Oscillation of Even Order Nonlinear Neutral Differential
 Equations of \mathbf{E}

G. Pushpalatha
Assistant Professor, Department of Mathematics, Vivekanandha College of Arts and Sciences for Women, Tiruchengode, Namakkal, Tamilnadu, India

S. A. Vijaya Lakshmi
Research Scholar, Department of Mathematics, Vivekanandha College of Arts and Sciences for Women, Tiruchengode, Namakkal, Tamilnadu, India

ABSTRACT

This paper presently exhibits about the oscillation of even order nonlinear neutral differential equations of E of the form

$$
\begin{gathered}
\left(e(t) z^{(n-1)}(t)\right)^{\prime}+r(t) f(h(\gamma(t))+v(t) f(\delta(t)) \\
=0
\end{gathered}
$$

Where $z(t)=x(t)+p(t) x(\rho(t)), n \geq 2$, is a even integer. The output we considered $\int_{t_{o}}^{\infty} e^{-1}(t) d t=\infty$, and $\int_{t_{o}}^{\infty} e^{-1}(t) d t<\infty$. This canon here extracted enhanced and developed a few known results in literature. Some model are given to embellish our main results.

INTRODUCTION

We apprehensive with the oscillation theorems for the following half-linear even order neutral delay differential equation
$\left(e(t) z^{(n-1)}(t)\right)^{\prime}+r(t) f(h(\gamma(t))+v(t) f(\delta(t))=$ $0, t \geq t_{0}$,

Wherez $(t)=x(t)+p(t) x(\rho(t)), n \geq 2$, is a even integer .Every part of this paper, we assume that:
$\left(E_{1}\right) e \in C\left(\left[t_{0}, \infty\right), E\right), e(t)>0, e^{\prime}(t) \geq 0 ;$
$\left(E_{2}\right) p, q \in C\left(\left[t_{0}, \infty\right), E\right)$,
$0 \leq p(t) \leq p_{0}<\infty, q(t)>0$, where p_{0} is a constant;
$\left(E_{3}\right) \rho \in C^{1}\left(\left[t_{0}, \infty\right), E\right), \gamma \in C\left(\left[t_{0}, \infty\right), E\right)$,
$\delta \in C\left(\left[t_{0}, \infty\right), E\right), \rho^{\prime}(t) \geq \rho_{0}>0$,
$\gamma(t) \leq t, \delta(t) \leq t, \rho \circ \gamma=\gamma \circ \rho$,
$\rho \circ \delta=\delta \circ \rho$,
$\lim _{t \rightarrow \infty} \gamma(t)=\infty, \lim _{t \rightarrow \infty} \delta(t)=\infty$, where ρ_{0} is a constant.
$\left(E_{4}\right) f \in C(E, E)$ and
$f(x) / x \geq M_{1}, M_{2}>0$, for $x \neq 0$, where M_{1}, M_{2} is constant.

Then the two cases are

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \frac{1}{e(t)} d t=\infty \tag{2}
\end{equation*}
$$

$\int_{t_{0}}^{\infty} \frac{1}{e(t)} d t<\infty$,
By a solution z of (1) a function be
$e \in C^{m-1}\left(\left[t_{x}, \infty\right), E\right)$ for some $t_{z} \geq t_{0}$,
Where $z(t)=x(t)+a(t) x(\rho(t))$, has a property $e z^{n-1} \in C^{1}\left(\left[t_{x}, \infty\right), E\right)$ and satisfies (1) on $\left(t_{z}, \infty\right)$. Then (1) satisfies $\sup \{\mid x) t): t \geq T \mid\}>0$ for all $T \geq t_{x}$ is called oscillatory.

