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ABSTRACT 

In the present paper, Bernstein operational matrix of 

fractional integration is developed and is applied for 

solving fractional differential equations of special 

type named Riccati differential equations. The 

validity and applicability of the proposed technique is 

illustrated through various particular cases which 

demonstrate their efficiency and simplicity as 

compare to the existing operational matrix techniques. 
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1. INTRODUCTION 

Fractional calculus is a branch of mathematics that 

deals with generalization of the well-known 

operations of differentiations and integrations to 

arbitrary non-integers orders. Fractional derivative 

provides an excellent instrument for the description of 

memory and hereditary properties of various materials 

and processes. This is the main advantage of 

fractional derivatives in comparison with the classical 

integer-order models, in which such effects are in fact 

neglected. The idea of modelling dynamic systems by 

fractional differential equations can be used in many 

fields of science and engineering including 

electrochemical process [1-2], dielectric polarization 

[3], earthquakes [4], fluid-dynamic traffic model [5], 

solid mechanics [6], bioengineering[7-9] and 

economics[10]. Fractional derivative and integrals 

also appear in theory of control of dynamical systems 

when control system and the controller are described 

by fractional differential equations.  

In recent years, a number of methods have been 

proposed and applied successfully to approximate 

various types of fractional differential equations. The 

most used methods are Adomian decomposition 

 

 

method [11-13], Variational iteration method [14-15], 

Homotopy perturbation method [16-17], Homotopy 

analysis method [18], fractional differential transform 

method [19-23], power series method [24] and other 

methods [25-26]. 

Recently, wavelet based operational matrix has been 

also applied for the solution of the fractional 

differential equations. In 2010, Li et. al. [27] 

constructed Haar wavelet operational matrix of 

fractional integration with the use of Block pluse 

functions and successfully applied for getting solution 

of special type of fractional differential equation. In 

same year Li [28] and Li et al. [29] used another 

operational matrix based on Chebyshev wavelet and 

Haar wavelet respectively for the same problem. In 

2011, Saadatmandi and Dehghan [30] used the 

concept of orthogonal polynomial and constructed for 

Legendre operational matrix of differentiation for 

solving such problems. 

Bernstein polynomials have been used for solving 

numerically partial differential equations [31]. More 

recently, we have used Bernstein approximation for 

stable solution of problem of Abel inversion [32-33], 

generalized Abel integral equations arising in classical 

theory of Elasticity [34] and Lane-Emden equations 

[35].  

The aim of this paper is to present an efficient 

numerical method for solving fractional differential 

equations of special type called Riccati differential 

equations. In the second section, Bernstein 

polynomials are defined and in third section Bernstein 

operational matrix of fractional integration is 

constructed. Finally, the constructed operational 

matrix is used to solve some special type of nonlinear 

fractional differential equations. 
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2. BERNSTEIN POLYNOMIALS AND FUNCTION APPROXIMATIONS  

2.1. Bernstein polynomials 

The Bernstein polynomial, named after Sergei Natanovich Bernstein, is a polynomial in the Bernstein form that 

is a linear combination of Bernstein basis polynomials. The Bernstein basis polynomials of degree  are 

defined by 
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The coefficients i are called Bernstein or Bezier coefficients. We will follow this convention as well. These 

polynomials have the following properties: 

0, )0()( iniBi  and niniB )1(,  , where   is the Kronecker delta function. 

)()( , tBii ni
has one root, each of multiplicity  and , at 0t  and 1t  respectively. 
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Function approximation 

If A function ]1,0[2Lf   may be written as  

,                (3) 

where,  and ,  is the standard inner product on ]1,0[2L .  

If the series (5) is truncated at
'mn  , then we have  
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For taking the collocation points, let    be any point near to zero and other point as following:  
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Let us use the notation      , for defining the Bernstein polynomial matrix      as follows: 
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3. BERNSTEIN OPERATIONAL MATRIX OF FRACTIONAL INTEGRATION  

3.1. Block Pulse Functions and operational matrix of fractional integration 

A set of Block Pulse Functions (BPF) is defined on [0,1) as: 

   ( )  {     
      

 ⁄       
 ⁄

                      
,               (9) 

where i    , ,… -1. 

The functions    ( ) are disjoint and orthogonal. That is 
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Kilicman and Al Zhour [36] have obtained the Block Pulse operational matrix of the fractional integration    

as following: 
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3.2. Bernstein operational matrix of the fractional integration 

To derive the Bernstein polynomials operational matrix of the fractional integration, we rewrite Riemann–

Liouville fractional integration as follows  

(    )( )  
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∫ (   )   

 

 

 ( )    

  
 

 ( )
       ( )     (13) 

where    is the order of the integration,  ( ) is the Gamma function and      ( )denotes the convolution 

product of      and ( ).  

In general the operational matrix of integration of the vector  ( ) defined in equation (8) can be obtained as  

∫  ( )     
 

 
   ( )           (14)       

Where, P is the     Operational matrix for integration. 

