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ABSTRACT 
 
This paper presently exhibits about the 
even order nonlinear neutral differential equations of 
E of the form 

𝑒(𝑡)𝑧( )(𝑡) + 𝑟(𝑡)𝑓(ℎ 𝛾(𝑡) + 𝑣

= 0 
Where 𝑧(𝑡) = 𝑥(𝑡) + 𝑝(𝑡)𝑥 𝜌(𝑡) , 𝑛 ≥

integer. The output we considered  ∫ 𝑒

and ∫ 𝑒 (𝑡)𝑑𝑡 < ∞. This canon here extracted 

enhanced and developed a few known results in 
literature. Some model are given to embellish our 
main results. 

INTRODUCTION 

We apprehensive with the oscillation theorems for the 
following half-linear even order neutral delay 
differential equation 

𝑒(𝑡)𝑧( )(𝑡)
′
+ 𝑟(𝑡)𝑓(ℎ 𝛾(𝑡) + 𝑣(

0, 𝑡 ≥ 𝑡 ,                          (1) 

Where𝑧(𝑡) = 𝑥(𝑡) + 𝑝(𝑡)𝑥 𝜌(𝑡) , 𝑛 ≥
integer .Every part of this paper, we assume that

(𝐸 ) 𝑒 ∈ 𝐶([𝑡 ,∞), 𝐸), 𝑒(𝑡) > 0, 𝑒′(𝑡) ≥

(𝐸 ) 𝑝, 𝑞 ∈  𝐶([𝑡 ,∞), 𝐸), 

0 ≤ 𝑝(𝑡) ≤ 𝑝 < ∞, 𝑞(𝑡) > 0, where 𝑝
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exhibits about the oscillation of 
even order nonlinear neutral differential equations of 

𝑣(𝑡)𝑓 𝛿(𝑡)

≥ 2, is a even 

𝑒 (𝑡)𝑑𝑡 = ∞, 

here extracted 

enhanced and developed a few known results in 
. Some model are given to embellish our 

We apprehensive with the oscillation theorems for the 
neutral delay 

(𝑡)𝑓 𝛿(𝑡) =

2, is a even 
we assume that: 

≥ 0; 

 is a constant;  

(𝐸 ) 𝜌 ∈ 𝐶1([𝑡 ,∞), 𝐸), 𝛾 ∈ 𝐶

𝛿 ∈ 𝐶([𝑡 ,∞), 𝐸), 𝜌′(𝑡) ≥ 𝜌

𝛾(𝑡) ≤ 𝑡, 𝛿(𝑡) ≤ 𝑡 , 𝜌 ∘ 𝛾 = 𝛾

 𝜌 ∘ 𝛿 =  𝛿 ∘ 𝜌,  

lim →∞ 𝛾(𝑡) = ∞    , lim →∞ 𝛿(
constant. 

 (𝐸 ) 𝑓 ∈ 𝐶(𝐸, 𝐸) and 

 𝑓(𝑥) 𝑥⁄ ≥ 𝑀 , 𝑀 > 0, for 𝑥
constant. 

Then the two cases are  

∫
( )

𝑑𝑡 =  ∞
∞

                                 

∫
( )

𝑑𝑡 <  ∞
∞

,                               

By a solution 𝑧 of (1) a function be 

𝑒 ∈ 𝐶 ([𝑡 ,∞), 𝐸) for some 

Where 𝑧(𝑡) = 𝑥(𝑡) + 𝑎(𝑡)𝑥

𝑒𝑧 ∈  𝐶1([𝑡 ,∞), 𝐸) and satisfies
Then (1) satisfies 𝑠𝑢𝑝{|𝑥)𝑡
𝑇 ≥ 𝑡  is called oscillatory. 