In certain case when $n=2$ the equation (1) lessen to the following equations
$\left(e(t)\left(x(t)+p(t) x(\rho(t))^{\prime}\right)+\quad r(t) f(h(\gamma(t))+\right.$ If

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \inf \int_{\gamma(t)}^{t} r(s) d s+\lim _{t \rightarrow \infty} \inf \int_{\delta(t)}^{t} v(s) d s>\frac{1}{e} \tag{4}
\end{equation*}
$$

Where $\int_{t_{0}}^{x} e^{-1}(t) d t=\infty$,

$$
\rho(t) \leq t, \gamma(t) \leq t, \delta(t) \leq t
$$

$$
0 \leq p(t) \leq p_{0}<\infty
$$

Then the oscillatory behavior of the solutions of the neutral differential equations of the second order
$\left(e(t)\left(x(t)+p(t) x(\rho(t))^{\prime}\right)^{\prime}+r(t)(h(\gamma(t))+\right.$ $v(t)(\delta(t))=0, t \geq t_{0}$

Where $\int_{t_{0}}^{x} e^{-1}(s) d s=\infty$,
$0 \leq p(t) \leq p_{0}<\infty$.
The usual limitations on the coefficient of (5) be $\rho(t) \leq t, \gamma(t) \leq \rho(t), \delta(t) \leq \rho(t)$, $\gamma(t) \leq t, \delta(t) \leq t, 0 \leq p(t)<1$, are not assumed.
ρ Could be a advanced argument and γ, δ could be a delay argument,

Some known expand results are seen in $[1,5]$. Then the

Even-order nonlinear neutral functional differential equations

$$
\begin{align*}
& (x(t)+p(t) x(\rho(t)))^{,(\mathrm{n})} \\
& \quad v(t) f(\delta(t))=0, t \geq t_{0}, \tag{6}
\end{align*}
$$

Where n is even $0 \leq p(t)<1$ and $\rho(t) \leq t$.

(A) Lemma. 1

The oscillatory behavior of solutions of the following linear differential inequality

$$
\left.w^{\prime}(t)+r(t) h(\gamma)\right)+v(t) g(\delta(t)) \leq 0
$$

Where $r, v, \gamma, \delta \in C\left(\left[t_{0}, \infty\right)\right)$,

$$
\begin{aligned}
& \gamma(t) t, \delta(t) \leq t \\
& \qquad \lim _{t \rightarrow \infty} \gamma(t)=\infty \quad, \lim _{t \rightarrow \infty} \delta(t)=\infty
\end{aligned}
$$

Now integrating from $\gamma(t)$ to t and $\delta(t)$ to t

Where $\quad S_{1}(t)=\quad \min \quad\{r(t), r(\rho(t))\}$ $S_{2}(t)=\min \{v(t), v(\rho(t))\}$, then every solutions of (1) is oscillatory.

Proof

Suppose, on the contradictory, x is a nonoscillatory solutions of (1). Without loss of generality, we may assume that there exists a constant $t_{1} \geq t_{0}$, such that

$$
x(t)>0, x(\rho(t))>0 \text { and }(\gamma(t))>0,
$$

$x(\delta(t))>0$ for all $t \geq t_{1}$. Using the definitions of z and x is a eventually positive solution of (1). Then there exists $t_{1} \geq t_{0}$, such that
$z(t)>0, z^{\prime}(t)>0, z^{(n-1)}(t)>0$ and $z^{n}(t) \leq 0$ for all $t \geq t_{1}$.
. Hencelim $_{t \rightarrow \infty} z(t) \neq 0$.
Applying (E_{4}) and (1) we get
$\left(e(t) Z^{(n-1)}(t)\right)^{\prime} \leq-M_{1} r(t) h(\gamma(t))<0, \quad t \geq t_{1}$
$\left(e(t) z^{(n-1)}(t)\right)^{\prime} \leq-M_{2} v(t) g(\delta(t))<0, t \geq t_{1}$.
Therefore $\left(e(t) z^{(n-1)}(t)\right)$ is a nonincreasing function. Besides, from the above inequality and the definition of z, we get

Case (1)

$$
\begin{gathered}
\left(e(t) z^{(n-1)}(t)\right)^{\prime}+M_{1} r(t) h(\gamma(t))+ \\
\frac{p_{0}}{\rho^{\prime}(t)}\left(e(\rho(t)) z^{(n-1)}(\rho(t))^{\prime}+\right.
\end{gathered}
$$

$$
M_{1} p_{0} r((\rho(t)) h(\gamma((\rho(t))) \leq 0
$$

$$
\left(e(t) z^{(n-1)}(t)\right)^{\prime}+M_{1} R(t) z(\gamma(t))+
$$

$$
\begin{equation*}
\frac{p_{0}}{\rho_{0}}\left(e(\rho(t)) z^{(n-1)}(\rho(t))\right)^{\prime} \leq 0 \tag{7}
\end{equation*}
$$

