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ABSTRACT

This paper presently exhibits about the oscillation of
even order nonlinear neutral differential equations of
E of the form

(e®z™0(®) +r@f h(y®) +v©Of(5(1))
=0
Where z(t) = x(t) + p(t)x(p(t)),n > 2, is a even
integer. The output we considered f too e 1(t)dt = o,
and | too e 1(t)dt < . This canon here extracted

enhanced and developed a few known results in
literature. Some model are given to embellish our
main results.

INTRODUCTION

We apprehensive with the oscillation theorems for the
following half-linear even order neutral delay
differential equation

(e®2D®) +r(OfH®) + vOF(5(1)) =
0,t>t, (1)

Wherez(t) = x(t) + p(t)x(p(t)),n > 2, is a even
integer .Every part of this paper, we assume that:

(E1) e € C([ty,©),E),e(t) > 0,e'(t) = 0;
(Ez) p,q € C([tg, ), E),

0 < p(t) < py < o,q(t) > 0, where p, is a constant;
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(E3) p € C'([t, ), E), y € C([to, ), E),
8 € C([to,»),E), p'(t) = po >0,

Y@ <t @) <t,pey=yep,

ped = dbeop,

lim; y(t) = ,lim,,,8(t) = , where p, is a
constant.

(E,) f € C(E,E) and

f(x)/x = My, M, >0, for x # 0 , where My, M, is
constant.

Then the two cases are

o 1
= @
© 1
to%dt < oo, 3)

By a solution z of (1) a function be
e € C™ 1([t,,o),E) for some t, > t,,

Where z(t) = x(t) + a(t)x(p(t)), has a property
ez 1 e C'([t,, »),E) and satisfies (1) on (t,, ).
Then (1) satisfies sup{|x)t):t=>T|} >0 for all
T = t, is called oscillatory.

In certain case when n = 2 the equation (1) lessen to
the following equations
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e (x® +pOx(p®) ) +  TOFGH®) +
v(®)f(8(1)) =0,t =t

4)
Where ftz e 1(t)dt = o,

p(®) < t,y(®) <t,6() <t
0 <p(t) <py <o

Then the oscillatory behavior of the solutions of the
neutral differential equations of the second order

(e® (x(0) +pOx(p®) ) + rOG(©) +
v(®)(8(t)) = 0,t = ¢, (5)

Where ftze‘l(s)ds = oo,

0 <p(t) <py <o

The usual limitations on the coefficient of (5) be
p(t) < t,y(t) <p(),6() <p(t),

y() <t,6(t) <t,0<p(t) <1,are not assumed.

p Could be a advanced argument and y, § could be a
delay argument ,

Some known expand results are seen in [1,5]. Then
the

Even-order nonlinear neutral functional differential
equations

(x(®) + pOx(p®) ™ +r(Of(h(r(©®) +
v(0)f(6(8)) =0,t = ¢, (6)

Whereniseven 0 < p(t) < 1and p(t) <'t.
(A) Lemma. 1

The oscillatory behavior of solutions of the following
linear differential inequality

w'(®) + 1)) + v()g(E[®) <0
Where r,v,y,8 € C([ty, ©)),
y(Ot,5(t) <t
limy(¢) =co ,1lim§(t) = o

Now integrating from y(t) to t and §(t) to t

If

t

t
1

lim inff r(s)ds + lim inf v(s)ds > —,

t—owo y(t) t—oo e

6(t)
Then it has no finally positive solutions.

Main results

The main results which covenant that every solution
of (1) is oscillatory

(1) lim,_,., inf fyt(t)](s)ds > é

t

J(s)ds > 1

(2)lim sup
t—owo 5(t)

B.Theorem. 2.1

Assume that [ —=dt = oo holds. If

0e(t)

ftwsl(t) + foosz(t) dt = o

0 to

Where S1(t)= min r(®),r(p(®)}
S,(t)= min{v(t),v(p(t))}, then every solutions of
(1) is oscillatory.

Proof

Suppose, on the contradictory,x is a nonoscillatory
solutions of (1). Without loss of generality, we may
assume that there exists a constant t; > t,, such that

x(t) > 0,x(p(t)) > 0and (y(t)) >0,

x(8(t)) > 0 for all t > t;. Using the definitions of z
and x is a eventually positive solution of (1). Then
there exists t; > t, such that

z(t) > 0,z'(t) > 0,z V(t) > 0 and z™(t) < 0 for
all t > t;.

.Hencelim,_,,, z(t) # 0.

Applying ( E,) and (1) we get
(e(t)z(""l)(t))' <-Myr@®h(y®) <0, t=t

(e(t)z("‘l)(t))/ < -M()g(6() <0, t >t;.