In certain case when 𝑛 = 2 the equation (1) lessen to 
the following equations 
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([𝑡 ,∞), 𝐸),  

> 0, 

𝛾 ∘ 𝜌 ,  

(𝑡) = ∞ , where 𝜌  is a 

𝑥 ≠ 0 , where 𝑀 , 𝑀  is 

                                 (2) 

                              (3) 

of (1) a function be  

for some 𝑡 ≥ 𝑡 ,  

( ) 𝜌(𝑡) , has a property 
and satisfies (1) on (𝑡 ,∞). 
{ 𝑡): 𝑡 ≥ 𝑇|} > 0 for all 

the equation (1) lessen to 
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(𝑒(𝑡) 𝑥(𝑡) + 𝑝(𝑡)𝑥 𝜌(𝑡)
′ ′

+       𝑟(𝑡)𝑓(ℎ 𝛾(𝑡) +

𝑣(𝑡)𝑓 𝛿(𝑡) = 0, 𝑡 ≥ 𝑡 ,                           

                                                                   (4)                

Where ∫ 𝑒 (𝑡)𝑑𝑡 = ∞, 

𝜌(𝑡) ≤  𝑡 , 𝛾(𝑡) ≤ 𝑡, 𝛿(𝑡) ≤ 𝑡, 

 0 ≤ 𝑝(𝑡) ≤ 𝑝 < ∞. 

Then the oscillatory behavior of the solutions of the 
neutral differential equations of the second order   

(𝑒(𝑡) 𝑥(𝑡) + 𝑝(𝑡)𝑥 𝜌(𝑡)
′ ′

+  𝑟(𝑡)(ℎ 𝛾(𝑡) +

𝑣(𝑡) 𝛿(𝑡) = 0, 𝑡 ≥ 𝑡                                      (5) 

Where   ∫ 𝑒 (𝑠)𝑑𝑠 =  ∞, 

0 ≤ 𝑝(𝑡) ≤ 𝑝 < ∞. 

The usual limitations on the coefficient of (5) be 
𝜌(𝑡) ≤ 𝑡, 𝛾(𝑡) ≤ 𝜌(𝑡), 𝛿(𝑡) ≤ 𝜌(𝑡), 

𝛾(𝑡) ≤ 𝑡, 𝛿(𝑡) ≤ 𝑡, 0 ≤ 𝑝(𝑡) < 1, are not assumed. 

𝜌 Could be a advanced argument and 𝛾, 𝛿 could be a 
delay argument , 

Some known expand results are seen in [1,5]. Then 
the  

Even-order nonlinear neutral functional differential 
equations 

(𝑥(𝑡) + 𝑝(𝑡)𝑥 𝜌(𝑡) )′(n) + 𝑟(𝑡)𝑓(ℎ 𝛾(𝑡) +

      𝑣(𝑡)𝑓 𝛿(𝑡) = 0, 𝑡 ≥ 𝑡 ,                    (6) 

Where n is even 0 ≤ 𝑝(𝑡) < 1 and 𝜌(𝑡) ≤ 𝑡. 

(A) Lemma. 1 

The oscillatory behavior of solutions of the following 
linear differential inequality 

𝑤 ′(𝑡) + 𝑟(𝑡)ℎ(𝛾)) + 𝑣(𝑡)𝑔(𝛿(𝑡)) ≤ 0 

Where 𝑟, 𝑣, 𝛾, 𝛿 ∈ 𝐶([𝑡 ,∞  )), 

𝛾(𝑡)𝑡 , 𝛿(𝑡) ≤ 𝑡 

lim
→∞

𝛾(𝑡) = ∞    , lim
→∞

𝛿(𝑡) = ∞ 

Now integrating from 𝛾(𝑡) to 𝑡 and 𝛿(𝑡) 𝑡𝑜 𝑡 

If 

lim
→∞

𝑖𝑛𝑓 𝑟(𝑠)𝑑𝑠 +
( )

lim
→∞

𝑖𝑛𝑓 𝑣(𝑠)𝑑𝑠 >
1

𝑒
,

( )

 

Then it has no finally positive solutions. 

Main results 

The main results which covenant that every solution 
of (1) is oscillatory 

(1) lim →∞ 𝑖𝑛𝑓 ∫ 𝐽(𝑠)𝑑𝑠
( )

>  

(2)lim
→∞

𝑠𝑢𝑝 𝐽(𝑠)𝑑𝑠 > 1
( )

 

B.Theorem. 2.1 

Assume that ∫
( )

𝑑𝑡 =  ∞
∞

 holds. If  

𝑆 (𝑡) +
∞

𝑆 (𝑡) 𝑑𝑡 = ∞                    
∞

 

Where 𝑆 (𝑡)= min {𝑟(𝑡), 𝑟(𝜌(𝑡))} 
   𝑆 (𝑡)= min{𝑣(𝑡), 𝑣(𝜌(𝑡))}, then every solutions of 
(1) is oscillatory. 

