

Synthesis, Characterization and *In Vitro* Antimicrobial Screening of Some PyrazolylPyridyl Substituted Dicoumarins

Dr. Neha N. Gohil, Dr. D. I. Brahmbhatt Department of Chemistry, Sardar Patel University,

Vallabh Vidyanagar, Gujarat, India

ABSTRACT

In the present study, a series of pyrazolyl pyridyl substituted dicoumarins has been synthesized. The synthesis of various 3',3"-(4-(1"'-phenyl-3"'-(pyridin-3""-yl)-1*H*-pyrazol-4"'-yl)pyridine-2,6-diyl) dicoumarins and 3',3"-(4-(1""-phenyl-3""-(pyridin-4""yl)-1H-pyrazol-4"'-yl) pyridine-2,6-diyl)dicoumarins has been carried out by the reaction of various 3coumarinoyl methyl pyridinium bromide salts with 3-(3-(1-phenyl-3-(pyridin-3-yl)-1H-pyrazol-4yl)acryloyl)coumarins and 3-(3-(1-phenyl-3-(pyridin-4-yl)-1*H*-pyrazol-4-yl)acryloyl)coumarins (coumarin chalcones) respectively under Krohnke's reaction condition. Structural assignments were based on spectroscopic methods (IR, ¹H-NMR, ¹³C-APT, Mass spectral data and elemental analysis). The compounds were subjected to in vitro antimicrobial screening against representative panel of bacteria (Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Salmonella typhi) and fungi (Aspergillus niger and *Candida albicans*).

Keywords: Coumarins, dicoumarins,krohnke synthesis, antimicrobial screening, broth dilution method, spectral data.

INTRODUCTION

Coumarins (2*H*-1-benzopyran-2-ones) are well known aromatic δ -lactones isolated from variety of plant sources¹.Coumarins have a wide range of applications in the field of pharmaceuticals due to their diverse pharmacological and biological propertiessuch as antimicrobial², anticoagulant³, antitumor⁴, antiinflammatory⁵, anti-HIV⁶, anticonvulsant⁷, antidiabetic⁸, analgesic⁹, antianxiety¹⁰ etc.A wide number of coumarin derivatives have been found in

literature which contain nucleus like pyridine, indole, imidazole, diazole, thiazole, and triazole etc. as a substituent group possess important biological activities¹¹⁻¹⁵.

Among variety of heterocyclic substituted coumarins, pyridyl substituted coumarins draw a special attention in synthetic as well as medicinal field due to their diverse pharmacological activities. A number of coumarin derivatives having pyridine substitution mainly at 3- or 4- position of the coumarin, possess various biological properties *viz*antifungal¹⁶, anticoagulant¹⁷, antihyperglycemic¹⁸, CNS depressant activity¹⁹ and also shown electrochemical and photophysical properties²⁰.

In literature pyrazolyl substituted pyridine derivatives are well documented and reported to possess severalmedicinal properties like antimicrobial activity²¹, cytotoxic activity, DNA binding property²², anticancer activity²³, used as a potent inhibitor of the transforming growth factor- β type I receptor kinase domain²⁴ and exhibited appreciable cyclooxygenase-2 (COX-2) potency and selectivity²⁵. They also showed some photo-physical and electro chemiluminescence properties²⁶.

In dicoumarinyl pyridines, the pyridine nucleus is flanked between two coumarin moieties at C-2 and C-6 position and the structure seems as if two coumarins have 3-(2-pyridyl) substitution. We had earlier synthesized various dicoumarinyl pyridines in our laboratory by using well-known *Krohnke's* pyridine synthesis²⁷⁻²⁸. Thus considering the importance of pyridylcoumarins, pyrazolyl substituted pyridines and in continuation of our synthesis work on dicoumarinyl pyridines, we have synthesized some new pyrazolylpyridyl substituted dicoumarins in present work.

EXPERIMENTAL

All the melting points are uncorrected. All reactions were performed with commercially available reagents and they were used without further purification. Organic solvents were purifiedby standard methods and stored over molecular sieves. All the IR spectra (KBr disc) were recorded on Shimadzu FTIR 8400-S spectrometer. ¹H-NMR and ¹³C-APT spectra were recorded on Bruker Advance 400 spectrometer operating at 400 MHz for ¹H-NMR and 100 MHz for ¹³C-APT. The chemical shift (δ) is reported in ppm using chloroform-d as a solvent and calibrated standard solvent signal. Mass spectra were recorded on Shimadzu QP 2010 spectrometer. Elemental analysis was carried out on Perkin-Elmer 2400 C-H-N-S-O Analyser Series-II. All the compounds were routinely checked for completion of the reaction on silica gel 60 F254 TLC plates and their spots were visualized by exposure to a UV lamp, iodine vapour or KMnO₄ reagents. In the present work, the synthesis of various 3',3"- (4-(1"'-phenyl-3"'-(pyridin-3"''-yl)-1H-pyrazol-4"-yl)pyridine-2,6-diyl)dicoumarins (6aand 3',3"-(4-(1"'-phenyl-3"'-(pyridin-4""-yl)-1Hi) pyrazol-4"'-yl)pyridine-2,6-diyl)dicoumarins(7a-i) has been carried out by reacting appropriate 3coumarinoyl methyl pyridinium bromide salt (3ac) with various coumarinchalcones3-(3-(1-phenyl-3-(pyridin-3-yl)-1H-pyrazol-4yl)acryloyl)coumarins(4ac) and 3-(3-(1-phenyl-3-(pyridin-4-yl)-1H-pyrazol-4yl)acryloyl)coumarins(**5a-c**)respectively in the presence of ammonium acetate in refluxing acetic acid.Compounds (3a-c)were prepared according to literature procedure^{29,30,31}.

1) General procedure for the preparation of 3-(3-(1phenyl-3-(pyridin-3-yl)-1H-pyrazol-4yl)acryloyl)coumarins (4a-c) and 3-(3-(1-phenyl-3-(pyridin-4-yl)-1H-pyrazol-4yl)acryloyl)coumarins (5a-c):

In a 100 mL round bottom flask, an appropriate 3acetyl coumarin(0.01 mol) and appropriate pyrazole and the reaction mixture was stirred for 10 minutes at room temperature. The mixture was then refluxed on water bath for 4 hours. It was allowed to cool to room temperature. A solid product separated out was filtered off, washed with cold ethanol and dried. It was recrystallized from ethanol. Chalcones**4a**, **4b**, **5a** and **5b** were prepared according to literature procedure³².

aldehvde (0.015 mol) were taken in 50 mL of ethanol.

Catalytic amount of piperidine (1.0 mL) was added

 General procedure for the synthesis of Synthesis of 3',3''-(4-(1'''-phenyl-3'''-(pyridin-3''''-yl)-1Hpyrazol-4'''-yl)pyridine-2,6-diyl)dicoumarins (6ai) and 3',3''-(4-(1'''-phenyl-3'''-(pyridin-4''''-yl)-1H-pyrazol-4'''-yl)pyridine-2,6-diyl)dicoumarins (7a-i).

In a 100 mL round bottom flask equipped with a condenser, guard tube and magnetic needle, an appropriate 3-coumarinoyl methyl pyridinium bromide salt (3a-c)(0.003 mol) was taken in glacial acetic acid (15 mL). To this, ammonium acetate (0.03 mol) was added with stirring at room temperature. Then a solution of appropriate 3-(3-(1-phenyl-3-(pyridin-3-yl)-1*H*-pyrazol-4-

yl)acryloyl)coumarin (4a-c)or 3-(3-(1-phenyl-3-(pyridin-4-yl)-1*H*-pyrazol-4-yl)acryloyl)coumarin (5a-c)(0.003 mol) in acetic acid (15 mL) was added with stirring at room temperature and reaction mixture was further stirred for 45 minutes and then refluxed for 8 hours at 140°C. It was then allowed to come to room temperature. The reaction mixture was poured into ice-cold water (75 mL). A crude solid obtained was extracted with chloroform (3 x 30 mL). The combined chloroform extract was washed with 10% sodium bicarbonate solution (3 x 20 mL), with water (3 x 20 mL) and dried over anhydrous sodium sulphate. The removal of chloroform under vacuum gave a solid purified product. This was by column chromatography using silica gel and chloroformpet.ether (60-80) (8:2) as an eluent to give product (6a-i) and (7a-i). The compounds were recrystallized from chloroform-hexane.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

target compounds (ba-i) and (7a-i)						
Compounds	R	R ₁	\mathbf{R}_2	R ₃		
6a : 7a	Н	Η	Η	Н		
6b:7b	Н	Н	OCH ₃	Н		
6c : 7c	Н	Н	Η	Br		
6d:7d	OCH ₃	Н	Н	Η		
6e : 7e	OCH ₃	Η	OCH ₃	Η		
6f:7f	OCH ₃	Н	Η	Br		
6g:7g	Н	Br	Н	Η		
6h : 7h	Н	Br	OCH ₃	Η		
6i:7i	Н	Br	Н	Br		

Scheme 1. Synthetic pathway for the synthesis of target compounds (6a-i) and (7a-i)

Spectral Interpretation

6-Bromo-3-(3-(1-phenyl-3-(pyridin-3-yl)-1H-

pyrazol-4-yl)acryloyl)coumarins (4c):IR (KBr, v_{max}, cm⁻¹):1728(C=O stretching of δ -lactone of coumarin), $1684(\alpha,\beta)$ unsaturated carbonyl group), 1605 and 1543(aromatic C=C and C=N stretchings), 756(C-H bending vibration of mono substituted benzene ring), 3047(aromatic C-H stretching).¹H-NMR (400 MHz, CDCl₃, δ):7.41-8.99 (16H, multiplet, thirteen aromatic protons + C₄proton of coumarin+ two olefinicprotons). OT Irend

4-vl)acrylovl)coumarins (5c):IR (KBr, Vmax, cm⁻ ¹):1728 (C=O stretching of δ -lactone of coumarin), 1674 (α , β unsaturated carbonyl group), 1605 and 1543(aromatic C=C and C=N stretchings), 764 (C-H bending vibration of mono substituted benzene ring), 3047 (aromatic C-H stretching). ¹H NMR (400 MHz, CDCl₃, δ): 7.29-8.99 (16H, multiplet, thirteen aromatic protons + C₄ proton of coumarin+ two olefinic protons).

