

μ - β -generalized α -closed sets in generalized topological spaces

Kowsalya M MSc Mathematics, Avinashilingam University, Coimbatore, Tamil Nadu, India

Jayanthi D

Assistant Professor of Mathematics, Avinashilingam University, Coimbatore, Tamil Nadu, India

ABSTRACT

In this paper, we have introduced a new class of sets in generalized topological spaces called μ - β generalized α -closed sets. Also we have investigated some of their basic properties.

Keywords: Generalized topology, generalized **Definition 2.2** topological spaces, μ - α -closed sets, μ - β -generalized X. Then μ -closed sets.

1. Introduction

The concept of generalized topological spaces is introduced by A. Csaszar [1] in 2002. He also introduced many μ -closed sets like μ -semi closed sets, μ -pre closed sets, μ - β -closed sets, μ - α -closed sets, μ -regular closed sets etc., in generalized topological spaces. In 2016 Srija. S and Jayanthi. [4] introduced g_u-semi closed set in generalized topological spaces. In this paper, we have introduced a new class of sets in generalized topological spaces called μ - β -generalized α -closed sets. Also we have investigated some of their basic properties and produced many interesting theorems.

2. Preliminaries

i.

Definition 2.1: [1] Let X be a nonempty set.^{11.} A collection μ of subsets of X is a generalized topology (or briefly GT) on X if it satisfies the following:

i. $\emptyset, X \in \mu$ and

ii. If $\{M_i: i \in I\} \subseteq \mu$, then $\bigcup_{i \in I} M_{i \in \mu}$

If μ is a GT on X, then (X, μ) is called a generalized topological space (or briefly GTS), and the elements of μ are called μ -open sets and their complement are called μ -closed sets.

Definition 2.2: [1] Let (X, μ) be a GTS and let $A \subseteq X$. Then μ -closure of A, denoted by $c_{\mu}(A)$, is the intersection of all μ -closed sets containing A.

Definition 2.3: [1] Let (X, μ) be a GTS and let $A \subseteq X$. Then μ -interior of A, denoted by $i_{\mu}(A)$, is the union of all μ -open sets contained in A.

Definition 2.4: [1] Let (X, μ) be a GTS. A subset A of X is said to be μ -semi-closed if $i_{\mu}(c_{\mu}(A)) \subseteq A$ μ -pre-closed if $c_{\mu}(i_{\mu}(A)) \subseteq A$ μ - α -closed if $c_{\mu}(i_{\mu}(c_{\mu}(A))) \subseteq A$ μ - β -closed if $i_{\mu}(c_{\mu}(i_{\mu}(A))) \subseteq A$ μ -regular closed if $A = c_{\mu}(i_{\mu}(A))$

Definition 2.5: [3] Let (X, μ) be a GTS. A subset A of X is said to be

 μ -regular generalized closed if $c_{\mu}(A) \subseteq U$ whenever $A \subseteq U$, where U is μ -regular open in X,

 μ -generalized closed set if $c_{\mu}(A) \subseteq U$ whenever $A \subseteq U$, and U is μ -open in X,

μ-generalized α-closed set if $αc_μ(A) ⊆ U$ whenever A ⊆ U, and U is μ-open in X.

The complement of µ-semi-closed (respectively µpre-closed, μ - α -closed, μ - β -closed, μ -regular closed, etc.,) is called μ -semi-open (respectively μ -pre-open, μ - α -open, μ - β -open, μ -regular open, etc.,) in X.

3. μ - β -generalized α -closed sets in generalized topological spaces

In this section we have introduced μ - β -generalized α closed sets in generalized topological spaces and studied some of their basic properties.

Definition 3.1: A subset A of a GTS (X, μ) is called a μ - β -generalized α -closed set (briefly μ - β G α CS) if $\alpha c_{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is μ - β -open in Х.

 $\{b\}, \{a, b\}, X\}$. Then (X, μ) is a GTS. Now μ - $\beta O(X)$ $= \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$. Then A = {c} is a μ - β G α CS in (X, μ).

Theorem 3.3: Every μ -closed set in (X, μ) is a μ - $\beta G\alpha CS$ in (X, μ) but not conversely.

Proof: Let A be a μ -closed set in (X, μ) then b}, X}. Then (X, μ) is a GTS. Now μ - $\beta O(X) = \{\emptyset, \}$ $c_{\mu}(A) = A$. Now let $A \subseteq U$ where U is μ - β -open in (X, μ). Then $\alpha c_{\mu}(A) \subseteq c_{\mu}(A) = A \subseteq U$, by hypothesis. Therefore $\alpha c_{\mu}(A) \subseteq U$. This implies, A is $i_{\mu}(c_{\mu}(i_{\mu}(\{a\})) = \emptyset \subseteq A$, but not a μ - $\beta G \alpha CS$ as in a μ - β G α CS in (X, μ).