Proof 

Suppose, on the contradictory,𝑥 is a nonoscillatory 
solutions of (1). Without loss of generality, we may 
assume that there exists a constant 𝑡 ≥ 𝑡 , such that 

𝑥(𝑡) > 0, 𝑥(𝜌(𝑡)) > 0 and (𝛾(𝑡)) > 0 , 

𝑥(𝛿(𝑡)) > 0 for all 𝑡 ≥ 𝑡 . Using the definitions of 𝑧 
and x is a eventually positive solution of (1). Then 
there exists 𝑡 ≥ 𝑡 , such that  

𝑧(𝑡) > 0, 𝑧 ′(𝑡) > 0, 𝑧( )(𝑡) > 0 and  𝑧 (𝑡) ≤ 0 for 
all 𝑡 ≥ 𝑡 . 

.Hencelim →∞ 𝑧(𝑡) ≠ 0. 

Applying ( 𝐸 ) and (1) we get  

𝑒(𝑡)𝑧( )(𝑡)
′

≤ −𝑀 𝑟(𝑡)ℎ 𝛾(𝑡) < 0, 𝑡 ≥ 𝑡  

𝑒(𝑡)𝑧( )(𝑡)
′

≤ −𝑀 𝑣(𝑡)𝑔 𝛿(𝑡) < 0, 𝑡 ≥ 𝑡 . 

Therefore (𝑒(𝑡)𝑧( )(𝑡)) is a nonincreasing 
function. Besides, from the above inequality and the 
definition of  𝑧, we get 
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Case (1) 

𝑒(𝑡)𝑧( )(𝑡)
′
+ 𝑀 𝑟(𝑡)ℎ 𝛾(𝑡) +

       ′( )
(𝑒 𝜌(𝑡) 𝑧( ) 𝜌(𝑡)

′
+  

            𝑀 𝑝 𝑟((𝜌(𝑡))ℎ(𝛾((𝜌(𝑡))) ≤ 0  

(𝑒(𝑡)𝑧( )(𝑡))′ + 𝑀 𝑅(𝑡)𝑧 𝛾(𝑡) +

      (𝑒 𝜌(𝑡) 𝑧( )(𝜌(𝑡)))′ ≤ 0            (7) 

Integrating (7) from 𝑡  𝑡𝑜 𝑡, we have  

(𝑒(𝑠)𝑧( )(𝑠))′𝑑𝑠

+ 𝑀 𝑅(𝑠)𝑧 𝛾(𝑠) 𝑑𝑠

+
𝑝

𝜌
(𝑒 𝜌(𝑠) 𝑧( )(𝜌(𝑠)))′ 𝑑𝑠

≤ 0 

Pointing that 𝜌′(𝑡) ≥ 𝜌 > 0 

𝑀 𝑅(𝑠)𝑧 𝛾(𝑠) 𝑑𝑠 ≤ − 𝑒(𝑠)𝑧( )(𝑠))′𝑑𝑠  

−
𝑝

𝜌

1

𝜌′(𝑠)
(𝑒 𝜌(𝑠) 𝑧( )(𝜌(𝑠)))′ 𝑑𝑠 𝑑(𝜌(𝑠)  

≤

𝑒(𝑡 )𝑧( )𝑡 −(𝑒(𝑡)𝑧( )(𝑡)) +

             (𝑒 𝜌(𝑡 ) 𝑧( )(𝜌(𝑡 ) −

               (𝑒(𝜌(𝑡))𝑧( )(𝑒(𝑡)))                (8) 

Since 𝑧 ′(𝑡) > 0 for 𝑡 ≥ 𝑡 . We can find a invariable 
𝑐 > 0 such that  

𝑧 𝛾(𝑡) ≥ 𝑐, 𝑡 ≥ 𝑡 . 