3',3''-(4-(1'''-phenyl-3'''-(pyridin-3''''-yl)-1Hpyrazol-4'''-yl)pyridine-2,6-diyl)dicoumarin

(6a):Yield: 71%., m.p.250-252°C., IR (KBr, v_{max}, cm⁻¹): 1726 (C=O stretching of δ -lactone of coumarin), 1608 and 1457 (aromatic C=C and C=N stretchings), 691 and 759 (C-H bending vibrations of mono substituted benzene ring), 3062 (aromatic C-H stretching). ¹H-NMR (400 MHz, $CDCl_3$, δ): 7.35-8.08 (15H, multiplet, Ar-H except C5"''-H, C3-H,C5-H, C6""'-H, C4'-H, C4"-H and C₂""-H), 8.36 (2H, singlet, C₅"'-H), 8.38(2H, singlet,C₃-HandC₅-H), 8.66 (1H, doublet of doublet, J = 4.8 Hz and 1.6 Hz, C₆""-H), 8.82 (2H, singlet, C₄'-H and C₄"-H), 8.85 (1H, doublet, J =

0.8 Hz, C₂''''-H). ¹³C-APT (100 MHz, CDCl₃ δ): 116.47(C), 119.39(C), 119.47(CH), 120.78(CH), 122.03(CH), 122.68(C), 123.59(C), 124.63(C), 125.33(CH), 127.25(C), 127.89(C), 128.58(CH), 128.89(C), 129.62(C), 132.34(C), 135.99(C), 139.53(CH), 141.64(CH), 142.72(C), 149.41(C), 149.49(C), 151.54(CH), 154.05(CH), 160.08(CO of coumarin). Anal.Calcd. for C₃₇H₂₂N₄O₄: C, 75.76; H, 3.78; N, 9.55 %. Found: C, 75.82; H, 3.85; N, 9.62 %.

8"-Methoxy-3',3"-(4-(1""-phenyl-3""-(pyridin-3""vl)-1H-pyrazol-4'''-yl)pyridine-2,6-diyl)dicoumarin

(6b): Yield: 73%., m.p.230-232°C., IR (KBr, v_{max}, cm⁻): 1728 (C=O stretching of δ -lactone of coumarin), 1612 and 1481 (aromatic C=C and C=N stretchings), 687 and 756 (C-H bending vibrations of mono substituted benzene ring), 2978 (aliphatic C-H stretching), 3062 (aromatic C-H stretching). ¹H-NMR (400 MHz, CDCl₃, δ): 4.02 (3H, singlet, OCH₃), 7.14-8.07 (14H, multiplet, Ar-H except C₅"-H, C₃-H,C₅-H, C₆""-H, C₄'-H, C₄"-H and C₂""-H), 8.36 (2H, multiplet, C_5''' -H and C_3 -H), 8.40 (1H, doublet, J =1.2 Hz, C₅-H), 8.64 (1H, doublet of doublet, J = 4.8Hz and 1.6 Hz, C6""-H), 8.80 (1H, singlet, C4'-H), 8.82 (1H, singlet, C_4'' -H), 8.84 (1H, doublet, J = 2.0¹³C-APT (100 MHz, CDCl₃, δ): *Hz*, C_2'''' -H). 6-Bromo-3-(3-(1-phenyl-3-(pyridin-4-yl)-1H-pyrazol- 56.23(OCH₃), 114.00(CH), 116.38(CH), 118.48(CH), 119.74(CH), 120.04(CH), 119.22(C), 120.28(C), 120.68(C) 122.56(CH), 123.59(CH), 124.43(CH), 124.59(CH), 124.90(C), 125.33(C), 127.20(CH), 127.89(CH), 128.25(CH), 128.93(C), 129.59(CH), 129.78(CH), 132.28(CH), 136.01(CH), 136.26(CH), 141.56(C), 142.71(CH), 142.86(CH), 139.50(C), 146.94(C), 148.01(C), 149.32(C) 149.60(C), 150.17(C), 151.38(C), 159.75(CO of coumarin), 160.05(CO of coumarin). Anal.Calcd. for C₃₈H₂₄N₄O₅: C, 74.02; H, 3.92; N, 9.09 %. Found: C, 74.11; H, 4.09; N, 9.16 %.

6"-Bromo-3',3"-(4-(1""-phenyl-3""-(pyridin-3""-yl)-1H-pyrazol-4"'-yl)pyridine-2,6-diyl)dicoumarin

(6c): Yield: 68%., m.p.145-147°C., IR (KBr, v_{max}, cm⁻ ¹):1720 (C=O stretching of δ -lactone of coumarin), 1620 and 1496 (aromatic C=C and C=N stretchings), 694 and 771 (C-H bending vibrations of mono substituted benzene ring), 3055 (aromatic C-H stretching).¹H-NMR (400 MHz, CDCl₃, δ): 7.38-8.08 (14H, multiplet, Ar-H except C₅"'-H, C₃-H,C₅-H, C₆""-H, C₄'-H, C₄"-H and C₂""-H), 8.36 (1H, singlet, C_5''' -H), 8.37 (1H, doublet, J = 1.6 Hz, C_3 -H), 8.41 (1H, doublet, J = 1.6 Hz, C₅-H), 8.65 (1H, doublet of doublet, J = 4.8 Hz and 1.2 Hz, C_6'''' -H), 8.76 (1H, singlet, C4'-H), 8.81 (1H, singlet, C4"-H), 8.83 (1H, doublet, J = 1.6 Hz, $C_2^{\prime\prime\prime\prime}$ -H). ¹³C-APT (100 MHz, 110.09(C), 112.93(C), 115.65(C), $CDCl_{3}$ δ): 115.76(C), 117.14(CH), 118.06(C), 118.59(C), 118.70(CH) 118.82(CH), 119.31(C), 120.08(CH), 122.25(CH), 122.67(CH), 126.92(CH), 128.08(CH), 129.41(CH), 130.01(CH), 130.65(CH), 132.44(CH), 137.11(CH), 138.09(C), 139.28(CH), 140.65(CH), 143.62(C), 145.77(C), 146.26(CH), 141.08(CH), 146.65(CH), 146.82(C), 148.68(CH), 149.63(C), 152.91(C), 154.13(C), 160.72(CO of coumarin), coumarin). 161.15(CO of Anal.Calcd. for C₃₇H₂₁BrN₄O₄: C, 66.78; H, 3.18; N, 8.42 %. Found: C, 66.82; H, 3.22; N, 8.49 %.

8'-Methoxy-3',3''-(4-(1'''-phenyl-3'''-(pyridin-3'''vl)-1H-pyrazol-4'''-yl)pyridine-2,6-diyl)dicoumarin

(6d): Yield: 73%., m.p.230-232°C., IR (KBr, v_{max}, cm⁻ 6''-Bromo-8'-methoxy-3',3''-(4-(1'''-phenyl-3'''-¹): 1728 (C=O stretching of δ -lactone of coumarin), 1612 and 1481 (aromatic C=C and C=N stretchings), 687 and 756 (C-H bending vibrations of mono substituted benzene ring), 2978 (aliphatic C-H stretching), 3062 (aromatic C-H stretching).¹H-NMR (400 MHz, CDCl₃, δ): 4.12 (3H, singlet, OCH₃), 7.15-8.06 (14H, multiplet, Ar-H except C₅"-H, C₃-H,C₅-H, $C_6''''-H$, $C_4'-H$, $C_4''-H$ and $C_2''''-H$), 8.36 (2H, multiplet, C_5''' -H and C_3 -H), 8.40 (1H, doublet, J =1.2 Hz, C₅-H), 8.64 (1H, doublet of doublet, J = 4.0Hz and 1.6 Hz, C₆""-H), 8.81 (1H, singlet, C₄'-H), 8.82 (1H, singlet, C_4 "-H), 8.85 (1H, doublet, J = 2.0¹³C-APT (100 MHz, CDCl₃, δ): *Hz*, C_2 ^{*''''*-H).} 56.28(OCH₃), 114.05(CH), 116.43(CH), 118.58(CH), 120.04(C), 120.24(CH), 119.20(C), 119.78(CH), 120.66(C) 122.58(CH), 123.59(CH), 124.40(CH), 124.50(CH), 124.93(C), 125.33(C), 127.29(CH), 127.89(CH), 128.23(CH), 128.95(C), 129.59(CH), 129.76(CH), 132.28(CH), 136.00(CH), 136.26(CH), 139.51(C), 141.56(C), 142.71(CH), 142.86(CH), 146.98(C), 148.02(C), 149.30(C), 149.65(C), 151.34(C), 159.70(CO of coumarin), 150.17(C), 160.05(CO of coumarin). Anal.Calcd. for C₃₈H₂₄N₄O₅: C, 74.02; H, 3.92; N, 9.09 %. Found: C, 74.11; H, 4.09; N, 9.16 %.