 $\{a\}, \{c\}, \{a, c\}, X\}$. Then (X, μ) is a GTS. Now μ - between various types of closed sets. $\beta O(X) = \{\emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{a, c\}, \{a, d\}, \{b, c\}, \{a, b\}, \{a, c\}, \{a, c$ $\{c, d\}, \{a, b, c\}, \{b, c, d\}, \{a, c, d\}, \{a, b, d\}, X\}.$ Then A = {d} is a μ - β G α CS in (X, μ), but not a μ closed set as $c_{\mu}(A) = c_{\mu}(\{d\}) = \{b, d\} \neq A$.

Theorem 3.5: Every μ - α -closed set in (X, μ) is a μ - $\beta G\alpha CS$ in (X, μ) .

Proof: Let A be a μ - α -closed in (X, μ), then $c_{\mu}(i_{\mu}(c_{\mu}(A))) \subseteq A$. Now let $A \subseteq U$ where U is μ - β open in (X, μ). Then αc_{μ} (A) = A $\cup c_{\mu}(i_{\mu}(c_{\mu}(A))) =$ A \cup A = A \subseteq U, by hypothesis. Therefore $\alpha c_{\mu}(A) \subseteq$ U and hence A is a μ - β G α CS in (X, μ).

Theorem 3.6: Every μ -regular closed set in (X, μ) is a μ - β G α CS in (X, μ) but not conversely.

Proof: Let A be a μ -regular closed set in (X, μ), then $c_u(i_u(A)) = A$. Now let $A \subseteq U$ where U is a μ - β -open set in (X, μ) . Then $\alpha c_{\mu}(A) = A \cup c_{\mu}(i_{\mu}(c_{\mu}(A))) = A \cup$ $c_{\mu}(i_{\mu}(c_{\mu}(c_{\mu}(A))))) = A \cup c_{\mu}(i_{\mu}(c_{\mu}(A)))) = A \cup$ $c_{\mu}(i_{\mu}(A)) = A \subseteq U$, by hypothesis. Therefore $\alpha c_{\mu}(A)$ \subseteq U. This implies, A is a μ - β G α CS in (X, μ).

Example 3.7: Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \{a\}, \{b\}, \}$ $\{a, b\}, X\}$. Then (X, μ) is a GTS. Now μ- $\beta O(X) = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}.$ Then A = {c} is a μ - β G α CS in (X, μ), but not a μ regular closed set as $c_{\mu}(i_{\mu}(A)) = c_{\mu}(i_{\mu}(\{c\}) = \emptyset \neq A$.

Remark 3.8: A μ -pre-closed is not a μ - β -G α CS in (X, μ) in general.

Example 3.9: Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \}$ {a, b}, X}. Then (X, μ) is a GTS. Now μ - $\beta O(X) = \{\emptyset, \}$ $\{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$. Then $A = \{a\}$ is a μ -pre-closed in (X, μ) as $c_{\mu}(i_{\mu}(A)) = c_{\mu}(i_{\mu}(\{a\})) =$ $\emptyset \subseteq A$, but not a μ - β G α CS in (X, μ) as α c $_{\mu}$ (A) = X \subseteq {a, b} = U.

Remark 3.10: A μ - β -closed is not a μ - β G α CS in (X, μ) in general.

Example 3.11: Let $X = \{a, b, c\}$ and $\mu = \{\emptyset, \}$ {a, $\{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$. Then A ={a} is a μ - β -closed in (X, μ) as $i_{\mu}(c_{\mu}(i_{\mu}(A)) =$ Example 3.9.

Example 3.4: Let X= {a, b, c, d} and let $\mu = \{\emptyset, In \text{ the following diagram, we have provided relations}\}$

µ-regular closed set

µ-pre-closed set

Theorem 3.12: Let A and B be μ - β G α CSs in (X, μ) such that $c_{\mu}(A) = \alpha c_{\mu}(A)$ and $c_{\mu}(B) =$ αc_{μ} (B), then A U B is a μ - β G α CS in (X, μ).

Proof: Let $A \cup B \subseteq U$, where U is a μ - β -open set in X. Then $A \subseteq U$ and $B \subseteq U$. since A and B are μ - **Theorem 3.13:** If a subset A of X is a μ - β G α CS and A \subseteq B $\subseteq \alpha c_{\mu}$ (A), then B is a μ - β G α CS in X.

Proof: Let A be a μ - β G α CS such that A \subseteq B $\subseteq \alpha c_{\mu}(A)$. Suppose U is a μ - β -open set of X such that B $\subseteq U$, by assumption, we have $\alpha c_{\mu}(A) \subseteq U$ as A \subseteq B $\subseteq U$. Now $\alpha c_{\mu}(B) \subseteq \alpha c_{\mu}(\alpha c_{\mu}(A)) = \alpha c_{\mu}(A) \subseteq U$. That is $\alpha c_{\mu}(B) \subseteq U$. Therefore, B is a μ - β G α CS in X.