Integrating (7) from t_{1} to t, we have

$$
\begin{aligned}
& \int_{t_{1}}^{t}\left(e(s) z^{(n-1)}(s)\right) ' d s \\
&+M_{1} \int_{t_{1}}^{t} R(s) z(\gamma(s)) d s \\
&+\frac{p_{0}}{\rho_{0}} \int_{t_{1}}^{t}\left(e(\rho(s)) z^{(n-1)}(\rho(s))\right)^{\prime} d s \\
& \leq 0
\end{aligned}
$$

Pointing that $\rho^{\prime}(t) \geq \rho_{0}>0$
$\left.M_{1} \int_{t_{1}}^{t} R(s) z(\gamma(s)) d s \leq-\int_{t_{1}}^{t} e(s) z^{(n-1)}(s)\right)^{\prime} d s$
$-\frac{p_{0}}{\rho_{0}} \int_{t_{1}}^{t} \frac{1}{\rho^{\prime}(s)}\left(e(\rho(s)) z^{(n-1)}(\rho(s))\right)^{\prime} d s d(\rho(s)$

$$
\begin{align*}
& \leq \\
& e\left(t_{1}\right) z^{(n-1)} t_{1}-\left(e(t) z^{(n-1)}(t)\right)+ \\
& \frac{p_{0}}{\rho_{0}^{2}}\left(e (\rho (t _ { 1 })) z ^ { (n - 1) } \left(\rho\left(t_{1}\right)-\right.\right. \\
& \quad\left(e(\rho(t)) z^{(n-1)}(e(t))\right) \tag{8}
\end{align*}
$$

Since $z^{\prime}(t)>0$ for $t \geq t_{1}$. We can find a invariable $c>0$ such that
$z(\gamma(t)) \geq c, t \geq t_{1}$.
Then from (8) and the fact that $\left(e(t) z^{(n-1)}(t)\right)$ is non increasing, we obtain
$\int_{t_{0}}^{\infty} S_{1}(t)<\infty$

Case (2)

$$
\begin{aligned}
\left(e(t) z^{(n-1)}(t)\right)^{\prime} & +M_{2} v(t) g(\delta(t)) \\
& +\frac{p_{0}}{\rho^{\prime}(t)}\left(e(\rho(t)) z^{(n-1)}(\rho(t))^{\prime}\right. \\
& +\quad M_{2} p_{0} v((\rho(t)) g(\delta((\rho(t))) \leq 0
\end{aligned}
$$

$$
\begin{gather*}
\left(e(t) z^{(n-1)}(t)\right)^{\prime}+M_{2} V(t) z(\delta(t))+ \\
\frac{p_{0}}{\rho_{0}}\left(e(\rho(t)) z^{(n-1)}(\rho(t))^{\prime}\right. \tag{10}
\end{gather*}
$$

Integrating (10) from t_{1} to t, we have

$$
\begin{aligned}
&\left.\int_{t_{1}}^{t} e(s) z^{(n-1)}(s)\right)^{\prime} d s \\
&+M_{2} \int_{t_{1}}^{t} V(s) z(\delta(s)) d s \\
&+\frac{p_{0}}{\rho_{0}} \int_{t_{1}}^{t}\left(e(\rho(s)) z^{(n-1)}(\rho(s))^{\prime} d s \leq 0\right.
\end{aligned}
$$

Pointing that $\rho^{\prime}(t) \geq \rho_{0}>0$
$\left.M_{2} \int_{t_{1}}^{t} V(s) z(\delta(s)) d s \leq-\int_{t_{1}}^{t} e(s) z^{(n-1)}(s)\right)^{\prime} d s-$

$$
\frac{p_{0}}{\rho_{0}} \int_{t_{1}}^{t} \frac{1}{\rho^{\prime}(s)}\left(e(\rho(s)) z^{(n-1)}(\rho(s))\right)^{\prime} d s d(\rho(s))
$$