8',8''-Dimethoxy-3',3''-(4-(1'''-phenyl-3'''-(pyridin-3''''-vl)-1H-pyrazol-4'''-vl)pyridine-2,6-

diyl)dicoumarin (6e): Yield: 78%., m.p.290-292°C., IR (KBr, v_{max} , cm⁻¹): 1712 (C=O stretching of δ -lactone of coumarin), 1620 and 1496 (aromatic C=C and C=N stretchings), 663 and 748 (C-H bending vibrations of mono substituted benzene ring), 2970 (aliphatic C-H stretching), 3055 (aromatic C-H stretching). ¹H-NMR (400 MHz, CDCl₃, δ):4.00 (6H, singlet, 2 x OCH₃), 7.11-8.03 (13H, multiplet, Ar-H except C₅"'-H, C₃-H,C₅-H, C₆""-H, C₄'-H, C₄"-H and C₂""-H), 8.34 (1H, singlet, C₅"'-H), 8.37 (2H, singlet, C₃-H andC₅-H), 8.61 (1H, doublet of doublet, J = 4.8Hz and 1.6 Hz, C₆""-H), 8.79 (2H, singlet, C₄'-H and C_4 "-H), 8.81 (1H, doublet, J = 2.0 Hz, and C_2 ""-H). 13 C-APT (100 MHz, CDCl₃, δ): 56.21(OCH₃), 114.07(CH), 119.50(CH), 120.14(C), 120.39(CH), 120.77(C) 122.72(CH), 123.67(CH), 124.56(CH), 125.50(C), 127.27(CH), 128.03(CH), 128.66(C), 129.67(CH), 135.99(CH), 139.65(C), 141.67(C), 142.94(CH), 143.63(C), 146.98(C), 149.51(CH), 151.53(C), 159.61(CO of coumarin). Anal.Calcd. for C₃₉H₂₆N₄O₆: C, 72.44; H, 4.05; N, 8.66 %. Found: C, 72.59; H, 4.15; N, 8.71 %.

(pyridin-3'''-yl)-1H-pyrazol-4'''-yl)pyridine-2,6-

diyl)dicoumarin (6f): Yield: 70%., m.p.200-202°C., IR (KBr, v_{max} , cm⁻¹): 1728 (C=O stretching of δ lactone of coumarin), 1620 and 1481 (aromatic C=C and C=N stretchings), 679 and 779 (C-H bending vibrations of mono substituted benzene ring), 2985 (aliphatic C-H stretching), 3047 (aromatic C-H stretching).¹H-NMR (400 MHz, CDCl₃, δ): 4.00 (3H, singlet, OCH₃), 7.13-8.08 (13H, multiplet, Ar-H except C₅"'-H, C₃-H,C₅-H, C₆""-H, C₄'-H, C₄"-H and C₂""-H), 8.34 (2H, multiplet, C₅"-H and C₃-H), 8.41 (1H, poorly resolved doublet, C₅-H), 8.64 (1H, poorly resolved doublet of doublet, C₆""-H), 8.76 (1H, singlet, C₄'-H), 8.78 (1H, singlet, C₄"-H), 8.82 (1H, poorly resolved doublet, C₂""-H). ¹³C-APT (100 MHz, $CDCl_{3}$ δ): 56.22(OCH₃), 114.11(CH), 117.17(CH), 118.06(CH), 115.79(C), 119.34(C), 119.99(CH), 120.28(C), 120.53(CH), 120.92(CH), 122.50(CH), 122.80(CH), 123.64(CH), 124.43(CH), 125.17(C), 126.06(C), 127.29(CH), 127.88(CH), 129.66(CH), 131.04(CH), 131.83(C), 134.99(CH), 136.13(CH), 139.48(C), 141.31(CH), 141.70(C), 142.94(CH), 144.76(C), 145.90(C), 146.64(C), 146.93(C), 149.35(C), 150.64(C), 151.52(C), 160.06(CO coumarin), 161.64(CO of of coumarin). Anal. Calcd. for C₃₈H₂₃BrN₄O₅: C, 65.62; H, 3.33; N, 8.06 %. Found: C, 65.70; H, 3.37; N, 8.13 %.

6'-Bromo-3',3''-(4-(1'''-phenyl-3'''-(pyridin-3''''-yl)-1H-pyrazol-4'''-yl)pyridine-2,6-diyl)dicoumarin (6g): Yield: 68%., m.p.145-147°C., IR (KBr, v_{max} , cm⁻¹): 1720 (C=O stretching of δ -lactone of coumarin), 1620 and 1496 (aromatic C=C and C=N stretchings), 694 and 771 (C-H bending vibrations of mono substituted benzene ring), 3055 (aromatic C-H stretching).¹H-NMR (400 MHz, CDCl₃, δ): 7.38-8.08 (14H, multiplet, Ar-H except C₅"'-H, C₃-H,C₅-H, C₆""-H, C₄'-H, C₄"-H and C₂""-H), 8.36 (1H, singlet, C_5''' -H), 8.37 (1H, doublet, J = 1.6 Hz, C_3 -H), 8.41 (1H, doublet, J = 1.6 Hz, C₅-H), 8.65 (1H, doublet of doublet, J = 4.4 Hz and 1.6 Hz, C₆""-H), 8.76 (1H, singlet, C₄'-H), 8.80 (1H, singlet, C₄"-H), 8.83 (1H, doublet, J = 1.2 Hz, $C_2^{\prime\prime\prime\prime}$ -H). ¹³C-APT (100 MHz, CDCl₃ δ): 109.99(C), 112.95(C), 115.63(C), 115.83(CH), 117.13(CH), 118.08(CH), 118.59(C), 118.82(CH), 119.31(C), 118.71(C) 120.08(CH), 122.25(C), 122.63(CH), 126.92(CH), 128.01(CH), 129.44(CH), 130.15(CH), 130.56(CH), 132.41(CH), 137.06(CH), 138.18(C), 139.29(CH), 140.65(CH), 141.08(CH), 143.62(C), 145.72(C), 146.26(CH), 146.76(C), 148.68(CH), 149.67(C), 119.53(CH), 124.60(CH), 146.65(CH), 152.90(C), 154.14(C), 160.77(CO of coumarin), 161.11(CO of coumarin).Anal.Calcd. for C₃₇H₂₁BrN₄O₄: C, 66.78; H, 3.18; N, 8.42 %. Found: C, 66.82; H, 3.22; N, 8.49 %.

6'-Bromo-8"-methoxy-3',3"-(4-(1""-phenyl-3"'-(pyridin-3'''-yl)-1H-pyrazol-4'''-yl) opyridine-2,6- H, 2.71; N, 7.53 %. Found: C, 59.76; H, 2.77; N, 7.59 diyl)dicoumarin (6h): Yield: 70%., m.p.200-202°C., IR (KBr, v_{max} , cm⁻¹): 1728 (C=O stretching of δ lactone of coumarin), 1620 and 1481 (aromatic C=C and C=N stretchings), 679 and 779 (C-H bending vibrations of mono substituted benzene ring), 2985 (aliphatic C-H stretching), 3047 (aromatic C-H stretching).¹H-NMR (400 MHz, CDCl₃, δ): 4.10 (3H, singlet, OCH₃), 7.13-8.08 (13H, multiplet, Ar-H except C5"'-H, C3-H,C5-H, C6""'-H, C4'-H, C4"-H and C₂""-H), 8.35 (2H, multiplet, C₅"-H and C₃-H), 8.41 (1H, poorly resolved doublet, C₅-H), 8.63 (1H, poorly resolved doublet of doublet, C₆""-H), 8.76 (1H, singlet, C₄'-H), 8.78 (1H, singlet, C₄"-H), 8.83 (1H, poorly resolved doublet, C_2 ^{'''-H}). 13 C-APT (100 MHz, $CDCl_{3}$ δ): 56.28(OCH₃), 114.92(CH), 117.13(CH), 118.11(CH), 119.31(C), 115.79(C), 119.90(CH), 120.22(C), 120.57(CH), 120.89(CH), 122.59(CH), 122.80(CH), 123.64(CH), 124.34(CH), 125.13(C), 126.11(C), 127.29(CH), 127.89(CH), 129.69(CH), 131.11(CH), 131.92(C), 134.90(CH), 136.17(CH), 139.43(C), 141.28(CH), 141.76(C), 142.99(CH), 144.70(C), 145.93(C), 146.69(C), 149.43(C), 146.99(C), 150.69(C). 151.59(C). 160.11(CO coumarin), of 161.66(CO of coumarin).Anal.Calcd. for C₃₈H₂₃BrN₄O₅: C, 65.62;

H, 3.33; N, 8.06 %. Found: C, 65.70; H, 3.37; N, 8.13 %.

