Accelerators, Field Programmable Gate
Array (FPGA), Streaming Elements, Floating Point,

In computers, in order to increase the speed of
operations accelerators are used. Hardware
acceleration is the use of computer hardware circuit
for performing some functions more efficiently than
that is possible in software running on a more general-

se CPU. Hardware acceleration can be used for
graphics processing units (GPUs). This hardware
which performs the acceleration may be part of a

purpose CPU, or it is designed as a separate
unit. In the second case, the circuit is designed as a

ate circuit is referred to as a hardware
accelerator, or as a 3Daccelerator, cryptographic

Initially, processors were designed as sequential a
circuit which executes the instructions one by one,
and these sequential circuits are designed to run
general purpose algorithms controlled by instruction
fetch which performs operations such as moving
temporary results to and from a register file.
Hardware accelerators improve the performance of an
algorithm by allowing specific data-paths for its
temporaries and reducing the overhead of instruction
control. We see that the modern processors are multi-
core and operate on parallel SIMD units. This
hardware acceleration is used for any intensive key,

algorithm. Depending upon the
ent, hardware acceleration can be designed

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug 2018 Page: 303

from a small functional unit, to a large functional
block. There is a tradeoff between flexibility and
efficiency.

The assets accessible inside present day FPGA, which
might be utilized to form the accelerators, are
uncommon: per-second access to trillions of multiply–
gather (MAC) tasks and bit-level memory areas
through on-chip DSP units and block RAM (BRAM).
These check FPGA as perfect hosts to superior
custom registering designs for flag, picture, and
information preparing. Be that as it may, as the scale
and the advancement of FPGA gadgets increment
with each passing age, saddling these assets turns out
to be progressively difficult. Customarily,
accomplishing essential execution and cost has
required manual outline of custom circuits at enroll
move level in an equipment plan dialect. This is an
exceedingly viable approach, yet forces an
overwhelming improvement stack because of the low
level of outline reflection.

Soft processors have been proposed to lighten this
plan burden by employing a predominately software-
based development course, yet at introduce,
embracing such an approach requests significant trade
off on performance and cost. No approach has been
appeared to help execution and cost even near custom
circuits planned through the customary approach. To
resolve this issue a novel streaming accelerating
element (SAE) is introduced which empowers
programming based streaming element advancement,
while keeping up the execution and cost of custom
circuits. By application of streaming elements for
matrix multiplication (MM), the accompanying
commitments are made.
1. A novel streaming processor for FPGA, the SAE,

is depicted and appeared to conquer the execution
confinements of existing soft processors.

2. It is indicated how the SAE is exceptional among
soft cores in empowering ongoing accelerators,
for example, H.264 video.

3. It is indicated how SAE-based accelerators are
one of a kind in showing execution and cost which
are profoundly focused with custom circuits.

4. It is demonstrated how SAE show execution and
cost up to two requests of extent past that of
existing delicate processors. To the best of our
insight, the SAE is the most noteworthy
execution, least cost programming programmable
segment on record for FPGA and the first to
empower signal and image handling streaming

elements with execution and cost comparable with
custom circuits.

2. Background:
Among the accelerators, the one which is most
performance based is custom circuits. Custom circuit
accelerators are those which have a hardware
designed for a specific function. As it is designed for
a specified application, flexibility of this processor is
nonexistent and cost of manufacturing for these types
of circuits is more. In order to have flexibility and to
reduce the cost of manufacturing we have approached
a procedure which is software based softcore
processors. These softcore processors do not show the
good performance efficiency. Hence, we consider
incorporating the processing elements which can
cooperate for SISD and SIMD operations for a proper
defined flow to improve the efficiency. The FPGA
processing elements are designed which show a path
for data flow but even these approaches have delays
which effect the performance efficiency. For avoiding
such problems and to implement a circuit which can
give its performance efficiency which can be equal to
that of custom circuits we go for streaming accelerator
elements approach. Let us see the approach from
where the idea has been implemented and its effects
which result in implementing a circuit with streaming
accelerating elements