Then from (8) and the fact that (𝑒(𝑡)𝑧( )(𝑡)) is non 
increasing, we obtain 

∫ 𝑆 (𝑡) < ∞
∞

                                      (9) 

Case (2) 

(𝑒(𝑡)𝑧( )(𝑡))′ + 𝑀 𝑣(𝑡)𝑔 𝛿(𝑡)

+
𝑝

𝜌′(𝑡)
(𝑒 𝜌(𝑡) 𝑧( ) 𝜌(𝑡)

′

+     𝑀 𝑝 𝑣((𝜌(𝑡))𝑔(𝛿((𝜌(𝑡))) ≤ 0 

𝑒(𝑡)𝑧( )(𝑡)
′
+ 𝑀 𝑉(𝑡)𝑧 𝛿(𝑡) +

              (𝑒 𝜌(𝑡) 𝑧( ) 𝜌(𝑡)
′
          (10) 

Integrating (10) from 𝑡  𝑡𝑜 𝑡, we have 

𝑒(𝑠)𝑧( )(𝑠))′𝑑𝑠

+ 𝑀 𝑉(𝑠)𝑧 𝛿(𝑠) 𝑑𝑠

+
𝑝

𝜌
(𝑒 𝜌(𝑠) 𝑧( ) 𝜌(𝑠)

′
𝑑𝑠 ≤ 0 

Pointing that 𝜌′(𝑡) ≥ 𝜌 > 0 

𝑀 ∫ 𝑉(𝑠)𝑧 𝛿(𝑠) 𝑑𝑠 ≤ − ∫ 𝑒(𝑠)𝑧( )(𝑠))′𝑑𝑠  −

∫ ′( )
(𝑒 𝜌(𝑠) 𝑧( )(𝜌(𝑠)))′ 𝑑𝑠 𝑑(𝜌(𝑠))                              

≤
(𝑒(𝑡 )𝑧( )𝑡 −(𝑒(𝑡)𝑧( )(𝑡)) +

(𝑒 𝜌(𝑡 ) 𝑧( )(𝜌(𝑡 ) −

𝑒 𝜌(𝑡) 𝑧( ) 𝑒(𝑡)                        (11) 

Since 𝑧 ′(𝑡) > 0 for 𝑡 ≥ 𝑡 . We can find a invariable 
𝑐 > 0 such that  

 𝑧 𝛿(𝑡) ≥ 𝑐, 𝑡 ≥ 𝑡 . 

Then from (8) and the fact that (𝑒(𝑡)𝑧( )(𝑡)) is 
nonincreasing, we obtain ∫ 𝑆 (𝑡) < ∞

∞
                          

(12)                                                

We get inconsistency with (9),(12). 

𝑆 (𝑡) +
∞

𝑆 (𝑡) = ∞                    
∞

 

Theorem. 2.2 

Assume that ∫
( )

𝑑𝑡 =  ∞
∞

 holds and 𝜌(𝑡) ≥ 𝑡. if 

either 

lim →∞ 𝑖𝑛𝑓(∫
( ) ( )

( ( ))
𝑑𝑠 +

( )

∫
( ) ( )

( ( ))( )
𝑑𝑠) >

( )( )!
,     (13)  

Or when 𝛾 , 𝛿 is increasing, 
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lim →∞ 𝑠𝑢𝑝(∫
( ) ( )

( ( ))
𝑑𝑠 +

( )

∫
( ) ( )

( ( ))( )
𝑑𝑠) >

( )( )!
,    (14) 

Where (𝑡) = min 𝑀 𝑗(𝑡), 𝑀 𝑗 𝜌(𝑡) , 

 then every solution of (1) is oscillatory . 

Proof 

Suppose, on the contrary 𝑥 is a oscillatory solution of 
(1). Without loss of generality,  we may assume that 
there exists a constant 𝑡 ≥ 𝑡 , such that t 𝑥(𝑡) > 0,    

𝑥(𝜌(𝑡)) > 0 and 𝑥(𝛾(𝑡)) > 0 , 𝑥(𝛿(𝑡)) > 0 for all 
𝑡 ≥ 𝑡 . 