6',6''-Dibromo-3',3''-(4-(1'''-phenyl-3'''-(pyridin-3''''-vl)-1H-pyrazol-4'''-vl)pyridine-2,6-

diyl)dicoumarin (6i): Yield: 65%., m.p.134-136°C., IR (KBr, v_{max} , cm⁻¹): 1728 (C=O stretching of δ lactone of coumarin), 1620 and 1481 (aromatic C=C and C=N stretchings), 678 and 779 (C-H bending vibrations of mono substituted benzene ring), 3070 (aromatic C-H stretching).¹H-NMR (400 MHz, CDCl₃, δ): 7.35-8.07 (13H, multiplet, Ar-H except C₅"'-H, C₃-H,C₅-H, C₆""'-H, C₄'-H, C₄"-H and C₂""-H), 8.36 (1H, singlet, C₅"'-H), 8.37 (2H, singlet, C₃-H and C₅-H), 8.65 (1H, doublet of doublet, J = 4.8 Hzand 1.6 Hz, C₆""-H), 8.82 (2H, singlet, C₄'-H and C4"-H), 8.84 (1H, poorly resolved doublet, C2""-H).¹³C-APT (100 MHz, CDCl₃, δ): 119.30(CH), 124.90(C), 125.24(C), 125.46(CH), 125.58(CH), 126.91(CH), 127.79(CH), 129.67(CH), 130.77(C), 133.20(CH), 134.19(CH), 136.07(CH), 143.91(C), 145.35(C), 146.79(CH), 147.34(CH), 149.33(C), 151.31(C), 156.06(C), nternation 157.28(C), nal 158.27(C), 160.31(CO of coumarin)Anal.Calcd. for C₃₇H₂₀Br₂N₄O₄: C, 59.70; ch and

3',3"-(4-(1"'-phenyl-3"'-(pyridin-4""'-yl)-1H-

pyrazol-4'''-yl)pyridine-2,6-diyl)dicoumarin (7a):Yield: 78%., m.p.293-295°C., IR (KBr, v_{max} , cm⁻¹): 1736 (C=O stretching of δ -lactone of coumarin), 1627 and 1488 (aromatic C=C and C=N stretchings). 679 and 756 (C-H bending vibrations of mono substituted benzene ring), 3062 (aromatic C-H stretching). ¹H-NMR (400 MHz, CDCl₃, δ): 7.28-7.86 (15H, multiplet, Ar-H except C₅"'-H, C₃-H, C₅-H, C₂""-H, C₆""-H, C₄'-H and C₄"-H), 8.30 (1H, singlet, C₅"-H), 8.37 (2H, singlet, C₃-H and C₅-H), 8.64 (2H, doublet, J = 6.0 Hz, $C_2^{\prime\prime\prime\prime}$ -H and $C_6^{\prime\prime\prime\prime}$ -H), 8.82 (2H, singlet, C₄'-H and C₄"-H).¹³C-APT (100 MHz, CDCl₃, δ): 116.50(CH), 119.40(CH), 121.11(C), 122.92(CH), 122.96(CH), 123.68(CH), 124.68(CH), 125.20(C), 127.46(CH), 128.32(CH), 128.91(CH), 129.65(C), 132.43(CH), 139.38(C), 140.68(C), 141.46(C), 142.85(CH), 147.94(C), 149.54(CH), 151.58(C), 154.00(C), 160.13(CO of coumarin). Anal.Calcd. for C₃₇H₂₂N₄O₄: C, 75.76; H, 3.78; N, 9.55 %. Found: C, 75.82; H, 3.85; N, 9.62 %.

8"-Methoxy-3',3"-(4-(1""-phenyl-3""-(pyridin-4""yl)-1H-pyrazol-4'''-yl)pyridine-2,6-diyl)dicoumarin

(7b): Yield: 74%., m.p.282-284°C., IR (KBr, v_{max}, cm⁻ ¹): 1728 (C=O stretching of δ -lactone of coumarin), 1612 and 1473 (aromatic C=C and C=N stretchings), 686 and 756 (C-H bending vibrations of mono substituted benzene ring), 2977 (aliphatic C-H stretching), 3055 (aromatic C-H stretching). ¹H-NMR (400 MHz, CDCl₃, δ): 4.03 (3H, singlet, OCH₃), 7.13-7.86 (14H, multiplet, Ar-H except C₅"'-H, C₃-H, C₅-H, C₂""-H, C₆""-H, C₄'-H and C₄"-H), 8.30 (1H, singlet, C_5''' -H), 8.35 (1H, doublet, J = 1.2 Hz, C_3 -H), 8.39 (1H, doublet, J = 2.0 Hz, C₅-H), 8.63 (2H, doublet, J = 6.0 Hz, $C_2^{\prime\prime\prime\prime}$ -H and $C_6^{\prime\prime\prime\prime}$ -H), 8.81 (1H, singlet, C₄'-H), 8.82 (1H, singlet, C₄"-H). ¹³C-APT (100 MHz, CDCl₃ δ): 56.24(OCH₃), 114.06(CH), 119.34(C), 119.38(CH), 119.44(C), 116.43(CH), 120.00(CH), 120.27(C), 121.04(CH), 122.84(CH), 122.96(CH), 124.50(CH), 124.65(CH), 125.09(C), 125.25(C), 127.42(CH), 128.32(CH), 128.94(CH), 129.62(CH), 132.38(CH), 139.37(C), 140.68(C), 142.85(CH), 143.00(CH), 141.40(C), 143.61(C), 146.94(C), 147.90(C), 149.51(CH), 151.45(C), 151.48(C), 153.95(C), 159.58(CO of coumarin), 160.11(CO of coumarin). Anal.Calcd. for C₃₈H₂₄N₄O₅: C, 74.02; H, 3.92; N, 9.09 %. Found: C, 74.11; H, 146.96(C), 147.85(C), 4.09; N, 9.16 %.

6"-Bromo-3',3"-(4-(1""-phenvl-3"'-(pvridin-4""-vl)-1H-pyrazol-4'''-yl)pyridine-2,6-diyl) dicoumarin

(7c): Yield: 69%., m.p.170-172°C., IR (KBr, v_{max}, cm⁻ ¹): 1712 (C=O stretching of δ -lactone of coumarin), 1627 and 1488 (aromatic C=C and C=N stretchings), 679 and 779 (C-H bending vibrations of mono substituted benzene ring), 3061 (aromatic C-H stretching).¹H-NMR (400 MHz, CDCl₃, δ): 7.36-7.88 (14H, multiplet, Ar-H except C₅"-H, C₃-H, C₅-H, C₂""-H, C₆""-H, C₄'-H and C₄"-H), 8.31 (1H, singlet, C_5''' -H), 8.37 (1H, doublet, J = 1.6 Hz, C_3 -H), 8.41 (1H, doublet, J = 1.6 Hz, C₅-H), 8.64 (2H, doublet, J = 6.4 Hz, C₂""-H and C₆""-H), 8.76 (1H, singlet, C₄'-H), 8.81 (1H, singlet, C₄"-H). ¹³C-APT (100 MHz, CDCl₃ δ):112.43(C), 114.44(CH), 115.96(CH), 117.22(CH), 118.03(C), 119.54(CH), 120.48(CH), 121.96(C), 122.99(CH), 123.73(CH), 126.02(CH), 127.16(CH), 127.72(C), 127.86(CH), 127.99(CH), 129.48(CH), 129.72(CH), 130.58(CH), 133.26(CH), 139.07(C), 139.56(C), 135.23(C), 140.08(C), 146.10(C), 143.85(C), 148.61(C), 150.15(CH), 152.64(C), 154.71(C), 161.79(CO of 150.66(C), coumarin), 162.03(CO of coumarin).Anal.Calcd. for

C₃₇H₂₁BrN₄O₄: C, 66.78; H, 3.18; N, 8.42 %. Found: C, 66.82; H, 3.24; N, 8.50 %.