\leq
$\left(e\left(t_{1}\right) z^{(n-1)} t_{1}-\left(e(t) z^{(n-1)}(t)\right)+\right.$
$\frac{p_{0}}{\rho_{0}^{2}}\left(e\left(\rho\left(t_{1}\right)\right) z^{(n-1)}\left(\rho\left(t_{1}\right)-\right.\right.$
$\left(e(\rho(t)) z^{(n-1)}(e(t))\right)$
Since $z^{\prime}(t)>0$ for $t \geq t_{1}$. We can find a invariable $c>0$ such that

$$
z(\delta(t)) \geq c, t \geq t_{1}
$$

Then from (8) and the fact that $\left(e(t) z^{(n-1)}(t)\right)$ is nonincreasing, we obtain $\int_{t_{0}}^{\infty} S_{2}(t)<\infty$

We get inconsistency with (9),(12).

$$
\int_{t_{0}}^{\infty} S_{1}(t)+\int_{t_{0}}^{\infty} S_{2}(t)=\infty
$$

Theorem. 2.2

Assume that $\int_{t_{0}}^{\infty} \frac{1}{e(t)} d t=\infty$ holds and $\rho(t) \geq t$. if either
$\lim _{t \rightarrow \infty} \inf \left(\int_{\gamma(t)}^{t} \frac{\gamma^{n-1}(s) J(s)}{e(\gamma(s))} d s+\right.$
$\left.\int_{\delta(t)}^{t} \frac{\delta^{n-1}(s) K(s)}{e(\delta(s))} d s\right)>\frac{\left(p_{0}+\rho_{0}\right)(n-1)!}{\rho_{0}^{e}}$,
Or when γ, δ is increasing,
$\lim _{t \rightarrow \infty} \sup \left(\int_{\gamma(t)}^{t} \frac{\left.\gamma^{n-1}(s)\right](s)}{e(\gamma(s))} d s+\right.$
$\left.\int_{\delta(t)}^{t} \frac{\delta^{n-1}(s) K(s)}{e(\delta(s))} d s\right)>\frac{\left(p_{0}+\rho_{0}\right)(n-1)!}{\rho_{0}}$,
Where $(t)=\min \left\{M_{1} j(t), M_{1} j(\rho(t))\right\}$,
then every solution of (1) is oscillatory .

Proof

Suppose, on the contrary x is a oscillatory solution of (1). Without loss of generality, we may assume that there exists a constant $t_{1} \geq t_{0}$, such that $\mathrm{t} x(t)>0$,
$x(\rho(t))>0$ and $x(\gamma(t))>0, x(\delta(t))>0$ for all $t \geq t_{1}$.
Assume that $x^{(n)}(t)$ is not consonantly zero on any interval $\left[t_{0}, \infty\right)$, and there exists a $t_{1}>t_{0}$. Such that $x^{(n-1)}(t) u^{(n)}(t) \leq 0 \quad$ for all $t \geq t_{1}$. If $\lim _{t \rightarrow \infty} x(t) \neq 0$, then for every $\lambda, 0<\lambda<1$, there exists $T \geq t_{1}$, such that for all $t \geq T$,
$x(t) \geq \frac{\lambda}{(n-1)!} t^{n-1} u^{(n-1)}(t)$ forever
$0<\lambda<1$, we obtain

$$
\begin{aligned}
& \left(e(t) z^{(n-1)}(t)\right)^{\prime}+\frac{p_{0}}{\rho_{0}}\left(e(\rho(t)) z^{(n-1)}(\rho(t))^{\prime}+\right. \\
& \frac{\lambda}{(n-1)!} r^{n-1}(t) J(t) z^{(n-1)}(\gamma((t))+ \\
& \frac{\lambda}{(n-1)!} \delta^{n-1}(t) K(t) z^{(n-1)}(\gamma((t)) \leq 0, \quad \text { ISSN }
\end{aligned}
$$

For every t sufficiently large.
Let $x(t)=\left(e(t) z^{(n-1)}(t)\right)>0$. Then for all t large enough, we have

$$
\begin{align*}
&\left(x(t)+\frac{p_{0}}{\rho_{0}} x(\rho(t))\right)^{\prime} \\
&+\frac{\lambda}{(n-1)!} \frac{\gamma^{n-1}(t) J(t)}{e(\gamma(t))} x(\gamma(t)) \\
&+\frac{\lambda}{(n-1)!} \frac{\delta^{n-1}(t) K(t)}{e(\delta(t))} x(\delta(t)) \leq 0 \tag{15}
\end{align*}
$$