Assume that 𝑥( )(𝑡) is not consonantly zero on any 
interval [𝑡 ,∞), and there exists a    𝑡 > 𝑡 . Such 
that𝑥( )(𝑡)𝑢( )(𝑡) ≤ 0 for all 𝑡 ≥ 𝑡 . If   
lim →∞ 𝑥(𝑡) ≠ 0,then for every  𝜆, 0 <  𝜆 < 1, there 
exists𝑇 ≥ 𝑡 , such that for all 𝑡 ≥ 𝑇, 

𝑥(𝑡) ≥
( )!

𝑡 𝑢( )(t) forever 

0 <  𝜆 < 1 , we obtain 

(𝑒(𝑡)𝑧( )(𝑡))′ +     (𝑒 𝜌(𝑡) 𝑧( ) 𝜌(𝑡)
′
+

      
( )!

𝛾 (𝑡)𝐽(𝑡)𝑧( )(𝛾((t)) +              

      
( )!

𝛿 (𝑡)𝐾(𝑡)𝑧( )(𝛾((t)) ≤ 0, 

For every 𝑡 sufficiently large.  

Let 𝑥(𝑡) = 𝑒(𝑡)𝑧( )(𝑡) > 0. Then for all 𝑡 large 

enough, we have 

𝑥(𝑡) +
𝑝

𝜌
𝑥 𝜌(𝑡)

′

+
𝜆

(𝑛 − 1)!

𝛾 (𝑡)𝐽(𝑡)

𝑒(𝛾(𝑡))
 𝑥 𝛾(𝑡)  

+
𝜆

(𝑛 − 1)!

𝛿 (𝑡)𝐾(𝑡)

𝑒(𝛿(𝑡))
 𝑥 𝛿(𝑡)  ≤ 0 

                                                               (15) 

Next , let us denote 

𝑦(𝑡) = 𝑥(𝑡) + 𝑥 𝜌(𝑡) . Since 𝑥 is non increasing, 

it follows from    𝜌(𝑡) ≥ 𝑡 that  

𝑦(𝑡) ≤ 1 + 𝑥(𝑡) .                            (16) 

By combining (15) and (16), we get 

𝑦 ′(𝑡) +
( )!

( ) ( )

( )
𝑦 𝛾(𝑡) +

( ) ( )

( )
𝑦 𝛿(𝑡) ≤ 0                       (17) 

Therefore , 𝑦 is a non negative solutions of (17). 

Then there will be two cases 

Case (1) 

If 

lim →∞ 𝑖𝑛𝑓(∫
( ) ( )

( ( ))
𝑑𝑠 +

( )

∫
( ) ( )

( ( ))( )
𝑑𝑠) >

( )( )!
 holds then a 

constant be   0 < 𝜆 < 1, such that  

lim →∞ 𝑖𝑛𝑓(∫
( )!

(
( ) ( )

( )
𝑑𝑠 +

( )

∫
( ) ( )

( )( )
𝑑𝑠)) > ,                   (18) 

By lemma (1), (18) holds that (17) has negative 
solutions, which is contradictory.  

Case (2) 

By the definition of 𝑦 and  

( 
𝑒(𝑡)𝑧( )(𝑡))′ + 𝑀 𝑅(𝑡)𝑧 𝛾(𝑡) +

(𝑒 𝜌(𝑡) 𝑧( )(𝜌(𝑡)))′ ≤ 0 

 we get , 

𝑦 ′(𝑡) = 𝑥 ′(𝑡) + 𝑥 𝜌(𝑡)
′

≤ −𝐽(𝑡)𝑧 𝛾(𝑡) −

𝐾(𝑡)𝑧(𝛿(𝑡)) < 0         (19)    
pointing that 𝛾(𝑡) ≤ 𝑡, 𝛿(𝑡) ≤ 𝑡, there exists 𝑡  ≥ 𝑡 , 
such that 

𝑦 𝛾(𝑡) ≥ 𝑦(𝑡), 𝑦 𝛿(𝑡) ≥ 𝑦(𝑡), 𝑡 ≥ 𝑡  .  (20)                                                                   

Integrating (17) from 𝛾(𝑡)𝑡𝑜 𝑡 and 𝛿(𝑡) to 𝑡 and 
applying 𝛾 , 𝛿 is increasing, we have  
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𝑦(𝑡) − (𝑦 𝛾(𝑡) + 𝑦 𝛿(𝑡) ) +

( )!
∫

( ) ( )

( )
( 𝑦 𝛾(𝑠) +

( )

  ∫
( ) ( )

( )
 𝑦 𝛿(𝑠)

( )
)𝑑𝑠 ≤ 0, 𝑡 ≥ 𝑡   . 