8'-Methoxy-3',3''-(4-(1'''-phenyl-3'''-(pyridin-4''''vl)-1H-pyrazol-4'''-yl)pyridine-2,6-diyl)dicoumarin

(7*d*):Yield: 74%., m.p.282°C., IR (KBr, v_{max} , cm⁻¹): 1728 (C=O stretching of δ -lactone of coumarin), 1612 and 1473 (aromatic C=C and C=N stretchings), 686 and 756 (C-H bending vibrations of mono substituted benzene ring), 2977 (aliphatic C-H stretching), 3055 (aromatic C-H stretching).¹H-NMR (400 MHz, CDCl₃, δ): 4.02 (3H, singlet, OCH₃), 7.15-7.87 (14H, multiplet, Ar-H except C₅"'-H, C₃-H, C₅-H, C₂""-H, C₆""-H, C₄'-H and C₄"-H), 8.31 (1H, singlet, C_5''' -H), 8.37 (1H, doublet, J = 1.2 Hz, C_3 -H), 8.41 (1H, doublet, J = 1.2 Hz, C₅-H), 8.64 (2H, doublet, J = 5.2 Hz, C_2'''' -H and C_6'''' -H), 8.81 (1H, singlet, C₄'-H), 8.82 (1H, singlet, C₄"-H). ¹³C-APT (100 MHz, CDCl₃ δ): 56.28(OCH₃), 114.09(CH), 116.50(CH), 119.32(C), 119.34(CH), 119.43(C), 120.04(CH), 120.25(C), 121.00(CH), 122.86(CH), 122.94(CH), 124.48(CH), 124.62(CH), 125.06(C), 125.27(C), 127.43(CH), 128.37(CH), 128.94(CH), 129.65(CH), 132.42(CH), 139.40(C), 140.62(C), 141.37(C), 142.90(CH), 143.00(CH), 143.68(C), 149.51(CH), 151.45(C), 151.50(C), 153.96(C), 159.61(CO of coumarin), 160.14(CO of coumarin). Anal. Calcd. for C₃₈H₂₄N₄O₅: C, 74.02; H, 3.92; N, 9.09 %. Found: C, 74.11; H, 4.09; N, 9.16 %.

8',8"'-Dimethoxy-3',3"-(4-(1"'-phenyl-3"'-(pyridin-4""-yl)-1H-pyrazol-4"'-yl)pyridine-2,6-

diyl)dicoumarin (7e):Yield: 76%., m.p.296-298°C., IR (KBr, v_{max}, cm⁻¹): 1720 (C=O stretching of δ-lactone of coumarin), 1627 and 1496 (aromatic C=C and C=N stretchings), 687 and 779 (C-H bending vibrations of mono substituted benzene ring), 2985 (aliphatic C-H stretching), 3070 (aromatic C-H stretching). ¹H-NMR (400 MHz, CDCl₃, δ): 3.99 (6H, singlet, 2 x OCH₃), 7.13-7.84 (13H, multiplet, Ar-H except C5"'-H, C3-H, C5-H, C2""-H, C6""-H, C4'-H and C₄"-H), 8.30 (1H, singlet, C₅"'-H), 8.37 (2H, singlet, C₃-H and C₅-H), 8.60 (2H, poorly resolved doublet, C2""-H and C6""-H), 8.79 (2H, singlet, C4'-H and C_4 "-H). ¹³C-APT (100 MHz, CDCl₃ δ): 56.61(OCH₃), 110.26(C), 113.13(C), 114.24(C), 114.52(CH), 116.00(C), 118.77(CH), 120.07(CH), 121.73(CH), 122.84(CH), 123.92(CH), 125.34(CH), 126.91(CH), 129.41(CH), 130.06(CH), 138.15(C), 140.11(CH), 143.65(C), 144.30(C), 146.98(C), 148.83(C), 149.94(C), 160.86(CO of coumarin).

Anal.Calcd. for C₃₉H₂₆N₄O₆: C, 72.44; H, 4.05; N, 8.66 %. Found: C, 72.59; H, 4.15; N, 8.71 %.

6"-Bromo-8'-methoxy-3',3"-(4-(1""-phenyl-3""-(pyridin-4'''-yl)-1H-pyrazol-4'''-yl) pvridine-2,6diyl)dicoumarin (7f): Yield: 72%., m.p.148-150°C., IR (KBr, v_{max} , cm⁻¹): 1735 (C=O stretching of δ -lactone of coumarin), 1628 and 1458 (aromatic C=C and C=N stretchings), 678 and 786 (C-H bending vibrations of mono substituted benzene ring), 2970 (aliphatic C-H stretching), 3063 (aromatic C-H stretching). ¹H-NMR (400 MHz, CDCl₃, δ): 3.99 (3H, singlet, OCH₃), 7.11-7.86 (13H, multiplet, Ar-H except C5"'-H, C3-H, C5-H, C2""'-H, C6""'-H, C4'-H and C₄"-H), 8.30 (1H, singlet, C₅"'-H), 8.34 (1H, poorly resolved doublet, C₃-H), 8.38 (1H, poorly resolved doublet, C₅-H), 8.62 (2H, doublet, J = 6.0*Hz*, $C_2^{\prime\prime\prime\prime}$ -H and $C_6^{\prime\prime\prime\prime}$ -H), 8.80 (1H, singlet, C_4^{\prime} -H), 8.81 (1H, singlet, C₄"-H).¹³C-APT (100 MHz, CDCl₃ δ):56.28(OCH₃), 114.11(CH), 116.46(CH), 119.41(C), 119.46(CH), 120.03(C), 120.27(CH), 121.07(C), 122.92(CH), 124.49(CH), 124.64(CH), 125.19(C), 125.35(C), 127.41(CH), 128.31(CH), 128.92(CH), 129.62(CH), 132.38(CH), 139.41(C), 140.55(C), 141.47(C), 142.81(CH), 142.97(CH), 143.68(C), 147.00(C), 148.00(C), 149.68(CH), 151.50(C), 151.53(C), 153.99(C), 159.56(CO of coumarin), 160.09(CO of coumarin).Anal.Calcd. for C₃₈H₂₃BrN₄O₅: C, 65.62; H, 3.33; N, 8.06 %. Found: C, 65.67; H, 3.40; N, 8.13 %.

6'-Bromo-3',3''-(4-(1'''-phenyl-3'''-(pyridin-4''''-yl)-1H-pyrazol-4'''-yl)pyridine-2,6-diyl)dicoumarin

(7g):Yield: 69%., m.p.170-172°C., IR (KBr, v_{max}, cm⁻ ¹):1712 (C=O stretching of δ -lactone of coumarin), 1620 and 1488 (aromatic C=C and C=N stretchings), 679 and 779 (C-H bending vibrations of mono substituted benzene ring), 3061 (aromatic C-H stretching). ¹H-NMR (400 MHz, CDCl₃, δ): 7.36-7.88 (14H, multiplet, Ar-H except C₅"'-H, C₃-H, C₅-H, C₂""-H, C₆""-H, C₄'-H and C₄"-H), 8.32 (1H, singlet, C_5''' -H), 8.36 (1H, doublet, J = 2.0 Hz, C_3 -H), 8.41 (1H, doublet, J = 2.0 Hz, C₅-H), 8.64 (2H, doublet, J = 6.4 Hz, C₂""-H and C₆""-H), 8.76 (1H, singlet, C₄'-H), 8.81 (1H, singlet, C₄"-H). ¹³C-APT (100 MHz, CDCl₃ δ):112.48(C), 114.48(CH), 115.99(CH), 117.22(CH), 118.07(C), 119.58(CH), 120.43(CH), 121.99(C), 122.96(CH), 123.79(CH), 126.08(CH), 127.16(CH), 127.71(C), 127.86(CH), 127.96(CH), 129.43(CH), 129.71(CH), 130.54(CH), 133.26(CH), 139.03(C), 140.02(C), 135.23(C), 139.54(C), 143.86(C), 146.10(C), 148.64(C), 150.15(CH),

150.66(C), 152.61(C), 154.79(C), 161.73(CO of coumarin),162.13(CO of coumarin).Anal.Calcd. for $C_{37}H_{21}BrN_4O_4$: C, 66.78; H, 3.18; N, 8.42 %. Found: C, 66.82; H, 3.24; N, 8.50 %.

6'-Bromo-8''-methoxy-3',3''-(4-(1'''-phenyl-3'''-(pyridin-4''''-yl)-1H-pyrazol-4'''-yl)pyridine-2,6-

diyl)dicoumarin (7h):Yield: 72%., m.p.148-150°C., IR (KBr, v_{max} , cm⁻¹): 1735 (C=O stretching of δ lactone of coumarin), 1628 and 1458 (aromatic C=C and C=N stretchings), 678 and 786 (C-H bending vibrations of mono substituted benzene ring), 2970 (aliphatic C-H stretching), 3063 (aromatic C-H stretching). ¹H-NMR (400 MHz, CDCl₃, δ): 4.00 (3H, singlet, OCH₃), 7.12-7.86 (13H, multiplet, Ar-H except C5"'-H, C3-H, C5-H, C2""-H, C6""-H, C4'-H and C₄"-H), 8.30 (1H, singlet, C₅"'-H), 8.34 (1H, poorly resolved doublet, C₃-H), 8.38 (1H, poorly resolved doublet, C₅-H), 8.62 (2H, doublet, J = 5.6*Hz*, $C_2^{\prime\prime\prime\prime}$ -H and $C_6^{\prime\prime\prime\prime}$ -H), 8.80 (1H, singlet, C_4^{\prime} -H), 8.82 (1H, singlet, C₄"-H). ¹³C-APT (100 MHz, CDCl₃ δ):56.32(OCH₃), 114.13(CH), 116.41(CH), 119.41(C), 119.46(CH), 120.03(C), 120.28(CH), 121.03(C), 122.99(CH), 124.50(CH), 124.68(CH), 125.19(C), 125.35(C), 127.41(CH), 128.33(CH), 128.97(CH), 129.62(CH), 132.33(CH), 139.47(C), 141.41(C), 142.80(CH), 140.56(C), 142.92(CH), 147.04(C), 143.68(C), 148.02(C), 149.64(CH), 151.53(C), 153.92(C), 159.55(CO of 151.50(C), coumarin), 160.08(CO of coumarin). Anal.Calcd. for C₃₈H₂₃BrN₄O₅: C, 65.62; H, 3.33; N, 8.06 %. Found: C, 65.67; H, 3.40; N, 8.13 %.