Bernstein polynomials can also be expanded and approximated into an m-term block pulse functions (BPF) 

as   ( )          ( ), where  

   ( )   [  ( )   ( )       ( )]
                (15) 

Let us consider, the matrix     
  is the Bernstein polynomials operational matrix of the fractional integration 

then 

 (     )( )       
    ( )                (16) 

Now, from equations (13) and (16) we have  
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From equations (16) and (17) we get 
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Then, the Bernstein polynomials operational matrix of the fractional integration     
  is given by 

    
             

                       (18) 

4. RESULTS AND DISCUSSIONS  

In this section, the implementation of the proposed Bernstein Operational matrix of integration is given to solve 

linear and nonlinear fractional order differential equation. Some well-known examples with known exact 

solution (and other numerical solutions) have been considered to show the validity of the presented operational 

matrix technique. For each of the stated examples comparison and discussions have been done. 

Examples 4.1 Consider the differential equation from Li [28], 

   ( )     [ ( )]                                 (19) 

subject to the initial condition y(t)=0, having exact solution for  

    is  ( )  
     

     
 and we can observe that, as      ( )     

Let    ( )       
    ( ) then  

 ( )       
     

    ( )                       (20) 

Using equation (15) we have 

 ( )       
     

        ( )                            (21) 

Assume    
     

      [             ], we have                 
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From Equations (27) - (29) and Eq. (26), we have 

   
        ( )  [  

    
     

 ]  ( )  [    ]   ( )      (23) 

For solving the system of nonlinear algebraic equations eqs. (23), we have used the Matlab function fsolve. The 

obtained results with the exact solution are discussed as follows: 

 
Fig. 4.1.1 Plot of Bernstein solutions of example 1 for different α=0.5, 0.55, 0.6, 0.65,0.7 for m=24. 

Table 1: Proposed solution and other solution for example 4.1.1 

t 
Proposed method 

       

Ref. [16] 

       

Proposed method 

    

Ref. [16] 

    

Exact 

    

0.0 0.0 0.0 0.0 0.0 0.0 

0.1 0.18926 0.184795 0.09966 0.099668 0.099668 

0.2 0.30934 0.313795 0.19731 0.197375 0.197375 

0.3 0.40421 0.414562 0.29121 0.291312 0.291313 

0.4 0.48147 0.492889 0.37994 0.379944 0.379949 
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0.5 0.54480 0.462117 0.46194 0.462078 0.462117 

0.6 0.59761 0.597393 0.53695 0.536857 0.537050 

0.7 0.64160 0.631772 0.60410 0.603631 0.604368 

0.8 0.6785 0.660412 0.66387 0.661706 0.664037 

0.9 0.7101 0.687960 0.71628 0.709919 0.716298 

1.0 0.73355 0.718260 0.76141 0.746032 0.761594 

Examples 4.2 Consider the differential equation from Li et al. [29], 

   ( )     ( )   [ ( )]                     (24)     

subject to the initial condition y(t)=0, having exact solution for     is  ( )    √     (√    
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 ( )       
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Using equation (15) we have 

 ( )       
     

        ( )              (26) 

Assume    
     

      [             ], we have                 

[ ( )]  [    ( )      ( )           ( )]  [  
    

     
 ]   ( )       (27) 

From Equations (25) - (26) and Eq. (27), we have 

   
        ( )  [  

    
     

 ]  ( )       
     

         ( )  [    ]   ( )              (28) 

For solving the system of nonlinear algebraic equations eqs. (28), we have used the Matlab function fsolve. The 

obtained results with the exact solution are discussed as follows: 

 
Fig.4.2.1 Bernstein solution for different α=0.55, 0.6, 0.65,0.7 for m=24. 

 
Fig.4.2.2 Bernstein solution for different α=0.5, 0.75, 1.0,1.5 and exact for m=24. 
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Fig.4.2.3 Absolut error for different for m=24 

Examples 4.3 Consider the fractional nonlinear differential equation from Li et al. [29], 

   ( )    [ ( )]                                   (29)                

subject to the initial condition y(t)=0. 

Let   ( )       
    ( ) then   ( )       

     
    ( )    (30)  

Using equation (15) we have 

  ( )       
     

        ( )                             (31)      

Assume    
     

      [             ], we have     

[ ( )]  [    ( )      ( )           ( )]  [  
    

     
 ]   ( )     (32) 

From Equations(29) - (31) and Eq. (32), we have 

   
        ( )  [  

    
     

 ]  ( )  [    ]   ( )      (33) 

For solving the system of nonlinear algebraic equations eqs. (33), we have used the Matlab function f solve. 

The obtained results with the exact solution is disscussed as follows numerical solution for m=24.  

 
Fig.4.3.1 Bernstein solution for different α=0.25, 0.55, 0.5 for m=24. 

Table 4.3.3 Proposed solution and other solution for       

x ADM[13] FDTM[19] REF[29] PROPOSED 

0.1 0.023790 0.023790 0.023869 0.024069 

0.3 0.123896 0.123896 0.123917 0.124178 

0.5 0.268856 0.268856 0.268906 0.269164 

0.7 0.453950 0.453950 0.454000 0.454293 

0.9 0.685056 0.685056 0.685117 0.685388 

1.0 0.822511 0.822509 0.822617 0.822610 
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CONCLUSIONS 

First, we have derived the Bernstein operational 

matrix of fractional order integration and then applied 

it for solving the fractional Riccati differential 

equation. The advantage of the proposed operational 

matrix method over others is that only small size 

operational matrix is required to provide the solution 

at high accuracy. The solved illustrative examples 

demonstrate the efficiency and simplicity of the 

proposed method compared with the existing ones. 
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