In any case, acknowledging high performance in
accelerators has generally required manual custom
circuit register to register transfer level procedure
which made progressively ineffective by the size of
present day FPGA. For instance, high level synthesis
(HLS) approaches improve this procedure by getting
accelerators from specifications in, for example,
C/C++, CUDA, OpenCL, or Java. The efficiency
benefits of HLS are unchallenged, however there is no
convincing proof that these can bolster execution and
cost practically identical with custom circuits, while
the necessity for a host processor for any CUDA or
OpenCL program forces high asset and execution
overheads. An alternative approach is to acknowledge
software programmable processors in the FPGA
programmable logic. These softcore processors enable
their engineering to be tuned before union to enhance
the execution and cost of the final result. Their
utilization is attractive in occasions where HLS
approaches are compelled—for example when
specific automatic develops, for example, pointers,
are utilized which can't be blended by HLS
approaches. Likewise, softcore processors have been

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug 2018 Page: 304

appeared to empower performance scaling beyond
that of HLS .

It creates the impression that if FPGA softcore
processors are to be a reasonable other option to
custom accelerators, at that point execution and cost
must enhance profoundly. The first advance toward
that path, is sharing a few qualities of these non-
FPGA-based structures, specifically the utilization of
huge scale multicore systems and task on floods of
information. It endeavors to reconsider these for the
acknowledgment of custom FPGA accelerators. It
utilizes alleged processing elements (PEs) amazingly
fine-grained processors joining these into substantial
scale impromptu multi-PE architectures. A PE is not a
general-purpose softcore processor, however is
intended to empower programming programmability
with most reduced asset cost, while amplifying
execution and scaling. This approach is promising, it
is the main processor based real time solution, and
execution and cost were profoundly focused with
similar custom circuits for any application, but still a
general capacity to empower execution and cost
equivalent with custom circuits isn't in prove. This
paper proposes a way to deal with settle this issue.

3. FPGA PROCESSING ELEMENT
 ACCELERATORS

Fig 3.1 Multicore PE accelerator architecture

3.1 FPE Accelerators:
The above figure demonstrates the reasonable multi-
PE accelerator design is proposed. As this shows,
these are made out of numerous PEs conveying by
means of a point-to-point organize made out of first-
input, first-output (FIFO) lines. A PE (Processing
Element) is a software programmable single
instruction multiple data (SIMD) part whose design is
delicate for configuration pre synthesis in various
perspectives, most remarkably number of SIMD
paths. Every PE embraces a configuration
autonomous of all others and PE execution is
decoupled, to such an extent that the system is a
heterogeneous various direction, multiple data
(MIMD) machine. Point-to-point joins are made
between conveying paths whether housed inside the

same or unique PEs, while the multicore point-to-
point topology is customized before amalgamation
proper to the activity being figured it out.
Acknowledging structures of this kind efficiently
requests two key PE highlights.

1. Standalone: A PE must have the capacity to

process information, oversee memory access, and
impart remotely under programming control
without a host processor.

2. Lean: Combined high efficiency with low cost are
requested to help vast scale multicores. None of
the softcore processors fulfill both of these
criteria. One such which does is the FPGA PE
(FPE).

3.2. The FPGA Processing Element:
The FPE instruction set architecture is a RISC load
store PE, SIMD, and SISD (i.e., single-path SIMD)
variations of which are shown in Fig. 3.2. This
architecture composes of program counter (PC),
program memory (PM), Register File (RF),
Instruction decoder (ID), branch detection, Data
Memory (DM), immediate memory, and an ALU in
view of the DSP48E in Xilinx FPGA. A COMM
(communication) module allows coordinate
inclusion/extraction of information into and out of the
FPE pipeline. The FPE is extremely lean, fusing just
those parts basic to programming programmability.

Fig 3.2 FPE in SISD mode

Fig 3.3 FPE in SIMD mode

By guaranteeing total most minimal cost FPE
structure, the economies of scale deliver sensational

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug 2018 Page: 305

diminishments in multicore asset cost. Be that as it
may, this outrageous concentration comes at the cost
of flexibility: once blended, the FPE does not show an
indistinguishable level of flexibility from a general
delicate processor in light of the fact that the
engineering is exceptionally compelled at
configuration time to help the coveted task with most
astounding execution and least cost; henceforth, while
it might be reprogrammed after blend, it can't
empower broadly useful activity in the way of a
standard softcore. Likewise, to limit cost while
supporting programming programmability, the FPE
works under two considerable outright confinements.
1. Processor and ISA: The FPE is a load store

processor which can just source non-consistent
ALU operands and deliver results to RF.

