

 @ IJTSRD | Available Online @ www.ijtsrd.com

 ISSN No: 2456

International
Research

Using Docker for
High Performance

¹Pradeep Murugan, ¹Suraj Subramanian, ²Mr. V Pandarinathan,
¹Student, 2Assistant Professor,

Department of CSE, Sri Muthukumaran Institute of Technology,

ABSTRACT

Virtualization technology plays a vital role in cloud
computing. In particular, benefits of virtualization are
widely employed in high performance computing
(HPC) applications. Containers have a long and
storied history in computing. Unlike hypervisor
virtualization, where one or more independent
machines run virtually on physical hardware via an
intermediation layer, containers instead run user space
on top of an operating system's kernel. As a result,
container virtualization is often called operating
system-level virtualization. Container technology
allows multiple isolated user space instances to be run
on a single host. In this paper we explain how to
deploy high performance applications using docker.

Keywords: Docker, HPC, Virtualization, Coud
computing, Hypervisor

1. INTRODUCTION:

Docker is a tool designed to make it easier to create,
deploy, and run applications by using containers.
Containers allow a developer to package up an
application with all of the parts it needs, such as
libraries and other dependencies, and ship it all out as
one package. By doing so, thanks to the container, the
developer can rest assured that the application will run
on any other Linux machine regardless of any
customized settings that machine might have that
could differ from the machine used for writing and
testing the code. In a way, Docker is a bit like a
virtual machine. But unlike a virtual machine, rather
than creating a whole virtual operating system,
Docker allows applications to use the same Linux
kernel as the system that they're running on and only

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018

ISSN No: 2456 - 6470 | www.ijtsrd.com | Volume

International Journal of Trend in Scientific
Research and Development (IJTSRD)

International Open Access Journal

Docker for Containerization in

erformance Computing Applications

¹Suraj Subramanian, ²Mr. V Pandarinathan, 3Dr. D. Rajinigirinath
Assistant Professor, 3Head of the Department

Department of CSE, Sri Muthukumaran Institute of Technology, Chennai, Tamil Nadu

Virtualization technology plays a vital role in cloud
computing. In particular, benefits of virtualization are
widely employed in high performance computing
(HPC) applications. Containers have a long and
storied history in computing. Unlike hypervisor

ualization, where one or more independent
machines run virtually on physical hardware via an
intermediation layer, containers instead run user space
on top of an operating system's kernel. As a result,
container virtualization is often called operating

level virtualization. Container technology
allows multiple isolated user space instances to be run
on a single host. In this paper we explain how to
deploy high performance applications using docker.

Docker, HPC, Virtualization, Coud

easier to create,
plications by using containers.

Containers allow a developer to package up an
application with all of the parts it needs, such as
libraries and other dependencies, and ship it all out as

By doing so, thanks to the container, the
developer can rest assured that the application will run
on any other Linux machine regardless of any
customized settings that machine might have that
could differ from the machine used for writing and

In a way, Docker is a bit like a
virtual machine. But unlike a virtual machine, rather
than creating a whole virtual operating system,
Docker allows applications to use the same Linux
kernel as the system that they're running on and only

requires applications be shipped with things not
already running on the host computer. This gives a
significant performance boost and reduces the size of
the application. Containers have also been seen as less
secure than the full isolation of hypervisor
virtualization. Countering this argument is that
lightweight containers lack the larger attack surface of
the full operating system needed by a virtual machine
combined with the potential exposures of the
hypervisor layer itself. Despite these limitations,
containers have been deployed in a variety of use
cases. They are popular for hyperscale deployment
multi-tenant services, for lightweight
and, despite concerns about their security, as process
isolation environments. Indeed, one of the more
common examples of a container
which creates an isolated directory environment for
running processes. Attackers, if they breach the
running process in the jail, then find
themselves trapped in this environment and unable to
further compromise a host.