Therefore (e(t)z™ V(t)) is a nonincreasing
function. Besides, from the above inequality and the
definition of z, we get
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Case (1)
(e(t)z("_l)(t)), + er(t)h(y(t)) +
p(t) " 1)('0 (t)) *

My por ((P()A(y ((p(1))) <0

ez V(©) + M R(Dz(y (1)) +
2e(p®M)z2"Pp®N'=s0 ()

Integrating (7) from ¢, to t, we have
t
(e(s)z™V(s))ds
t1

+M1] R(s)z(y(s))ds

= | (e(p()z™D(p(s))) ds

<0

Pointing that p'(t) = pg > 0

M, ftR(s)Z(y(s))ds < - Jte(s)z("_l)(s))'ds

t1 t1
_Po

PoJp, p'(s )(e(p ()27 (p(s))) ds d(p(s)

<
e(t)z™ Vit —(e(0)z™ V(1)) +
52 (e(p(t))z" D (p(t)) =
(e(p()z D (e(t))) (8)

Since z'(t) > 0 for t > t,. We can find a invariable
¢ > 0 such that

Z(y(t)) >c,t=>ty.

Then from (8) and the fact that (e(¢)z™~ P (t)) is non
increasing, we obtain

J, $1(®) < o0 ©)
Case (2)

(e(t)z("‘”(t)) + sz(t)g(a(t))
(t) e(p(®)z™ D (p(®)
+  Mypov((p(t)g(6((p(t))) <0

(e(t)z("_l)(t)), + M,V ()z(6(D)) +

2 (e(p®)2" D (p®)  (10)

Integrating (10) from t; to t, we have

fte(s)z("_l) (s))'ds

1

+ M, j tV(S)Z(5(S))dS
2o [ e(p())2m D (p(s)) ds < 0

Pointing that p'(t) = py > 0

s f t V(S)Z(a(s))ds < — [} e(s)2™D(s))ds —
L (e(p())" D (o)) ds d(p(s))

tl p (S)

<
(e(t)z™ Mty —(e(®)z™ V(1)) +
-2 (e(p(t))z" D (p(t) -

(e(p))z D (e®)))

Since z'(t) > 0 for t > t,. We can find a invariable
¢ > 0 such that

(11)

z2(6(0) = ¢, t = t,.

Then from (8) and the fact that (e(t)z™ V(b)) is
nonincreasing, we obtain f :: S,(t) <o

(12)
We get inconsistency with (9),(12).

ftwsl(t) + ]twsz(t) =

0 0

Theorem. 2.2

Assume that f —dt = oo holds and p(t) > t.if

either
_ ) t Yy S)J(s)
hmt—mo lnf(fy(t)wd +

t S"THSK(s) (Pot+po)(n—1)!
f5(f) e(8(s)) ds) > ps > (13)

Or when y , 6 is increasing,
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. t Yy (s)J(s)
llmt—)oo Sup(fy(t)wd s+

t  §"THSK(s) (Po+po)(n—1)!

Where (t) = min{M,j(t), Myj(p(t))},
then every solution of (1) is oscillatory .

Proof

Suppose, on the contrary x is a oscillatory solution of
(1). Without loss of generality, we may assume that
there exists a constant t; > t, such that t x(t) > 0,

x(p(t)) >0 and x(y(t)) >0, x(6(t)) > 0 for all

t>t,.

Assume that x™(t) is not consonantly zero on any

interval [ty, o), and there exists a ty > to.

that " D(Ou™ (@) <0 for all t>t,.
lim;_ x(t) # O,then for every 4, 0 < A< 1, there

existsT = t,, such that forall t > T,
x(t) = t” 1 (=1D(t) forever

0 < 1< 1, weobtain

ez D)+ B(e(p®)z" D (p(9) +

YOI Oz Dy (1) +

(n—-1)!

—5 "I OK Oz V(1) <0,

(n-1)! 1)'

For every t sufficiently large.

Let x(t) = (e(t)z("_l)(t))> 0. Then for all t large

enough, we have

<x(t) + —x(p(t))>

PRV
Yoo ean 0O
A SVIHK(b)

Tm-Dl e@®)

(15)

Next , let us denote

y() =x(t) += x(p(t)) Since x is non increasing,

it follows from p(t) > t that

x(6(t)) <0

y(t) < (1 + z—Z)x(t) . (16)

By combining (15) and (16), we get

A [yr®)®)
Y ( ) P0+Po (n—1)! < e(y(®) y()/(t)) %
%y(&(t))) <0 (17)

Therefore , y is a non negative solutions of (17).
Then there will be two cases

Case (1)

If
| oty ie))
llmt—mo lnf(fy(t)md S+

S"TL(S)K(s) (Do +po)(n—1)!
Jso w0y 49 > T holds
constant be 0 < A, < 1, such that

then a

“1(s)J(s)
lim;_,, lnf(f y(®) (n— 1)'( e(v(s)) ds +
t &M 1(S)K(S)
S ) el e > =

By lemma (1), (18) holds that (17) has negative
solutions, which is contradictory.