2. Addressing Modes: The FPE underpins just direct
memory addressing.

3.3 Instruction set Architecture:
Instruction Set Architecture (ISA) is a theoretical
model of a PC. It is likewise alluded to as design or
PC engineering. An acknowledgment of an ISA is
called a usage. An ISA licenses different execution
that may change in execution, physical size, and cost
(in addition to other things); in light of the fact that
the ISA fills in as the interface amongst programming
and equipment. Programming that has been composed
for an ISA can keep running on various executions of
the same ISA. These advancements have brought
down the cost of PCs and to build their
appropriateness. Thus, the ISA is a standout amongst
the most imperative deliberations in processing today.

An ISA characterizes everything a machine dialect
developer has to know so as to program a PC. What
an ISA characterizes contrasts between ISAs; when
all is said in done, ISAs characterize the upheld
information writes, what state there is, (for example,
the principle memory and registers) and their
semantics, (for example, the memory consistency and
tending to modes), the guideline set (the arrangement
of machine directions that includes a PC's machine
dialect), and the input/output demonstrate. In order to
analyze the flow of the data from one block to another
we need a set of instructions which can help us
declare the data accordingly.

Table 3.1 FPE Instruction Set

3.4 Stream Processing for FPGA Accelerators:

Fig.3.4. FPE Load-store ways

For complex data execution, the volume of
information requires BRAM DM, all together for
these operands to be handled and comes about put
away, an expansive number of stores are required
amongst BRAM and RF. Given the straight
forwardness of the FFT butterfly activity, the extent
of the program involved by these guidelines is
significant. In any case, with regards to the FPE, the
circumstance compounds still: since the FPE is
independent and handles its own correspondence,
additionally cycles are expended exchanging
approaching and active information amongst DM and
COMM, lessening program efficiency even more.

At last, every one of these exchanges initiates an
activity amongst source and goal—as appeared in Fig.
3.4, each FPE DM-RF (dark) and COMM-RF (red)
exchange takes eight cycles, forcing the requirement
for NOP guidelines. At last, these elements
consolidate as far as possible the efficiency of the
FPE. This situation is not unique to the FPE. In order
to beat this inefficiency, two properties ought to be
upheld.
A. Direct access to any blend of RF, DM, and

COMM for either guideline source or goal.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug 2018 Page: 306

B. In situations where neighbourhood buffering isn't
required, information through the PE ought to be
empowered. The outline challenge is to empower
these highlights without trading off on the asset
efficiency required to uphold custom hardware.

4.1 Stream Accelerator Elements:
To help achieve the required demands, a novel SAE is
proposed. The SAE keeps up independent conduct
and a product programmable lean design, however,
the requirement is the capacity to stream information
into and out of task sources and goals and through the
ALU without the requirement for load and store
cycles. This gushing takes two structures.
1. Internal: Peer/direct access to RF, DM, COMM,

and IMM without the requirement for delay cycles
i.e., load store cycles.

2. External: Unbuffered gushing of information from
input FIFOs to output FIFOs by means of just
ALU.

Fig. 4.1 SISD SAE Architecture

As we see in the above figure there are different
blocks for defining a path. By using the streaming
accelerator elements in SISD approach we see that it
possess three distinguish characteristics

A. Independent ID block is designed.(Defined block)
B. Flex Data realisation.
C. Comm_get and Comm_put blocks which define a

ditinguished path.

In the SAE, ID and FlexData rule full pipeline stages.
The ID decides the source/goal of any direction
operand/result, with the greater part of the potential
sources or goals of information joined in FlexData to
enable each to be tended to with break even with
inactivity; this flat memory engineering is interesting
to the SAE and particular from that utilized by some
other softcore processor. Its impact is to lessen the
multifaceted nature of getting to every one of the
unmistakable operand sources by means of a normal
dataflow.

On the off chance that these were not in a similar
pipeline arrange, guideline unravel and pipeline
administration would be significantly muddled to
adjust the information touching base at the ALU with
variable idleness. Subsequently, information operands
and results might be sourced/created to any of IMM,
RF, DM, or COMM with indistinguishable pipeline
control and without the requirement for express load
and store cycles or guidelines for DM or COMM.

Fig. 4.2 SAE ALU access path

Fig. 4.3 ALU with FPU Internal Block Diagram

In addition, in order to enable unbuffered streaming
operation from input to output FIFOs through ALU,
synchronous read/write with outer FIFOs is required,
with access to ALU in the two bearings.

