A Method to Calculate Functions of the Product of G and F
Used in Wilson’s GF Matrix Method

Hiroto Kikuchi
Department of Physics,
Nippon Medical School, 1-7-1, Kyonan-cho, Musashino, Japan

ABSTRACT
Wilson’s GF matrix method is generally utilized to obtain normal vibrations and normal coordinates of molecules. The function of the product of G and F in Wilson’s GF matrix method is also a key to determine the line-shape function (LSF) which expresses molecular absorption or emission spectra. In this paper, the method for calculating the function of the product of G and F is shown.

Keywords: Line-shape function, GF matrix method, a method to calculate functions of matrix

I. INTRODUCTION
The line shape-function (LSF) plays an important role in a variety of research (ordinary optical absorption or emission, band shape of the circular dichroism, excitation energy transfer between ions in solids, electron transfer between molecules in the solvent and in photosynthetic systems, intersystem crossing and internal conversion in a molecule, thermal ionization in photosynthetic systems, intersystem crossing and excitation energy transfer between ions in solids, emission, band shape of the circular dichroism, etc.). In recent years, the line shape-play in the LSF has been recognized as an important role in the research of the density matrix [18], and an approximate expression was also described. One feature of the approximate formula is to express the LSF in terms of both changes in molecular structure and in force constants between the initial and final electronic states. The change in molecular structure is expressed as the change in G matrix, and the changes in force constants are expressed as the change in F matrix between the initial and final electronic states. Here G and F are defined in Wilson’s GF matrix method [19]. Another feature is that the outline of spectrum shape can easily be estimated if both G and F are obtained from quantum chemical calculation.

However, in the approximate formula there is the following function of the product of G and F:

\[F(\omega, \beta) = \sum_i \sum \frac{p_i(\beta) S_{uu}^2}{\Delta E_i + E_{vv} - E_{uu}} \left(\frac{1}{\hbar} (\Delta E_i + E_{vv} - E_{uu}) - \omega \right). \]

Here the suffix i or j and the suffix u or v are used for specification of a zero-order electronic state and a vibrational state, respectively. The variable \(p_i(\beta), E_{uu} \) (or \(E_{vv} \)), \(\Delta E_i \), and \(S_{uu}^2 \) represent the Boltzmann distribution of initial vibrational states, a vibrational energy level measured from the bottom of the adiabatic potential surface in each electronic state, the energy gap between the two bottoms, and the square of the vibrational overlap integral between one electronic state and another electronic state called the Franck-Condon factor, respectively. And the angular frequency of the light emitted (absorbed) between two energy levels and the value 1/(\(k_B T \)), respectively. Here \(k_B \) is the Boltzmann constant and \(T \) is temperature. Namely, the LSF is a function depending on temperature and the energy gap between two vibronic states.
\[\Gamma_{e}(\beta) = \frac{1}{\sqrt{GF_{e}}} \coth \left(\frac{\hbar \beta \Gamma_{e}}{2} \right). \]

(2)

Here the suffix e means the electronic excited state. In this paper, the calculating method for (2) is introduced.

II. THE DEFINITION OF WILSON’S G-MATRIX AND F-MATRIX

In this section, the definition of the G and F matrix of Wilson’s GF matrix method [19] is shown. Within a small displacement, the internal displacement coordinates \(S \) can be related by linear transformation of the Cartesian displacement coordinates:

\[S_i = B_i \Delta X_i, \]

(3)

where \(B_i \) is the \((3N-6)\times3N\) matrix whose elements depend on the molecular structure. Here, \(i \) represents the \(i \)-th electronic state, and \(N \) is the number of atoms. The \(G \) matrix is defined by \(G_i = B_i M^T B_i^T \) (\(M \) is the \(3N\times3N\) diagonal matrix whose elements are the nuclear masses). The \(F_i \) is a symmetric matrix consisting of force constants.

To describe the normal vibration, we employ the transformation from the internal displacement to the normal coordinates:

\[S_i = L_i Q_i, \]

(4)

The transformation matrix \(L_i \) is then determined so that it can satisfy the following eigenvalue equation and orthonormal condition:

\[G_i F_i L_i = L_i \Lambda_i, \]

(5)

\[L_i^T G_i^{-1} L_i = I. \]

(6)

Here \(\Lambda_i \) is the diagonal matrix whose diagonal elements consist of the square of the angular frequencies \(\{ \omega_i \} \) of the molecular vibration. The method for obtaining the matrix \(L_i \) concretely is given in [19–21].