Theorem 3.14: In a GTS X, for each $x \in X$, $\{x\}$ is μ - β -closed or its complement $X - \{x\}$ is a μ - β G α CS in (X, μ) .

Proof: Suppose that $\{x\}$ is not a μ - β -closed set in (X, μ) . Then $X - \{x\}$ is not a μ - β -open set in (X, μ) . The only μ - β -open set containing $X - \{x\}$ is X. Thus $X - \{x\} \subseteq X$ and so $\alpha c_{\mu} (X - \{x\}) \subseteq \alpha c_{\mu} (X) = X$. Therefore $\alpha c_{\mu} (X - \{x\}) \subseteq X$ and so $X - \{x\}$ is a μ - $\beta G\alpha CS$ in (X, μ) .

Theorem 3.15: If A is both a μ - β -open set and μ - β G α CS in (X, μ), then A is a μ - α -closed set.

Proof: Let A be a μ - β -open set and μ - β G α CS in (X, μ). Then, $\alpha c_{\mu}(A) \subseteq A$ as $A \subseteq A$. we have $A \subseteq \alpha c_{\mu}$ (A). Therefore, $A = \alpha c_{\mu}(A)$. Hence A is a μ - α -closed set in (X, μ).

Theorem 3.16: Every subset of X is a μ - β G α CS in X iff every μ - β -open set in X is μ - α -closed in X.

Proof: Necessity: Let A be a μ - β -open set in X and by hypothesis, A is a μ - β G α CS in X. Hence by Theorem 3.15, A is a μ - α -closed set in X.

Sufficiency: Let A be a subset of X and U be a μ - β open set such that A \subseteq U, then by hypothesis, U is μ - α -closed. This implies that $\alpha c_{\mu}(U) = U$ and $\alpha c_{\mu}(A) \subseteq$ $\alpha c_{\mu}(U) = U$. Hence $\alpha c_{\mu}(A) \subseteq U$. Thus A is a μ - $\beta G\alpha CS$ set in (X, μ) .

Theorem 3.17: A subset A of X is a μ - β G α CS if and only if αc_{μ} (A) – A contains no non-empty μ - β -closed set in X.

Proof: Let A be a μ - β G α CS in X. Suppose F is a non-empty μ - β -closed set such that $F \subseteq \alpha c_{\mu}(A) - A$.

Then $F \subseteq \alpha c_{\mu}(A) \cap A^{c}$. Therefore $F \subseteq \alpha c_{\mu}(A)$ and $F \subseteq A^{c}$. This implies $A \subseteq F^{c}$. Since F^{c} is a μ - β -open set, by definition of μ - β G α CS, $\alpha c_{\mu}(A) \subseteq F^{c}$. That is $F \subseteq (\alpha c_{\mu}(A))^{c}$. Hence $F \subseteq \alpha c_{\mu}(A) \cap (\alpha c_{\mu}(A))^{c} = \emptyset$. That is $F = \emptyset$, which is a contradiction. Thus $\alpha c_{\mu}(A) - A$ contains no non-empty μ - β -closed set in X.

Conversely, assume that $\alpha c_{\mu}(A) - A$ contains no non-empty μ - β -closed set in X. Let $A \subseteq U$, where U is a μ - β -open set in X. Suppose that $\alpha c_{\mu}(A) \nsubseteq U$, then $\alpha c_{\mu}(A) \cap U^{c}$ is a non-empty closed subset of $\alpha c_{\mu}(A) - A$, which is a contradiction. Therefore $\alpha c_{\mu}(A) \subseteq U$ and hence A is a μ - $\beta G\alpha CS$ in X.

Theorem 3.18: If $A \subseteq Y \subseteq X$ and A is a μ - $\beta G\alpha CS$ in X, then A is a μ - $\beta G\alpha CS$ relative to Y.

Proof: Given that $A \subseteq Y \square X$ and A is a μ - β G α CS in X. Let $A \square Y \cap U$, where U is μ - β -open set in X. since A is a μ - β G α CS, $A \square U$ implies $\alpha c_{\mu}(A) \square U$. This implies $Y \cap \alpha c_{\mu}(A) \square Y \cap U$ and $\alpha c_{\mu}(A) \square Y \cap U$. That is A is a μ - β G α CS relative to Y.

REFERENCES

- 1. Csarzar, A., Generalized open sets in generalized topologies, Acta Mathematica Hungar., 96(2002), 351-357.
- 2. Csarzar, A., Generalized open sets in generalized topologies, Acta Mathematica Hungar., 106(2005), 53-66.
- Fritzie Mae Vasquez Valenzuela and Helen moso Rara., μ-rgb-sets in a generalized topological spaces, International Journal of Mathematical Analysis-vol-8, 2014, 1791-1797.

 Srija, s, and Jayanthi, D., g_u- semi closed set in generalized topological spaces, International Journal of Scientific Engineering and Application Science (IJSEAS)-volume-2, issue-4, April 2016, 292-294.