Next, let us denote
$y(t)=x(t)+\frac{p_{0}}{\rho_{0}} x(\rho(t))$. Since x is non increasing, it follows from $\quad \rho(t) \geq t$ that
$y(t) \leq\left(1+\frac{p_{0}}{\rho_{0}}\right) x(t)$.
By combining (15) and (16), we get
$y^{\prime}(t)+\frac{\rho_{0}}{p_{0}+\rho_{0}} \frac{\lambda}{(n-1)!}\left(\frac{\gamma^{n-1}(t) J(t)}{e(\gamma(t))} y(\gamma(t))+\right.$
$\left.\frac{\delta^{n-1}(t) K(t)}{e(\delta(t))} y(\delta(t))\right) \leq 0$
Therefore, y is a non negative solutions of (17).
Then there will be two cases

Case (1)

If
$\lim _{t \rightarrow \infty} \inf \left(\int_{\gamma(t)}^{t} \frac{\frac{\gamma}{}_{n-1}(s) J(s)}{e(\gamma(s))} d s+\right.$
$\left.\int_{\delta(t)}^{t} \frac{\delta^{n+1}(s) K(s)}{e(\delta(s))} d s\right)>\frac{\left(p_{0}+\rho_{0}\right)(n-1)!}{\rho_{0}^{e}}$ holds then a constant be $0<\lambda_{0}<1$, such that
$\lim _{t \rightarrow \infty} \inf \left(\int_{\gamma(t)}^{t} \frac{\lambda_{0}}{(n-1)!} \frac{\gamma^{n-1}(s)(s)}{e(\gamma(s))} d s+\right.$
$\left.\left.\int_{\delta(t)}^{t} \frac{\delta^{n-1}(s) K(s)}{e(\delta(s))} d s\right)\right)>\frac{1}{e}$,
By lemma (1), (18) holds that (17) has negative solutions, which is contradictory.

Case (2)

By the definition of y and
$\left.e(t) z^{(n-1)}(t)\right)^{\prime}+M_{1} R(t) z(\gamma(t))+$
$\frac{p_{0}}{\rho_{0}}\left(e(\rho(t)) z^{(n-1)}(\rho(t))\right)^{\prime} \leq 0$
we get,
$y^{\prime}(t)=x^{\prime}(t)+\frac{p_{0}}{\rho_{0}}(x(\rho(t)))^{\prime} \leq-J(t) z(\gamma(t))-$
$K(t) z(\delta(t))<0$
pointing that $\gamma(t) \leq t, \delta(t) \leq t$, there exists $t_{2} \geq t_{1}$, such that
$y(\gamma(t)) \geq y(t), y(\delta(t)) \geq y(t), t \geq t_{2} .(20)$
Integrating (17) from $\gamma(t)$ to t and $\delta(t)$ to t and applying γ, δ is increasing, we have

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

$$
\begin{array}{cc}
y(t)-(y(\gamma(t))+y(\delta(t)))+ & \text { Or when } \rho^{-1} o \gamma, \rho^{-1} o \delta \text { is increasing, } \\
\frac{\rho_{0}}{p_{0}+\rho_{0}} \frac{\lambda}{(n-1)!} \int_{\gamma(t)}^{t} \frac{\gamma^{n-1}(s) J(s)}{e(\gamma(s))}(y(\gamma(s))+ & \lim _{t \rightarrow \infty} \sup \left(\int_{\rho^{-1} \gamma(t)}^{t} \frac{\gamma^{n-1}(s) J(s)}{e(\gamma(s))} d s+\right. \\
\left.\int_{\gamma(t)}^{t} \frac{\delta^{n-1}(s) K(s)}{e(\delta(s))} y(\delta(s))\right) d s \leq 0, t \geq t_{2} . & \left.\int_{\rho^{-1} \delta(t)}^{t} \frac{\delta^{n-1}(s) K(s)}{e(\delta(s))} d s\right)>\frac{\left(p_{0}+\rho_{0}\right)(n-1)!}{\rho_{0}}
\end{array}
$$