6',6''-Dibromo-3',3''-(4-(1'''-phenyl-3'''-(pyridin-4''''-yl)-1H-pyrazol-4'''-yl)pyridine-2,6-

diyl)dicoumarin (7i):Yield: 66%., m.p.142°C., IR (KBr, v_{max} , cm⁻¹): 1728 (C=O stretching of δ -lactone of coumarin), 1627 and 1488 (aromatic C=C and C=N stretchings), 687 and 756 (C-H bending vibrations of mono substituted benzene ring), 3070 (aromatic C-H stretching).¹H-NMR (400 MHz, $CDCl_3$, δ): 7.34-7.84 (13H, multiplet, Ar-H except C5"'-H, C3-H, C5-H, C2""-H, C6""-H, C4'-H and C4"-H), 8.30 (1H, singlet, C₅"-H), 8.36 (2H, singlet, C₃-H and C₅-H), 8.62 (2H, doublet, J = 4.8 Hz, C₂""-H and $C_6''''-H$, 8.81 (2H, singlet, $C_4'-H$ and $C_4''-H$). ¹³C-APT (100 MHz, CDCl₃ δ):111.79(C), 117.88(C), 119.25(CH), 119.55(CH), 121.43(C), 122.28(CH), 123.05(CH), 123.76(C), 125.60(CH), 127.23(CH), 129.74(CH), 130.07(C), 130.77(CH), 127.97(CH), 133.03(CH), 133.69(CH), 139.05(C), 140.15(C), 150.05(C), 150.72(C), 154.04(C), 161.06(CO of coumarin). Anal.Calcd. for $C_{37}H_{20}Br_2N_4O_4$: C, 59.70; H, 2.71; N, 7.53 %. Found: C, 59.76; H, 2.77; N, 7.59 %.

RESULT AND DISCUSSION Chemistry

In the present work the synthesis of various3',3"- (4-(1""-phenyl-3"'-(pyridin-3""-yl)-1*H*-pyrazol-4"'-

yl)pyridine-2,6-diyl)dicoumarins(**6a-i**) and 3',3"-(4-(1""-phenyl-3""-(pyridin-4""-yl)-1*H*-pyrazol-4""-

yl)pyridine-2,6-diyl)dicoumarins(**7a-i**) has been carried out by the reaction of appropriate 3coumarinoyl methyl pyridinium bromide salt (**3ac**)withcoumarinchalcones 3-(3-(1-phenyl-3-(pyridin-3yl)-1*H*-pyrazol-4-yl)acryloyl)coumarins(**4a-c**) and 3-(3-(1-phenyl-3-(pyridin-4-yl)-1*H*-pyrazol-4-

yl)acryloyl)coumarins(**5a-c**)respectively in the presence of ammonium acetate in refluxing acetic acid proceeded smoothly and gave the compound **6a** as a yellow solidproduct in 71% yield. The structures of all synthesized compounds (**6a-i**) and (**7a-i**)were established by IR, ¹H-NMR, ¹³C-APT and selected mass spectral data are shown in experimental section.

BIOLOGICAL EVALUATION Antimicrobial activity

of Trend in The newly synthesized target compounds (6a-i) and (7a-i)were evaluated for their in vitroantibacterial activity against two Gram positive bacteria aureus(MTCC 96) and Bacillus Staphylococcus subtilis(MTCC 441) and two Gram negative bacteria Escherichia coli (MTCC 443) and Salmonella typhi(MTCC 98). They were also evaluated for their vitro antifungal activityagainst Candida in albicans(MTCC 227) and Aspergillusniger(MTCC 282) as fungal strains.Broth dilution method was used for the determination of the antibacterial and antifungal activity as recommended by NCCLS³³. Ampicillin, Chloramphenicol, Ciprofloxacin, Norfloxacin and Gentamycinwereused asstandard antibacterial drugs, whereas Griseofulvin and Nystatin were used as standard antifungaldrugs. All MTCC cultures were collected from Institute of Microbial Technology, Chandigarh andtested against above mentioned known drugs. Mueller-Hinton broth was used as the nutrientmedium for the test bacteria and Sabouraud Dextrose broth was used for the test fungi. Inoculumsize for the test strains was adjusted to 108 CFU (Colony Forming Unit per millilitre) per millilitre by comparing the turbidity. Each synthesized compound was diluted with DMSO so as thestock solution of 2000 to have µg/mL

concentration as a stock solution. The results were recorded in the form of primary and secondary screening. The synthesized compounds (6a-i) and (7ai)were screened fortheir antibacterial and antifungal activity at the concentration of 1000, 500 and 250 $\mu g/mL$ for the primary screening. The synthesized compound showing activity against microbes in the primaryscreening were further screened in a second set of dilution at concentrations of 200, 100, 62.5, 50and 25 μ g/mL. The suspention of 10 μ L from each well were further incubated and growth wasnoted at 37°C after 24 hour for bacteria and 48 hour for fungi. The lowest concentration whichshowed no visible growth (turbidity) after spot subculture was considered as the minimuminhibitory concentration (MIC) for each compound.

The investigation of the data summarized in (Table-1) reveals that many compounds werefound to be active against Gram-positive bacteria while some of the compounds were found to beactive against Gram-negative bacterial and fungal species as compared to that of the standardantimicrobial drugs.

Internation Antimicrobial results

The compounds (6a-i) and (7a-i)were screened for their in vitro antibacterial and antifungal evaluationagainst various bacterial and fungal pathogens broth bv dilution method. Ampicillin, Chloramphenicol, Norfloxacin, Ciprofloxacin,Genta- mycin,Griseofulvin and Nystatin were used as standard drugs. The valuesof MIC are summarized in Table-1.

Upon evaluating the antimicrobial activity data, it has been observed that compound 7e and 7f (MIC=62.5µg/mL) showed excellent activity compared to Ampicillin (MIC=250µg/mL) and Norfloxacin (MIC= 100µg/mL) against gram positive bacteria Bacillus subtilis. Compounds 6b, 6f, 7a and 7i (MIC=100µg/mL) exhibited excellent activity against gram positive bacteria Bacillus subtilis compared to Ampicillin (MIC=250µg/mL) and Norfloxacin equipotent (MIC= $100\mu g/mL$). to Compounds 6a, 6c, 6d and 7d (MIC= $125\mu g/mL$) exhibited excellent activity compared to Ampicillin (MIC=250µg/mL) against gram positive bacteria Bacillus subtilis. Compounds 6g, 6h, 7c and 7h (MIC=200µg/mL) showed good activity against gram positive bacteria Bacillus subtilis compared to Ampicillin (MIC=250µg/mL). Compounds 6e, 6i, 7b and 7g (MIC=250µg/mL) were found comparable to Ampicillin (MIC=250µg/mL) against gram positive **Bacillus** bacteria subtilis. Compounds 6f

Development

(MIC= $50\mu g/mL$), 7a (MIC= $62.5\mu g/mL$), compounds 6b, 6d, 6g, 7b, 7d, 7f (MIC=100µg/mL) and compounds 6c, 6e, 6h, 7e, 7h and 7i (MIC=125µg/mL) showed excellent activity against gram positive bacteria Staphylococcus aureus (MIC= compared to Ampicillin 250µg/mL). Compounds 6i, 7c and 7g (MIC=200µg/mL) showed good activity against gram positive bacteria Staphylococcus aureus compared to Ampicillin (MIC= $250\mu g/mL$).Compounds **6**g, and 7c 7i (MIC=62.5µg/mL) have shown excellent activity against Escherichia coli compared to Ampicillin (MIC=100µg/mL). Compounds 6c, 6d, 7f and 7g (MIC=100µg/mL) showed equipotent activity to Ampicillin (MIC= 100µg/mL) against gram negative bacteria Escherichia coli. Compounds 7h (MIC= exhibited excellent activity $50 \mu g/mL$) against Salmonella typhi compared to Ampicillin $(MIC=100\mu g/mL)$ and equipo- tent to Chloramphenicol (MIC=50µg/mL). Compounds 6c and 6h (MIC=62.5µg/mL) showed excellent activity against Salmonella typhi compared to Ampicillin (MIC=100µg/mL). Compounds 6b, 6f, 6g, 6i, 7a, 7b, 7c, 7e, 7f and 7i (MIC=100µg/mL) were found equipotent to Ampicillin (MIC = $100\mu g/mL$) against gram negative bacteria Salmonella typhi.Compounds 6d (MIC= $200 \mu g/mL$), compounds 6a and 7c COL.