2. Hypervisor

A hypervisor is a program that would enable you to
host several different virtual machines on a single
hardware. Each one of these virtual machines or
operating systems you have will be able to run its own
programs, as it will appear that the system has the
host hardware's processor, memory and resources.
reality, however, it is actually the hypervisor that is
allocating those resources to the virtual machines. In
effect, a hypervisor allows you to have several virtual
machines all working optimally on a single piece of

Apr 2018 Page: 2005

6470 | www.ijtsrd.com | Volume - 2 | Issue – 3

Scientific
(IJTSRD)

International Open Access Journal

pplications

Rajinigirinath

Chennai, Tamil Nadu, India

lications be shipped with things not
already running on the host computer. This gives a
significant performance boost and reduces the size of
the application. Containers have also been seen as less
secure than the full isolation of hypervisor

n. Countering this argument is that
lightweight containers lack the larger attack surface of
the full operating system needed by a virtual machine
combined with the potential exposures of the
hypervisor layer itself. Despite these limitations,
containers have been deployed in a variety of use
cases. They are popular for hyperscale deployments of

tenant services, for lightweight sandboxing,
despite concerns about their security, as process

isolation environments. Indeed, one of the more
common examples of a container is a chroot jail,
which creates an isolated directory environment for
running processes. Attackers, if they breach the

process in the jail, then find
themselves trapped in this environment and unable to

A hypervisor is a program that would enable you to
host several different virtual machines on a single

ese virtual machines or
operating systems you have will be able to run its own
programs, as it will appear that the system has the
host hardware's processor, memory and resources. In
reality, however, it is actually the hypervisor that is

resources to the virtual machines. In
effect, a hypervisor allows you to have several virtual
machines all working optimally on a single piece of

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

 @ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 2006

computer hardware. Now, hypervisors are
fundamental components of any virtualization
effort. You can think of it as the operating system for
virtualized systems. It can access all physical devices
residing on a server. It can also access the memory
and disk. It can control all aspects and parts of a
virtual machine. The servers would need to execute
the hypervisor. The hypervisor, in turn, loads the
client operating systems of the virtual machines. The
hypervisor allocates the correct CPU resources,
memory, bandwidth and disk storage space for each
virtual machine. A virtual machine can create requests
to the hypervisor through a variety of methods,
including API calls. native hypervisors run directly on
the hardware while a hosted hypervisor needs an
operating system to do its work. Which one is
better? It depends on what you're after. Bare metal
hypervisors are faster and more efficient as they do
not need to go through the operating system and other
layers that usually make hosted hypervisors
slower. Type I hypervisors are also more secure than
type II hypervisors. Hosted hypervisors, on the other
hand, are much easier to set up than bare metal
hypervisors because you have an OS to work
with. These are also compatible with a broad range of
hardware.

3. Containerisation

Docker helps you build and deploy containers inside
of which you can package your applications and
services. As we've just learnt, containers are launched
from images and can contain one or more running
processes. You can think about images as the building
or packing aspect of Docker and the containers as the
running or execution aspect of Docker. A Docker
container is:

• An image format.
• A set of standard operations.
• An execution environment.

Docker borrows the concept of the standard shipping
container, used to transport goods globally, as a model
for its containers. But instead of shipping goods,
Docker containers ship software.

Each container contains a software image -- its 'cargo'
-- and, like its physical counterpart, allows a set of
operations to be performed. For example, it can be
created, started, stopped, restarted, and destroyed.
Like a shipping container, Docker doesn't care about

the contents of the container when performing these
actions; for example, whether a container is a web
server, a database, or an application server. Each
container is loaded the same as any other container.
Docker also doesn't care where you ship your
container: you can build on your laptop, upload to a
registry, then download to a physical or virtual server,
test, deploy to a cluster of a dozen Amazon EC2
hosts, and run. Like a normal shipping container, it is
interchangeable, stackable, portable, and as generic as
possible. With Docker, we can quickly build an
application server, a message bus, a utility appliance,
a CI test bed for an application, or one of a thousand
other possible applications, services, and tools. It can
build local, self-contained test environments or
replicate complex application stacks for production or
development purposes. The possible use cases are
endless.

Figure 3.1 Docker Architecture

4. Communication between the containers using
API

Remote API is provided by the Docker daemon. By
default, the Docker daemons binds to a socket,
unix:///var/run/docker.sock, on the host on which it is
running. The daemon runs with root privileges so as
to have the access needed to manage the appropriate
resources. If a group named docker exists on your
system, Docker will apply ownership of the socket to
that group. Hence, any user that belongs to the docker
group can run Docker without needing root privileges.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