Thus

$$
\begin{aligned}
& y(t)-(y(\gamma(t))+y(\delta(t)))+ \\
& \frac{\rho_{0}}{p_{0}+\rho_{0}} \frac{\lambda}{(n-1)!}\left(\left(y(\gamma(t)) \int_{\gamma(t)}^{t} \frac{\gamma^{n-1}(s) J(s)}{e(\gamma(s))}+\right.\right. \\
& \left.y(\delta(t))) \int_{\gamma(t)}^{t} \frac{\delta^{n-1}(s) K(s)}{e(\delta(s))}\right) d s \leq 0, t \geq t_{2}
\end{aligned}
$$

From the above the inequality, we get

$$
\begin{aligned}
\frac{y(t)}{(y(\gamma(t))+y(} & \delta(t))) \\
& -1 \\
& +\frac{\rho_{0}}{p_{0}+\rho_{0}} \frac{\lambda}{(n-1)!} \int_{\gamma(t)}^{t} \frac{\gamma^{n-1}(s) J(s)}{e(\gamma(s))} \\
& \left.+\int_{\gamma(t)}^{t} \frac{\delta^{n-1}(s) K(s)}{e(\delta(s))}\right) d s \leq 0
\end{aligned}
$$

Where J, K is defined as in theorem (2.2), then every solution of (1) is oscillatory.

Proof

Suppose, on the contrary x is a oscillatory solution of (1). Without loss of generality, we may assume that there exists a constant $t_{1} \geq t_{0}$, such that
$x(t)>0, x(\rho(t))>0$ and
$(\gamma(t))>0 x(\delta(t))>0$ for all $t \geq t_{1}$. Continuing as in the proof of the theorem (2.2), we have

From (20), we have
$\left.\frac{\rho_{0}}{p_{0}+\rho_{0}} \frac{\lambda}{(n-1)!} \int_{\gamma(t)}^{t} \frac{\gamma^{n-1}(s) J(s)}{e(\gamma(s))}+\int_{\gamma(t)}^{t} \frac{\delta^{n-1}(s) K(s)}{e(\delta(s))}\right) d s \leq$ $1, t \geq t_{2}$

Taking upper limits as $t \rightarrow \infty$ in (21) we get
$\lim _{t \rightarrow \infty} \sup \left(\int_{\gamma(t)}^{t} \frac{\gamma^{n-1}(s) J(s)}{e(\gamma(s))} d s+\right.$
$\left.\int_{\delta(t)}^{t} \frac{\delta^{n-1}(s) K(s)}{e(\delta(s))} d s\right) \leq \frac{\left(p_{0}+\rho_{0}\right)(n-1)!}{\lambda \rho_{0}}$,
If (14) holds, we choose a constant
$0<\lambda_{0}<1$ such that
$\frac{\delta^{n-1}(t) K(t)}{e(\delta(t))} y\left(\rho^{-1}(\delta(t))\right) \leq 0$
Therefore, y is a positive solution of (26). Now, we consider the following two cases , on (23) and (24) holds.

Case (1)

Theorem 2.3
Assume that $\int_{t_{0}}^{\infty} \frac{1}{e(t)} d t=\infty$ holds and $\gamma(t) \leq \rho(t) \leq$ $t, \delta(t) \leq \rho(t) \leq t . \quad$ If either $\lim _{t \rightarrow \infty} \inf \left(\int_{\rho^{-1} \gamma(t)}^{t} \frac{\gamma^{n-1}(s) J(s)}{e(\gamma(s))} d s+\right.$
$\left.\int_{\rho^{-1} \delta(t)}^{t} \frac{\delta^{n-1}(s) K(s)}{e(\delta(s))} d s\right)>\frac{\left(p_{0}+\rho_{0}\right)(n-1)!}{\rho_{0}^{e}}$,
$\lim _{t \rightarrow \infty} \inf \left(\int_{\gamma(t)}^{t} \frac{\lambda_{0}}{(n-1)!}\left(\frac{\gamma^{n-1}(s) J(s)}{e(\gamma(s))} d s+\right.\right.$
$\delta t t \delta n-1 s K s e \delta s d s))>1 e$

Therefore (27) holds (26) has no positive solutions which is a contradiction.