(MIC= $250\mu g/mL$) were found to be more active than Griseofulvin (MIC=500µg/mL) against fungal pathogen Candida albicans while compounds 6b, 7b, 7e and 7g were found equipotent to Griseofulvin (MIC= 500µg/mL) against Candida albicans. None of the tested compounds showed better activity against Aspergillusnigerfungi.Upon examining antimicrobial data it is apparent that almost all the compounds 6a-i and 7a-i exhibited excellent activity against gram-positive bacteria Bacillus subtilisand Staphylococcus aureus as compared to Ampicillin. Examining the antimicrobial data from the table, it has been observed that the derivatization of the parent molecule altered the antimicrobial potency of the synthesized analogs. The observation indicates that varying the substitution on coumarin ring i.e. R, $R_2 =$ OCH₃ and R_1 , R_3 = Br affect the antibacterial activity to a remarkable extent. When OCH₃ group present as a substituent on coumarin ring increased the antimicrobial activity against Bacillus subtilisand Staphylococcus aureus, while introducing of Br group in coumarin nucleus the antibacterial potency enhanced markedly.

Among all the tested compounds, the compounds **6c**, **6g**, **6h**, **7c**, **7f**, **7h** and **7i** were found to be the most proficient members of the series.

Minimum Inhibitory Concentration (MIC, µgmL ⁻¹)						
Gram +ve bacteria		Gram –ve	Gram –ve bacteria		Fungi	
<i>B.s.</i>	<i>S.a.</i>	<i>E.c.</i>	<i>S.t.</i>	<i>A.n.</i>	<i>C.a.</i>	
125	250	125	200	500	250	
100	100	200	100	1000	500	
125	125	100	62.5	500	1000	
125	100	100	200	>1000	200	
250	125	125	250	200	1000	
100	50	200	100	>1000	>1000	
200	100	62.5	100	>1000	1000	
200	125	250	62.5	500	>1000	
250	200	200	100	500	>1000	
100	62.5	250	100	1000	>1000	
250	100	125	100	>1000	500	
200	200	62.5	100	500	250	
125	100	200	250	1000	>1000	
62.5	125	250	100	1000	500	
62.5	100	100	100	1000	1000	
250	200	100	125	1000	500	
200	125	125	50	>1000	1000	
100	125	62.5	100	500	1000	
250	250 at c	100 ourr	100	B	-	
50	50	50	50	5	-	
50	501 rena	25	25	2	-	
100		ro10 and	10		-	
1	0.25	0.05	5	4	-	
-0-	- Devel	opment		100	500	
5	-	-		100	100	
	Gram +ve b B.s. 125 100 125 125 250 100 200 200 200 250 100 250 200 125 62.5 62.5 250 200 100 250 100 250 200 125 62.5 50 50 50 50 50 50 50 50 50 5	Minimum In Gram +ve bacteria B.s. S.a. 125 250 100 100 125 125 125 125 125 125 125 100 250 125 100 50 200 100 200 125 250 200 100 62.5 250 200 100 62.5 250 100 200 200 125 100 250 200 250 200 250 200 250 200 250 250 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 <t< th=""><th>Minimum Inhibitory Conce Gram +ve bacteria Gram -ve B.s. S.a. E.c. 125 250 125 100 100 200 125 125 100 125 125 100 125 125 100 125 125 100 125 125 125 100 50 200 250 125 250 200 100 62.5 200 100 200 250 200 200 250 200 200 250 200 200 250 200 62.5 125 100 125 250 200 100 250 200 100 250 200 100 250 250 125 100 125 62.5 250 250 50</th><th>Minimum Inhibitory Concentration (MI) Gram +ve bacteria Gram -ve bacteria B.s. S.a. E.c. S.t. 125 250 125 200 100 100 200 100 125 125 100 62.5 125 100 100 200 250 125 125 250 100 50 200 100 200 100 62.5 100 200 100 62.5 100 200 100 62.5 100 200 100 62.5 100 200 125 250 62.5 250 200 200 100 200 200 62.5 100 250 100 125 100 250 100 100 100 250 200 125 50 100 125 50 100 <t< th=""><th>Minimum Inhibitory Concentration (MIC, µgmL⁻¹) Gram +ve bacteria Fungi B.s. S.a. E.c. S.t. A.n. 125 250 125 200 500 100 100 200 100 1000 1000 125 125 100 62.5 500 125 100 100 200 >1000 250 125 125 250 200 100 50 200 100 >1000 250 125 125 500 200 100 50 200 100 >1000 200 100 62.5 100 >1000 200 200 200 100 500 100 62.5 100 1000 200 250 100 200 250 1000 200 250 100 62.5 100 1000 200 250 100</th></t<></th></t<>	Minimum Inhibitory Conce Gram +ve bacteria Gram -ve B.s. S.a. E.c. 125 250 125 100 100 200 125 125 100 125 125 100 125 125 100 125 125 100 125 125 125 100 50 200 250 125 250 200 100 62.5 200 100 200 250 200 200 250 200 200 250 200 200 250 200 62.5 125 100 125 250 200 100 250 200 100 250 200 100 250 250 125 100 125 62.5 250 250 50	Minimum Inhibitory Concentration (MI) Gram +ve bacteria Gram -ve bacteria B.s. S.a. E.c. S.t. 125 250 125 200 100 100 200 100 125 125 100 62.5 125 100 100 200 250 125 125 250 100 50 200 100 200 100 62.5 100 200 100 62.5 100 200 100 62.5 100 200 100 62.5 100 200 125 250 62.5 250 200 200 100 200 200 62.5 100 250 100 125 100 250 100 100 100 250 200 125 50 100 125 50 100 <t< th=""><th>Minimum Inhibitory Concentration (MIC, µgmL⁻¹) Gram +ve bacteria Fungi B.s. S.a. E.c. S.t. A.n. 125 250 125 200 500 100 100 200 100 1000 1000 125 125 100 62.5 500 125 100 100 200 >1000 250 125 125 250 200 100 50 200 100 >1000 250 125 125 500 200 100 50 200 100 >1000 200 100 62.5 100 >1000 200 200 200 100 500 100 62.5 100 1000 200 250 100 200 250 1000 200 250 100 62.5 100 1000 200 250 100</th></t<>	Minimum Inhibitory Concentration (MIC, µgmL ⁻¹) Gram +ve bacteria Fungi B.s. S.a. E.c. S.t. A.n. 125 250 125 200 500 100 100 200 100 1000 1000 125 125 100 62.5 500 125 100 100 200 >1000 250 125 125 250 200 100 50 200 100 >1000 250 125 125 500 200 100 50 200 100 >1000 200 100 62.5 100 >1000 200 200 200 100 500 100 62.5 100 1000 200 250 100 200 250 1000 200 250 100 62.5 100 1000 200 250 100	

Table-1 Antimicrobial activity of compounds (6a-i) and (7a-i)

B.s.: Bacillus subtilis, S.a.: Staphylococcus aureus, E.c.: Escherichia coli, S.t.: Salmonella typhi, A.n.: Aspergillusniger, C.a.: Candida albicans

Compound	mpound Minimum Inhibitory Concentration (MIC, $\mu g m L^{-1}$)						
	Gram +ve bacteria		Gram –ve bacteria		Fungi		
	<i>B.s.</i>	<i>S.a.</i>	<i>E.c.</i>	S.t.		<i>A.n.</i>	<i>C.a.</i>
6a	125	250	125	200		500	250
6b	100	100	200	100		1000	500
6c	125	125	100	62.5		500	1000
6d	125	100	100	200		>1000	200
6e	250	125	125	250		200	1000
6f	100	50	200	100		>1000	>1000
6g	200	100	62.5	100		>1000	1000
6h	200	125	250	62.5		500	>1000
6i	250	200	200	100		500	>1000
7a	100	62.5	250	100		1000	>1000
7b	250	100	125	100		>1000	500
7c	200	200	62.5	100		500	250
7d	125	100	200	250		1000	>1000
7e	62.5	125 Scie	250	100		1000	500
7 f	62.5	100	100 C	100		10 <mark>0</mark> 0	1000
7g	250	200	100	125		1000	500
7h	200	125	125	50	1	>1000	1000
7i	100		62.5	100	S	500	1000
Ampicillin 💋	250	250 J	100	100	Y	<u>-</u>	-
Chloramphenicol 🥖	50	50	50	50	Y	A	-
Ciprofloxacin 🛛 🦯	50	50ernation	25JOUIT	25		Δ	- 1 1 5
Norfloxacin 💋	100	10Trend in	10-ionti	10 👤 🕥		2	-
Gentamycin	1	0.25	0.05	5 7		G	-
Griseofulvin 🛛 🗸	¥.	- Resear	ch and	- 2		100	500
Nystatin	-	- Develo				100	100
		Jeven	men		1		

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

B.s.: Bacillus subtilis, S.a.: Staphylococcus aureus, E.c.: Escherichia coli, S.t.: Salmonella typhi, A.n.: Aspergillusniger, C.a.: Candida albicans

CONCLUSION

A simple and convenient methodology has been developed synthesis for a series for of pyrazolylpyridyl substituted dicoumarins was described and the synthesized compounds were screened fortheir in vitro antimicrobial evaluation. The results indicated that all the synthesized compounds shown good antibacterial activity against bacterial and fungal pathogens as compared to standard drugs and emerged as potential lead compounds for further investigations.

ACKNOWLEDGEMENT

The authors are thankful to the Head, Department of Chemistry, Sardar Patel University forproviding research facilities. Financial assistance to NehaN. Gohil from the UGC, New Delhi,India, is highly acknowledged.