Keeping in mind the end goal to help this capacity,
decoupled COMMGET and COMMPUT segments
are conveyed in the SAE inside FlexData. Note that
these both live in a similar pipeline arrange and,
consequently, fit in with the consistent dataflow
pipeline kept up over the rest of FlexData. Also, since
all of COMMGET, COMMPUT, DM, RF, and IMM
get to unmistakable memory assets (with isolated
memory banks utilized inside the SAE and a FIFO
utilized per off-SAE correspondence channel), there is
no memory transfer speed coming about because of
decoupling.

4.2 Instruction Coding:
There are multiple instructions which we are going to
define which are using.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug 2018 Page: 307

Control instructions – LOOP, RPT, BEQ, BGT, BLT,
JMP, GET, PUT, GETCH, CLRCH, NOP.
ALU instructions – MUL, ADD, SUB, MULADD,
MULSUB, COPROC.
MEM Instructions – LD, ST, LDIMM, STIMM,
LDIAR.

To permit include (yield) of information from (to) the
suitable source (goal), both the physical source
segment (RF, COMMGET, COMMPUT, DM, and
IMM) and the fitting locations inside each (i.e.,
memory area or correspondence channel) must be
transferred inside the guideline. To oblige this, SAE
ALU directions are communicated in the
accompanying arrangement:

INSTR dest, opA, opB where INSTR is the guideline
class, dest identifies the outcome goal/output, and
opA and opB recognize the source operands.

4.3.1 Program Counter
A program counter is also called as instruction
pointer. A program counter is an enroll in a PC
processor that contains the address (area) of the
guideline or instruction being executed at the present
time. As every instruction or guideline gets got, the
program counter builds its put away an incentive by 1.
At the point when the PC restarts or is reset, the
program counter typically returns to 0. In registering,
a program is a particular arrangement of requested
activities for a PC to perform. A direction is a request
given to a PC processor by a program. Inside a PC, an
address is a particular area in memory or capacity. An
enlist is one of a little arrangement of information
holding places that the processor employments. After
fetching an instruction PC is incremented and it with
holds the memory of instruction that is to be executed
next.

Fig.4.4. Internal PC logic

4.3.2 Program Memory
Your PC likewise has data memory and program
memory. However, the program memory is little in
the PC - it is only for capacity of the boot messages

you see when the PC boots, and (frequently, yet not
generally) the configuration pages where you
characterize on the off chance that you have a floppy
introduced, if the PC should bolster a USB console
and so on.

4.3.3 Data Memory
Here is where you put your factors. You can read and
compose esteems. Program is guideline what CPU
executes, information will be data that program
utilizes for customization and capacity of how the
program should convey those directions.

Fig. 4.5 Flow of PCM

The structure of the SAE PC and PCM and the
conduct of the PCM are appeared in Fig. 4.5. The
PCM controls the refresh of the PC given its past
esteem and the guideline referenced in PM given
snippets of data—the begin and end lines of the body
articulations to be rehashed S and E, the quantity of
reiterations N. These are encoded in a RPT direction
added to the SAE guideline set. These guidelines are
encoded as RPT N S E.

The PCM mediates the PC to guarantee the right
number of redundancies of the body proclamation and
to help the development of settled rehash activities by
establishing the flowchart in Fig. 10. Specifically, for
a n-level home, it keeps up n + 1-component
arrangements of measurements, with an extra
component added to help infinite reiteration of the
best level program, thought to be a verifiable infinite
rehash guideline. For layer I of the circle settle, the

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug 2018 Page: 308

begin line, end line, and number of redundancies are
put away in component I +1 of the rundowns s, e, and
n, individually.

In all cases s0 = 0, e0 =∞and n0 =∞to speak to the
begin line, end line, and number of reiterations of the
best level program [in Fig. 4.5].

Every time a rehash guideline is experienced I, the
present record into s, e, andn is increased and the
estimations of the new component introduced utilizing
S, E, andN from the decoded direction in (3).

General PC refreshing at that point continues (1) until
the point when either another rehash guideline is
identified or until the point when ei is experienced.

In the last case, the quantity of cycles of the present
explanation is decremented (2), or if ni = 0, the
majority of the emphasess of the present repeat
proclamation have been finished and control of the
circle settle returns to the past level (4).