 @ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 2007

This works fine if we're querying the API from the
same host running Docker, but if we want remote
access to the API, we need to bind the Docker
daemon to a network interface. This is done by
passing or adjusting the H flag to the Docker
daemon. On most distributions, we can do this by
editing the daemon's startup configuration files. For
Ubuntu or Debian, this would be the
/etc/default/docker file; for those releases with
Upstart, it would be the /etc/init/docker.conf file. For
Red Hat, Fedora, and related distributions, it would be
the /etc/sysconfig/docker file; for those releases with
Systemd, it is the /usr/lib/systemd/system/docker↩
.service file. Let's bind the Docker daemon to a
network interface on a Red Hat derivative running
Systemd. We can then use the Docker.url method to
specify the location of the Docker host we wish to
use. In our code, we specify this via an environment
variable, DOCKER_URL, or use a default of
http://localhost:2375. We've also used the
Docker.options to specify options we want to pass to
the Docker daemon connection. We can test this idea
using the IRB shell locally. Let's try that now. You'll
need to have Ruby installed on the host on which you
are testing. Let's assume we're using a Fedora host.

5. Experimental results for docker
With the model of deploying distributed applications
on Docker containers, we investigate experiments
about practical applications. Concretely, we use
computing intensive and data intensive applications,
namely High Performance Linpack (HPL) and
Graph500. Our target is to test the efficiency of HPC
applications deployed on Docker containers by the
sharing model and compare to VMs.

5.1 Testing environment
In this paper, we set up an evaluation environment
with the limitation of unimportant services to reduce
overhead. This means that there are merely pure OS
and related dependencies on the verified system. We
use native performance as a standard to evaluate the
overhead of virtualized environment. Objectively, we
propose many benchmark scenarios with different
configurations on Docker containers and VMs.

Table 5.1.1 Scenarios of configuration

The resources allocated in VMs or containers have to
saturate with the resources of system under test, e.g.
RAM, cores. We implement all of tests on Intel
System with two compute nodes. There are 16
physical cores totally (along with Hyper Threading
technology) with Intel Xeon CPU E5-2670 @ 2.6GHz
and 64 GB of RAM. Between two compute nodes, the
network equipped under system is 1Gbps Gigabit
Ethernet. For consistency, the OS that we use is
CentOS 7 64-bit 3.10.0 on both of physical and virtual
environment. In further, VMs and Docker containers
are deployed by the latest version such as QEMU
2.4.0.1/KVM and Docker 1.7.1 respectively. Our
testbeds use full of resources (e.g. CPU, RAM) of
physical system with the problem size is equivalent to
the capacity of system under test. First, we target the
reasonable sizes of problems which our system can
obtain the best performance on each environment.
Second, we benchmark on many configurations of
VMs and Docker containers with the increasing
number of generated instances. This allows to observe
the changes of performance when we run more than
one virtual instance. The VMs or Docker containers
are deployed with different quantities. We have 64GB
of RAM and 32 logical cores which the real system
can allocate for virtual environment. Table I shows
the configurations of VMs and Docker containers
with the difference of each case, being the number of
generated instances among the values of CPU, RAM
and execution processes.

5.2 Docker container with computing intensive
application

Computing intensive application is represented by
HPL benchmark. This is a portable implementation of
Linpack benchmark.

Figure 5.2.1 HPL benchmark with different problem

sizes

The problem of HPL is to generate, solve, check and
time the random dense linear system of equations.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

 @ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 2008

This is a familiar problem which its size can scale up
or down. HPL uses double-precision floating point
arithmetic and portable routines for linear algebra
operations, message passing. Afterwards, the
benchmark counts floating-point operations per
second and returns performance results. To run an
application as HPL benchmark on distributed system,
we need three main parts including math library,
message passing interface (MPI) and HPL package.

Figure 5.1.2 Cost of memory usage

we configure HPL inside each Docker container, but
math library and MPI are mounted from the host OS.
Concretely, we use OpenBLAS and OpenMPI
representing math library and MPI, which they are
installed under host. As figure 3, because each Docker
container performs as a process inside host OS,all of
libraries and dependencies being necessary for HPL
are mounted directly to container. This facilitates to
create multiple containers on a node. For VMs, HPL
needs to setup along with OpenBLAS and OpenMPI
inside each instance.

Figure 5.1.3 HPL results in VM and docker containers

Hence, the overhead proliferates over the increasing
number of generated VMs.