III. FORMULA OF LSF WITHIN A GAUSSIAN APPROXIMATION

In [18], the approximate formula of LSF within Gaussian approximation was derived using Wilson’s GF matrix as follows:

\[F(\omega, \beta) = \left[\frac{\hbar^2}{2 \Xi_1} \right] \exp \left[-\frac{1}{2 \Xi_1} (\bar{\epsilon} - \Delta \epsilon_{i} + \hbar \omega)^2 \right]. \]

(7)

\[\Xi_1 = \Xi_1^{(0)} + \Xi_1^{(2)} + \Xi_1^{(3)} \]

(8)

\[\Xi_1^{(0)} = \frac{1}{2} \Delta R_{eq} F_i \left[\frac{\hbar^2}{8} \right] \exp \left[\frac{1}{2 \Xi_1} (\bar{\epsilon} - \Delta \epsilon_{i} + \hbar \omega)^2 \right]. \]

(9)

\[\Xi_1^{(2)} = \frac{1}{2} \Delta R_{eq} \left[(F_i, G_i) F_i \right] \Delta R_{eq}, \]

(10)

\[\Xi_1^{(3)} = \frac{1}{2} \Delta R_{eq} \left[(F_i, G_i) F_i \right] \Delta R_{eq}^2, \]

(11)

\[\Xi_1^{(3)} = \Xi_1^{(3)} + \Xi_1^{(2)} + \Xi_1^{(3)}. \]

(12)

\[\Xi_1^{(0)} = \frac{1}{2} \Delta R_{eq} \left[(F_i, G_i) F_i \right] \Delta R_{eq}, \]

(13)

\[\Xi_1^{(2)} = \frac{1}{8} \Delta R_{eq} \left[(F_i, G_i) F_i \right] \Delta R_{eq}^2, \]

(14)

\[\Xi_1^{(3)} = \frac{1}{8} \Delta R_{eq} \left[(F_i, G_i) F_i \right] \Delta R_{eq}^3, \]

(15)

\[\Gamma_{e}(\beta) = \frac{1}{\sqrt{GF_{e}}} \coth \left(\frac{\hbar \beta \Gamma_{e}}{2} \right). \]

(16)

IV. A METHOD TO CALCULATE FUNCTIONS OF THE PRODUCT OF G AND F

This section is the main part of this paper and the calculation method for functions of the product of G matrix and F matrix. Concretely, the solving method for (16) is elucidated.

From Eq. (5), we obtain

\[GF = L \Lambda L^{-1}. \]

(17)

Here, the suffix representing the electronic state is omitted. Consequently, we also obtain

\[(GF)^\mu = L \Lambda^\mu L^{-1}. \]

(18)

Next, we consider the polynomial expansion of \(f(GF) \):

\[f(GF) = C_0 I + C_1 (GF) + C_2 (GF)^2 + C_3 (GF)^3 + \cdots. \]

(19)

From (18), (19) can be expressed as

\[f(GF) = L (\sum_{\mu=0}^{\infty} C_\mu A^\mu) L^{-1} = L f(A) L^{-1}. \]

(20)
Because the matrix A is a diagonal matrix,
\[f(A)_{ij} = f(\omega_i^2) \delta_{ij}. \]
(21)

Here δ_{ij} is Kronecker delta. From McLaurin series expansion for exponential functions, the function “coth” can be calculated using (21).

Then, because the derivative of \sqrt{X} does not have a defined value at 0, McLaurin series expansion for \sqrt{X} may immediately seems to be impossible. The case of \sqrt{GF} is the same as the case of \sqrt{X}.

However, we consider the polynomial expansion for $\sqrt{X+I}$ instead of \sqrt{GF}. Here I is the unit matrix. Namely,
\[\sqrt{X+I} = C_0 I + C_1(X) + C_2(X)^2 + \ldots. \]
(22)

Then, squaring both side of (22), we obtain the following:
\begin{align*}
X + I &= C_0^2 I + 2 C_0 C_1 X + (C_1^2 + 2C_0 C_2) X^2 \\
&\quad + 2(C_0 C_3 + C_1 C_2) X^3 + \ldots.
\end{align*}
(23)

From this equation, it is found that $C_0=1$, $C_1=1/2$, $C_2=-(1/8)$, $C_3=1/16$, and so on. Thus,
\[\sqrt{X+I} = I + (1/2)X - (1/8)X^2 + (1/16)X^3 + \ldots. \]
(24)

Here, suppose X to be $GF - I$, we can make the following expression from (24)
\begin{align*}
\sqrt{GF} &= I + (1/2)(GF - I) - (1/8)(GF - I)^2 \\
&\quad + (1/16)(GF - I)^3 + \ldots.
\end{align*}
(25)

The right hand side of this equation is just the infinite power series for the matrix GF. Namely, \sqrt{GF} can be expressed as the power series and be calculated using (21).

V. CONCRETE CALCULATION

We calculated the LSF of the one-photon emission of SO$_2$ within Gaussian approximation, using (21). As for the temperature T, 300K was used.

First, we calculated the electronic ground state and the first excited state using ab-initio quantum chemical calculation software Gaussian 09 [21]. The 6-31G(d,p) basis set was used in the calculation of both the ground and the excited states. We optimized the structure of the ground state with HF and of the excited state with CIS (Nstates=5), respectively.

Second, the G matrix, the F matrix, and the L matrix in (5) in both the ground and the excited states were obtained according to the calculation method in [22].

Finally, the LSF was calculated using the calculation method described in IV. The result of the calculation was shown in Fig. 1. The calculated LSF additionally agrees with the experimental data [23].

V. CONCLUSION

The solving method of (16) are elucidated, and it was found that not only (16) but also functions of the product of G and F shown in Wilson’s GF matrix method can generally be calculated using the angular frequencies which are the eigen values of the product of G and F.

REFERENCES