The pcm_en dictates whether the PCM is incorporated
into the blended design or else it takes a Boolean
esteem. For the situation where a PCM is
incorporated, the greatest profundity of circle settle is
configurable by means of pcm_en which can take,
theoretically, any esteem. In that capacity, the PCM
perhaps included or excluded and hence, imposes no
cost when it isn't required; besides, when it is
incorporated, its cost can be tuned to the current
application by changing the most extreme profundity
of circle settle.

The signals COMMGET and COMMPUT can work
tending to modes as determined via the mode
parameter. In coordinate mode, singular FIFO
channels by means of locations encoded inside the
direction. Guidelines for either COMM unit are
encoded as a) COMM_GET DEST b) COMM_PUT
SOURCE

Fig 4.6 Flow of COMMGET and COMMPUT

Fig 4.6 Flow of channel pointer

4.4 Single Precision Representation
Single precision, also called as "float" in the C
language family, is a binary format that occupies 32
bits (4 bytes) and its significant has a precision of 24
bits (about 7 decimal digits).

The single precision floating point format has an 8 bit
exponent and 26 bit mantissa plus a sign bit. It is a 32
bit representation and its bias value is equal to 127.

Figure 4.7 IEEE-754 Single Precision Floating Point
Format

Figure 4.8 Flowcharts for Multiplication

5. Conclusion
Soft processors for FPGA experience the effects of
generous degradation in performance and cost with
respect to custom circuits. The SAE implemented uses
a technique which allows for maximum efficiency
which is compatible with the custom circuits. We are
implementing this for floating point numbers which
perform arithmetic operations like addition,
subtraction, and multiplication for matrix
multiplication. These empower efficiency routinely
more than 90% and execution and cost which are
practically identical with custom circuit accelerators
and well ahead of time of existing soft processors.
Also, it is indicated how SAE-based MM (Matrix

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 5 | Jul-Aug 2018 Page: 309

Multiplication) accelerators offer changes in
asset/cost by up to three degrees of magnitude. To the
best of our insight, these capacities are extraordinary,
for FPGA, as well as for any semiconductor
innovation.

Advantages:
 Delay is reduced in processing the instructions.
 It is more performance efficient compared to

softcore processors and achieves almost as good
performance as that of custom circuits.

Future scope:
As future work, however furthermore the FPGA
accelerators might be utilized to additionally facilitate
the outline procedure. For instance, programmability
of the SAE implies that it might likewise be utilized
as a memory controller to execute custom memory
access.

References
1. C. H. Chou, A. Severance, A. D. Brant, Z. Liu, S.

Sant, and G. G. F. Lemieux, "VEGAS: Soft vector
processor with scratchpad memory," in Proc.
nineteenth ACM/SIGDA Int. Symp. Field
Program. Entryway Arrays (FPGA),2011

2. A. Severance and G. Lemieux, "VENICE: A
reduced vector processor for FPGA applications,"
in Proc. Int. Conf. Field-Program. Technol. (FPT),
Dec. 2012

3. H. Y. Cheah, F. Brosser, S. A. Fahmy, and D. L.
Maskell, "The iDEA DSP square based delicate
processor for FPGAs," ACM Trans.

Reconfigurable Technol. Syst., vol. 7, no. 3, Aug.
2014, Art. ID 19

4. P. Wang and J. McAllister, "Delicate center
stream processor for sliding window
applications," in Proc. IEEE Workshop Signal
Process. Syst. (Tastes), Oct. 2013

5. X. Chu and J. McAllister, "Programming defined
circle unraveling for FPGA-based MIMO
location," IEEE Trans. Flag Process., vol. 60, no.
11, Nov. 2012.

Author Profile:

Chinta Sravani. She received
Bachelor’s Degree in 2015 from
Electronics and Communication of
Engineering from Institute of
Aeronautical Engineering. She is
pursuing M. Tech in VLSI System
Design from CMR Institute of
Technology

Dr. Prasad Janga. He received
Bachelor’s from V.R. Siddhartha
Engineering College and has
accomplished Master’s Degree from
SITAMS. He is pursuing PhD from
(NIU)-Delhi. He has an academic
experience of 9 years in teaching
field and is working as Associate

Professor in CMR Institute of Technology.

Mrs. S. SriBindu. She is working
as an Associate Professor in CMR
Institute of Technology.