The problem of HPL is matrix size and it is one of
parameters directly affecting to computing
performance. First, we construct a scenario with a
rage of matrix sizes between VMs and Docker
containers. Matrix sizes stretch from 60%to 90% of
RAM in system under test. In this case, figure 4shows

the efficiency of Docker container when running HPC
application based on our deployment method in
section V. The native performance is the best result
and it is considered as a based case, accounting for
roughly 308 GFLOPs in figure3. HPL performance of
Docker container is better than virtual machine,
especially, the matrix size occupies from 75% to
80%of RAM is suitable for Docker. By contrast, VMs
obtain the better performance in matrix size being
smaller than 65% of RAM. Additionally, HPL results
cannot be returned if the size is over 85% of RAM.
Having analyzed the real cost of memory that physical
system has to pay, figure 5 compares the real memory
utilization between VMs and Docker containers when
performing HPL benchmark. The percentage of RAM
usage on VMs is larger than containers, leading to the
overhead increases. Therefore, when the matrix size
scales up, the performance gets lower.

6. Conclusion

Docker provides the fundamental building block
necessary for distributed container deployments. By
packaging application components in their own
containers, horizontal scaling becomes a simple
process of spinning up or shutting down multiple
instances of each component. Docker provides the
tools necessary to not only build containers, but also
manage and share them with new users or hosts.
While containerized applications provide the
necessary process isolation and packaging to assist in
deployment, there are many other components
necessary to adequately manage and scale containers
over a distributed cluster of hosts.

References

1) C. Boettiger, “An introduction to docker for
reproducible research,” ACM SIGOPS Operating
Systems Review, vol. 49, no. 1, pp. 71–79, 2015.

2) J. J. Dongarra, P. Luszczek, and A. Petitet, “The
linpack benchmark: past, present and future,”
Concurrency and Computation: practice and
experience, vol. 15, no. 9, pp. 803–820, 2003.

3) R. C. Murphy, K. B. Wheeler, B. W. Barrett, and
J. A. Ang, “Introducing the graph 500,” Cray
Users Group (CUG), 2010.

4) R. Morabito, J. Kjallman, and M. Komu,
“Hypervisors vs. lightweight virtualization: a
performance comparison,” in Cloud Engineering

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

 @ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 2009

(IC2E), 2015 IEEE International Conference on.
IEEE, 2015, pp. 386–393.

5) J. E. Smith and R. Nair, “The architecture of
virtual machines,” Computer, vol. 38, no. 5, pp.
32–38, 2005.

6) J. Hwang, S. Zeng, F. Y. Wu, and T. Wood, “A
component-based performance comparison of four
hypervisors,” in Integrated Network Management
(IM 2013), 2013 IFIP/IEEE International
Symposium on. IEEE, 2013, pp. 269–276.

7) W. Huang, J. Liu, B. Abali, and D. K. Panda, “A
case for high performance computing with virtual
machines,” in Proceedings of the 20th annual
international conference on Supercomputing.
ACM, 2006, pp. 125–134.

8) R. Dua, A. R. Raja, and D. Kakadia,
“Virtualization vs containerization to support
paas,” in Cloud Engineering (IC2E), 2014 IEEE
International Conference on. IEEE, 2014, pp.
610–614.

9) (2014) Docker homepage. [Online]. Available:
https://www.docker.com/

10) C. P. Wright and E. Zadok, “Kernel korner:
unionfs: bringing filesystems together,” Linux
Journal, vol. 2004, no. 128, p. 8, 2004.

11) A. M. Joy, “Performance comparison between
linux containers and virtual machines,” in
Computer Engineering and Applications
(ICACEA), 2015 International Conference on
Advances in. IEEE, 2015, pp. 342– 346.

12) S. Soltesz, H. P¨otzl, M. E. Fiuczynski, A. Bavier,
and L. Peterson, “Container-based operating
system virtualization: a scalable, highperformance
alternative to hypervisors,” in ACM SIGOPS
Operating Systems Review, vol. 41, no. 3. ACM,
2007, pp. 275–287.

13) S. G. Soriga and M. Barbulescu, “A comparison
of the performance and scalability of xen and kvm
hypervisors,” in Networking in Education and
Research, 2013 RoEduNet International
Conference 12th Edition. IEEE, 2013, pp. 1–6.

14) C. Pahl, “Containerization and the paas cloud,”
IEEE Cloud Computing, no. 3, pp. 24–31, 2015.

15) W. Felter, A. Ferreira, R. Rajamony, and J. Rubio,
“An updated performance comparison of virtual
machines and linux containers,” in Performance
Analysis of Systems and Software (ISPASS),
2015 IEEE International Symposium On. IEEE,
2015, pp. 171–172.