Case (2)
By the definition of y and

(
e()z" () + MR z(y(®)) +
2 (e(p())2™ D (p(0))) < 0

we get,

Y =x(© +2(x(p(0)) <~ D2(r®) -

K({t)z(6(t) <0 (19)
pointing that y(t) < t,6(t) < t, there exists t, > ty,
such that

y(y(®) = y(©),y(81®) = y(®),t > t,. (20)

Integrating (17) from y(t)tot and 6(t) to t and
applying v, § is increasing, we have
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y@®) - (r@®) +y(6(®)) +

Po__ At YIS
Po+po(n—1)!fy(t) e(y(s)) (3’()’(5))-}-

t 6n—1 K
fy(t) ()K(s) y(a(S)))ds <0,t>t, .

e(8(s))
Thus
(t) - (y(y(t)) +y(8(D) +
"1(5)J(s)
e (O (V(t))fy(t)W
L(s)K(s)

y(8@®)) [y s

() )ds <0,t>t,

From the above the inequality,we get

y(®) B
G ®) +y6®))

L _Po A ]t Y (8)J(s)
Po + po (=1 ) e(y(s))
L™K (s)
—————)ds <0
]V(t) e(8(s)) )§o=

From (20), we have

Po A t Yy (s)J(s) t 8" (K (s)
Po+po (n—1)! fy(t) e(v(s)) t fv(f) e(8() FEm
1t >t, 1)

Taking upper limits as t — o in (21) we get

. t Y (s)(s)
hmt—mo Sup (fy(t) W dS -

R OLO) (Pot+po)(n—1)!
fd(t)—d ) < e o

e(8(s) Apo ’ @2)

If (14) holds, we choose a constant
0 < Ay < 1 such that
n 1
(£)J(s) ds +

) t
lim,., sup(/. Y@  e(y(s))

t 8" 1(s)K(s) (Potpo)(n—1)!
Jso "oy ) > en,

Which is in contrary with (22).

Or when p~toy,p~106 is increasing,

| t Y9I
lim,_,, sup(fp—ly(t)md ST

n-1 _
§ (S)K(S) dS) > (p0+p;)))(n 1)! (24)
0

t
fp‘15(f) e(8(s)

Where J, K is defined as in theorem (2.2), then every
solution of (1) is oscillatory.

Proof

Suppose, on the contrary x is a oscillatory solution of
(1). Without loss of generality, we may assume that
there exists a constant t; = t,, such that

x(t) > 0,x(p(t)) > 0and

(y(@®)) > 0x(6(t)) > 0 for all t = t,. Continuing as
in the proof of the theorem (2.2), we have

(x(t) +=2 x(p(t)))

A yPrR)J() x(y(t)) n

(-1 e(y(®)

AR OL(O)

(n-1)!  e(5(®) X(5(t)) < 0. Let
)’(t)—x(t)+ x(p(t)) again. Since x is non

increasing, it follows fromp(t)) < 0 that
y(®) < (1 +29x(p(®)) (25)

By combining (15) and (24), we get

A [y*TH@®)@®) el
y( ) p0+p0 (n- 1)!< e(y(t)) y (p 1(y(t))) +
% y(p‘1(6(t)))> <0 26)

Therefore, y is a positive solution of (26). Now, we
consider the following two cases , on (23) and (24)
holds .

Case (1)
Theorem 2.3 If
Assume that f —dt = o holds andy(t) < p(t) < limg,, inf(f;(t)%d +
t,6(t) < p(t) S t If either fé@%d s) > W holds then a
limg,,, inf (fptqy(t)ﬁd s+ constantbe 0 <1, <1, such that
e =,
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OO
limy_q mf(f y(®) (n— 1)'( e(y() ds +

ottdn— 1sKsedsds))>1e

(27)

Therefore (27) holds (26) has no positive solutions
which is a contradiction.

Case (2)

From (19) and the condition

y(t) < p(t),6(t) < p(t), there exists
t, = t;, such that y (p‘l(y(t))) > y(t) ,

(Pt @) 2y® t26. @8

Integrating (26) from p~1(y(t))tot, p~(8(¢t)) and
applying p~loy is nondecreasing, then we get

y(t)—y (p_l(y(t)))
0 Y"1 (s)J(s) -
po,jrpo (n-1)! fp‘ly(t) e(r(s)) y( 1(V(t))) +

p—10(8)tdn—1sA(s)e(ds)yp—1dtds< 0, t=t2.

Thus

y® -y (p7 (r(®)) +
Y (©)

Po A -1 t
po+p0(n—1)!y(p (y(t)))fp‘ly(t) e(y(s)
yp—10tp—18()tn—1sK(5)e(ds)ds<0, t=>t2.

From the inequality , we obtain

y(t)

y(p (r®))

Po A J't
-1
Do+ po(m—1D) 1,4
t ST I()K (s
+J' (S)K( )d
p~18(t)

Y (5)
e(y(s))

ey

From (28) we get

Po f Y 1(s)J(s)
Po+po (- p7 1Y) e(y(s))

pP—10()dn—1sk(s)e(ds)ds<1, t>t2. (29)

Taking the upper limit as t — oo in (29), we get

. £ yTIEIE)
lim;_, 0 SUP(fy(t)st R

O()tdn—1sA(s)e(d5)ds)<(p0+p0)(n—1)!1p0,
(30)

Then the proof is similar to that of the theorem (2.2)
then it is contradiction to (24).
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