Thus  

𝑦(𝑡) − (𝑦 𝛾(𝑡) + 𝑦(𝛿(𝑡))) +

( )!
((𝑦 𝛾(𝑡) ∫

( ) ( )

( )
 +

( )

 𝑦 𝛿(𝑡) )  ∫
( ) ( )

( )
 )

( )
𝑑𝑠 ≤ 0, 𝑡 ≥ 𝑡    

From the above the inequality,we get 

𝑦(𝑡)

(𝑦 𝛾(𝑡) + 𝑦(𝛿(𝑡)))
− 1

+
𝜌

𝑝 + 𝜌

𝜆

(𝑛 − 1)!

𝛾 (𝑠)𝐽(𝑠)

𝑒 𝛾(𝑠)( )

+
𝛿 (𝑠)𝐾(𝑠)

𝑒 𝛿(𝑠)
 )

( )

𝑑𝑠 ≤ 0 

From (20), we have  

( )!
∫

( ) ( )

( )
+ ∫

( ) ( )

( )
 )

( )
𝑑𝑠

( )
≤

1,𝑡 ≥ 𝑡                (21) 

Taking upper limits as 𝑡 → ∞ in (21) we get  

lim →∞ 𝑠𝑢𝑝(∫
( ) ( )

( ( ))
𝑑𝑠 +

( )

∫
( ) ( )

( ( ))( )
𝑑𝑠) ≤

( )( )!
,        (22) 

If (14) holds, we choose a constant 

0 < 𝜆 < 1 such that 

lim →∞ 𝑠𝑢𝑝(∫
( ) ( )

( )
𝑑𝑠 +

( )

∫
( ) ( )

( )( )
𝑑𝑠) >

( )( )!
,             

Which is in contrary with (22). 

Theorem 2.3 

Assume that ∫
( )

𝑑𝑡 =  ∞
∞

 holds and𝛾(𝑡) ≤ 𝜌(𝑡) ≤

𝑡, 𝛿(𝑡) ≤ 𝜌(𝑡) ≤ 𝑡. If either 

lim →∞ 𝑖𝑛𝑓(∫
( ) ( )

( ( ))
𝑑𝑠 +

( )

∫
( ) ( )

( ( ))( )
𝑑𝑠) >

( )( )!
,   (23) 

Or when 𝜌 𝜊𝛾 , 𝜌 𝜊𝛿 is increasing, 

lim →∞ 𝑠𝑢𝑝(∫
( ) ( )

( ( ))
𝑑𝑠 +

( )

∫
( ) ( )

( ( ))( )
𝑑𝑠) >

( )( )!
    (24) 

Where 𝐽, 𝐾 is defined as in theorem (2.2), then every 
solution of (1) is oscillatory. 

Proof 

Suppose, on the contrary 𝑥 is a oscillatory solution of 
(1). Without loss of generality, we may assume that 
there exists a constant 𝑡 ≥ 𝑡 , such that 

𝑥(𝑡) > 0, 𝑥(𝜌(𝑡)) > 0 and 

 (𝛾(𝑡)) > 0𝑥(𝛿(𝑡)) > 0 for all 𝑡 ≥ 𝑡 . Continuing as 
in the proof of the theorem (2.2), we have    

𝑥(𝑡) + 𝑥 𝜌(𝑡)

′

+

( )!

( ) ( )

( ( ))
 𝑥 𝛾(𝑡)  +

( )!

( ) ( )

( ( ))
 𝑥 𝛿(𝑡)  ≤ 0. Let 

𝑦(𝑡) = 𝑥(𝑡) + 𝑥 𝜌(𝑡)  again. Since 𝑥 is non 

increasing, it follows from𝜌(𝑡)) ≤ 0 that 

𝑦(𝑡) ≤ (1 + )𝑥 𝜌(𝑡)                    (25) 

By combining (15) and (24), we get  

𝑦 ′(𝑡) +
( )!