REFERENCES

- D. H. Murray, J. Mendez, S. A. Brown, "The Natural Coumarins: Occurrence, Chemistry and Biochemistry", J. Wiley & Sons: New York, 1982.
 I. Khan, M. Kulkarni, C. Sun, "One pot synthesis of oxygenated tri-heterocycles as anti-micribial agents." Eur. J. Med. Chem., vol. 40, pp.1168-1172,2005.
- M.Mladenovic, M.Mihailovic, D.Bogojevic, N.Vukovic, S.Sukdolak, S.Matic, N.Niciforovic, V Mihailovic, P.Maskovic, M MVrvic, S.Solujic, "Biochemical and pharmacological evaluation of 4-hydroxy chromen-2-ones bearing polar C-3 substituents as anti- coagulants." Eur. J. Med. Chem, vol. 54,pp. 144-158, 2012.
- 4. T. C.Taechowisan, C. H. Lu, Y. M.Shen, "Anti tumor activity of 4-aryl coumarins from endophytic Streptomyces aureofaciens

CMUAc130." J. Cancer Res. Ther., vol. 3,pp. 86-91, 2007.

- J. M.Timonen, R. M.Nieminen, O.Sareila, "Synthesis and anti-inflammatory effects of a series of novel 7-hydroxycoumarin derivatives."Eur. J. Med. Chem., vol. 46(9), pp. 3845-3850, 2011.
- 6. P. Zhou, Y.Takaishi, H.Duan, "Coumarins and bicoumarins from *ferula sumbul*: anti-HIV activity and inhibition of cytokine release."Phytochemistry, vol. 53, pp. 689-697, 2000.
- N. I. Beak, E. M.Ahn, H. Y. Kim, Y. D. Park, "Furanocoumarins from the root of *Angelica dahurica*."Archives of Pharmacal Research, vol. 23(5), pp. 467-470, 2000.
- S. Cristians, J. A. G. Analco, A. P. Vasquez, F. P. 19. Espinosa, C. Ciangherotti, R. Bye, R. Mata, "Hypoglycemic activity of extracts and compounds from the leaves of *Hintonia* 20. *standleyana*and *H. Latiflora*. Potential alternatives to the use of the stem bark of these species." J. Nat. Prod., vol. 72, pp. 408-413, 2009.
- R. G.Kalkhambkar, G. M.Kulkarni, H.Shivkumar, R. N.Rao, "synthesis of novel diodes." Inor triheterocyclicthiazoles as anti-inflammatory and analgesic agents."European Journal of Medicinal Chemistry, vol. 42, pp. 1272-1276, 2007.
 P. G.Kalkhambkar, G. M.Kulkarni, H.Shivkumar, novel diodes." Inor 2010.
 D. J.wang, T. H.Wel, "Synthesis
- R. A.Kusanur, M.Ghate, M.Kulkarni, "Synthesis of spiro [indolo-1,5-benzodiazepines] from 3acetyl coumarins for use as possible antianxiety agents." J. Chem. Sci., vol. 116, pp. 265-270, 2004.
- 11. S. S. El-morsy, A. A.Fadda, M. S. El-hossini, "Synthesis and antimicrobial activity of some new thiazolocoumarins, quinoxalino, piperidino and naphthatriazinocoumarins." J. Ind. Chem. Soc., vol. 65(10), pp. 699-701, 1988.
- 12. K. H.Sinnur, S.Siddappa, Ind. J. Chem., vol. 25B, pp. 894, 1986.
- F. A.Yassen, F. F.Wasfy, M. E.Moustafa, "Synthesis and spectroscopic studies of 3-(3N-arylidenehydrazino-12-,2,4-triazol-5-yl)coumarins and their biological activities." Spectro. Lett.,vol. 26 (10), pp. 855, 1993; CA, 120, 134212a, 1994.
- 14. G.Sandeep, Y. S.Ranganath, S.Bhasker, N.Rajkumar, "Synthesis and biological screening of some novel coumarin derivatives." Asian J. Research Chem., vol. 2(1), pp. 46-48, 2009.
- 15. J. R.Hwua, R.Singha, S. C. Hong, Y. H. Chang, A. R. Das, I.Vliegen, E. D.Clercq, J.Neyts,

"Synthesis of new benzimidazole-coumarin conjugated as anti-hepatitis." Antiviral Research, vol. 77, pp. 157-162, 2008.

- 16. R. B. Moffett, U. S., 3,156,697, 1964; CA, 62, 5257f,1965.
- 17. O. M.Abdelhafez, K. M. Amin, R. Z.Batran, T. J. Maher, S. A. Nada,S.Sethumadhavan, "Synthesis, anticoagulant and PIVKA-II induced by new 4hydroxy- coumarin derivatives." Bioorganic & Medicinal Chemistry, vol. 18, pp. 3371-338, 2010.
- 18. B. C.Raju, A. K.Tiwari, J. A. Kumar, A. Z. Ali, S. B.Agawane, G.Saidachary, K.Madhusudana, "α-Glucosidase inhibitory antihyper-glycemic activity of substituted chromenone derivatives." Bio- organic & Medicinal Chemistry,vol. 18, pp. 358-365, 2010.
- 19. R. B. Moffett, "Central nervous system depressants VII. Pyridylcoumarins." J. Med. Pharm. Chem., vol. 7, pp. 446-449, 1964.
- 20. X.Ren, M. E.Kondakova, D. J.Giesen, M.Rajeswaran, M.Madaras, W C Lenhart, "Coumarin based electron trapping iridium complexes as highly efficient and stable phosphorescent emitters for organic light emitting diodes." Inorg. Chem., vol. 49(4), pp. 1301-1303, 2010.
- 21. D. J.wang, H. Liu, Y. F. Kang, Y. J. Hu, X. H.WeI, "Synthesis antimicrobial activities of 1,3,5-trisubstituted pyrazole derivatives containing a pyridyl moiety." J. Chil. Chem. Soc., vol. 60(1), pp. 2857-2860,2015.
- 22. H. Zhang, C.Sen Liu, X. H. Bu, M. Yang, "Synthesis, crystal structure, cytotoxic activity and DNA-binding properties of the copper(II) and zinc(II) complexes with 1-[3-(2-pyridyl)pyrazol-1-yl methyl]naphthalene." Journal of Inorganic Biochemistry, vol. 99, pp. 1119-1125,2005.
- A.Balbia, M.Anzaldia, C.Macciòa, C.Aiellob, M.Mazzeia, R.Gangemi, P.Castagnolac, M.Mielea, C.Rosanod, M.Vialeb, "Synthesis and biological evaluation of novel pyrazole derivatives with anticancer activity." European Journal of Medicinal Chemistry, vol. 46, pp. 5293-5309, 2011.
- 24. J. S. Sawyer, B. D. Anderson, D. W.Beight, R. M. Campbell, M. L. Jones, "Synthesis and activity of new aryl and heteroaryl substituted pyrazole inhibitors of the transforming growth factor-βtype 1-receptor kinase domain." Journal of Medicinal Chemistry, vol. 46(19), pp. 3953-3956,2003.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

- 25. M.Ezawa, D. S. Garvey, D. R. Janero, S. P. Khanapure, L. G. Letts, A. Martino, R. R. Ranatunge, D. J. Schwalb, D. V. Young, "Design of a heteroarylmodified 1,5-disubstituted pyrazole cyclooxygenase-2 (COX-2) selective inhibitor." Letters in Drug Design & Discovery, vol. 2(1), pp. 40-43, 2005.
- 26. Q. H. Wei, F. N. Xiao, L. J. Han, S. L.Zeng, Y. N.Duan, G. N. Chen., "Synthesis, structure, photo-physical and electro chemilumine- scence properties of Re(I) tricarbo-nyl complexes incorporating pyraz- olyl-pyridyl based ligands." Dalton Trans., vol. 40, pp. 5078-5085,2011.
- 27. F.Krohnke and W.Zecher, "Eineneuesynthesesubstituieter pyridine, 1. Grundzuge der syntheses." Chem. Ber., vol. 94, pp. 690-697, 1961.
- 28. F.Krohnke, "The specific synthesis of pyridines and oligopyridines." Synthesis, vol. 1, pp. 1-24, 1976; CA, 84, 164540m, 1976.
- 29. C. F.Koelsch, "Bromination of 3-acetylcoumarin."J. Am. Chem. Soc., vol. 72(7), pp. 2993-2995, 1950.
- 30. T. V. P.Rao and V. R.Rao, Ind. J. Chem., vol. 25B, pp. 413-415, 1986.
- 31. Apoorva Patel, Ph. D. Thesis, "Synthesis, Scientific Characterization and Antimicrobialactivity study of some heterocyclic substituted and heterocyclic fused coumarin derivatives", Sardar Patel University, VallabhVidyanagar, 2011.
- 32. Jigar L. Patel, Ph. D. Thesis, "Synthesis, Characterization and Antimicrobial screening of some Pyridyl/Bipyridinyl substituted and Pyrido/Furo fused coumarins.", Sardar Patel University, VallabhVidyanagar, 2013.
- National Committee for Clinical Laboratory Standards (NCCLS), 940, West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898, USA. Performance Standards for Antimicrobial Susceptibility Testing; Twelfth Informational Supplement (ISBN 1-56238-454-6), M100-S12 (M7), 2002.