Case (2)

From (19) and the condition
$\gamma(t) \leq \rho(t), \delta(t) \leq \rho(t)$, there exists
$t_{2} \geq t_{1}$, such that $y\left(\rho^{-1}(\gamma(t))\right) \geq y(t)$,
$y\left(\rho^{-1}(\delta(t))\right) \geq y(t) \quad t \geq t_{2}$.
Integrating (26) from $\rho^{-1}(\gamma(t))$ tot, $\rho^{-1}(\delta(t))$ and applying $\rho^{-1} o \gamma$ is nondecreasing, then we get
$y(t)-y\left(\rho^{-1}(\gamma(t))\right)+$
$\frac{\rho_{0}}{p_{0}+\rho_{0}} \frac{\lambda}{(n-1)!} \int_{\rho^{-1} \gamma(t)}^{t} \frac{\gamma^{n-1}(s) J(s)}{e(\gamma(s))} y\left(\rho^{-1}(\gamma(t))\right)+$ $\rho-1 \delta(t) t \delta n-1 s K(s) e(\delta s) y \rho-1 \delta t d s \leq 0, t \geq t 2$.

Thus
$y(t)-y\left(\rho^{-1}(\gamma(t))\right)+$
$\frac{\rho_{0}}{p_{0}+\rho_{0}} \frac{\lambda}{(n-1)!} y\left(\rho^{-1}(\gamma(t))\right) \int_{\rho^{-1} \gamma(t)}^{t} \frac{\gamma^{n-1}(s) J(s)}{e(\gamma(s))}+$
$y \rho-1 \delta t \rho-1 \delta(t) t \delta n-1 s K(s) e(\delta s) d s \leq 0, \quad t \geq t 2$.

From the inequality, we obtain

$$
\begin{aligned}
& \frac{y(t)}{y\left(\rho^{-1}(\gamma(t))\right)} \\
& -1 \frac{\rho_{0}}{p_{0}+\rho_{0}} \frac{\lambda}{(n-1)!} \int_{\rho^{-1} \gamma(t)}^{t} \frac{\gamma^{n-1}(s) J(s)}{e(\gamma(s))} \\
& +\int_{\rho^{-1} \delta(t)}^{t} \frac{\delta^{n-1}(s) K(s)}{e(\delta(s))} d s \leq 0
\end{aligned}
$$

From (28) we get
$\frac{\rho_{0}}{p_{0}+\rho_{0}} \frac{\lambda}{(n-1)!} \int_{\rho^{-1} \gamma(t)}^{t} \frac{\gamma^{n-1}(s) J(s)}{e(\gamma(s))}+$
$\rho-1 \delta(t) t \delta n-1 s K(s) e(\delta s) d s \leq 1, t \geq t 2$.

Taking the upper limit as $t \rightarrow \infty$ in (29), we get

$$
\begin{align*}
& \lim _{t \rightarrow \infty} \sup \left(\int_{\gamma(t)}^{t} \frac{\gamma^{n-1}(s) J(s)}{e(\gamma(s))} d s+\right. \\
& \delta(t) t \delta n-1 s K(s) e(\delta s) d s) \leq(p 0+\rho 0)(n-1)!\lambda \rho 0, \tag{30}
\end{align*}
$$

Then the proof is similar to that of the theorem (2.2) then it is contradiction to (24).

Reference

1) M.K.Grammatikopoulos, G. Ladas, A. Meimaridou, Oscillation of second order neutral delay differential equations, Rat. Mat. 1 (1985) 267-274.
2) J.Dzurina, I.P.Stavroulakis, Osillation criteria for second order neutral delay differential equations, Appl.Math.Comput. 140 (2003) 445-453.
(3) Z. L. Han, T. X. Li, S. R. Sun, Y.B. Sun, Remarks on the paper [Appl. Math. Comput. 207(2009) 388-396], Appl. Math. Comput. 215 (2010) 39984007.
3) Q. X. Zhang, J.R. Yan, L. Gao, Oscillation behavior of even - order nonlinear neutral delay differential equations with variable coefficients, Comput. Math.Appl. 59 (2010) 426-430.
4) C. H.Zhang, T. X. Li, B. Sun, E. Thandapani, On the oscillation of hogher- order half-linear delay differential equations, Appl.Math. Lett. 24 (2011) 1618-1621.