( ) ( )

( )
𝑦 𝜌 𝛾(𝑡) +

( ) ( )

( ( ))
  𝑦 𝜌 𝛿(𝑡) ≤ 0              (26) 

Therefore, 𝑦 is a positive solution of (26). Now, we 
consider the following two cases , on (23) and (24) 
holds . 

Case (1) 

If 

lim →∞ 𝑖𝑛𝑓(∫
( ) ( )

( ( ))
𝑑𝑠 +

( )

∫
( ) ( )

( ( ))( )
𝑑𝑠) >

( )( )!
 holds then a 

constant be   0 < 𝜆 < 1, such that  



International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470 

 @ IJTSRD  |  Available Online @ www.ijtsrd.com |  Volume – 2  |  Issue – 3  | Mar-Apr 2018    Page: 637 

lim →∞ 𝑖𝑛𝑓(∫
( )!

(
( ) ( )

( )
𝑑𝑠 +

( )

𝛿𝑡𝑡𝛿𝑛−1𝑠𝐾𝑠𝑒𝛿𝑠𝑑𝑠))>1𝑒                          (27) 

Therefore (27) holds (26) has no positive solutions 
which is a contradiction. 

Case (2)  

From (19) and the condition  

𝛾(𝑡) ≤ 𝜌(𝑡), 𝛿(𝑡) ≤ 𝜌(𝑡), there exists 

𝑡 ≥ 𝑡 , such that 𝑦 𝜌 𝛾(𝑡) ≥ 𝑦(𝑡)  ,   

𝑦 𝜌 𝛿(𝑡) ≥ 𝑦(𝑡)   𝑡 ≥ 𝑡 .              (28) 

Integrating (26) from 𝜌 𝛾(𝑡) to𝑡, 𝜌 𝛿(𝑡)  and 

applying 𝜌 𝜊𝛾 is nondecreasing, then we get 

𝑦(𝑡) −  𝑦 𝜌 𝛾(𝑡) +

( )!
∫

( ) ( )

( )
𝑦 𝜌 𝛾(𝑡) +

( )

  𝜌−1𝛿(𝑡)𝑡𝛿𝑛−1𝑠𝐾(𝑠)𝑒(𝛿𝑠)𝑦𝜌−1𝛿𝑡𝑑𝑠≤  0 , 𝑡≥𝑡2.  

Thus  

𝑦(𝑡) −  𝑦 𝜌 𝛾(𝑡) +

( )!
𝑦 𝜌 𝛾(𝑡) ∫

( ) ( )

( ( ))
+

( )

𝑦𝜌−1𝛿𝑡𝜌−1𝛿(𝑡)𝑡𝛿𝑛−1𝑠𝐾(𝑠)𝑒(𝛿𝑠)𝑑𝑠≤0,    𝑡≥𝑡2.  

From the inequality , we obtain 

𝑦(𝑡)

𝑦 𝜌 𝛾(𝑡)

− 1 
𝜌

𝑝 + 𝜌

𝜆

(𝑛 − 1)!

𝛾 (𝑠)𝐽(𝑠)

𝑒(𝛾(𝑠))( )

+
𝛿 (𝑠)𝐾(𝑠)

𝑒(𝛿(𝑠))( )

𝑑𝑠 ≤ 0 . 

From (28) we get  

( )!
∫

( ) ( )

( ( ))
+

( )

𝜌−1𝛿(𝑡)𝑡𝛿𝑛−1𝑠𝐾(𝑠)𝑒(𝛿𝑠)𝑑𝑠≤1, 𝑡≥𝑡2.            (29) 

Taking the upper limit as 𝑡 → ∞ in (29), we get 

lim →  𝑠𝑢𝑝(∫
( ) ( )

( ( ))
𝑑𝑠 +

( )

𝛿(𝑡)𝑡𝛿𝑛−1𝑠𝐾(𝑠)𝑒(𝛿𝑠)𝑑𝑠)≤(𝑝0+𝜌0)(𝑛−1)!𝜆𝜌0,        
(30) 

Then the proof is similar to that of the theorem (2.2) 
then it is contradiction to (24). 
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