

Oscillation of Even Order Nonlinear Neutral Differential Equations of E

G. Pushpalatha

Assistant Professor, Department of Mathematics, Vivekanandha College of Arts and Sciences for Women, Tiruchengode, Namakkal, Tamilnadu, India

S. A. Vijaya Lakshmi

Research Scholar, Department of Mathematics, Vivekanandha College of Arts and Sciences for Women, Tiruchengode, Namakkal, Tamilnadu, India

ABSTRACT

This paper presently exhibits about the oscillation of even order nonlinear neutral differential equations of E of the form

$$\begin{pmatrix} e(t)z^{(n-1)}(t) \end{pmatrix}' + r(t)f(h(\gamma(t)) + v(t)f(\delta(t)) \\ = 0 \\ \rho \circ \delta = \delta \circ \rho, \end{cases}$$

Where $z(t) = x(t) + p(t)x(\rho(t)), n \ge 2$, is a even $\lim_{t\to\infty} \gamma(t)$ integer. The output we considered $\int_{t_0}^{\infty} e^{-1}(t)dt = \infty$, constant. $\lim_{t\to\infty}\gamma(t)=\infty$, $\lim_{t\to\infty}\delta(t)=\infty$, where ρ_0 is a

and $\int_{t_0}^{\infty} e^{-1}(t) dt < \infty$. This canon here extracted $(E_4) f \in C(E, E)$ and enhanced and developed a few known results in

 $f(x)/x \ge M_1, M_2 > 0$, for $x \ne 0$, where M_1, M_2 is literature. Some model are given to embellish our main results. constant.

INTRODUCTION

We apprehensive with the oscillation theorems for the following half-linear even order neutral delay differential equation

$$(e(t)z^{(n-1)}(t))' + r(t)f(h(\gamma(t)) + v(t)f(\delta(t)) = 0, t \ge t_{0},$$
 (1)

Where $z(t) = x(t) + p(t)x(\rho(t)), n \ge 2$, is a even integer .Every part of this paper, we assume that:

$$(E_1) \ e \in C([t_0,\infty), E), e(t) > 0, e'(t) \ge 0;$$

$$(E_2) p, q \in \mathcal{C}([t_0, \infty), E),$$

 $0 \le p(t) \le p_0 < \infty, q(t) > 0$, where p_0 is a constant;

 $([t_0,\infty),E), \gamma \in C([t_0,\infty),E),$ $(E_3) \rho \in C$

$$\delta \in \mathcal{C}([t_0,\infty), E), \rho'(t) \ge \rho_0 > 0,$$

$$\gamma(t) \leq t, \ \delta(t) \leq t, \ \rho \circ \gamma = \gamma \circ \rho$$

Then the two cases are

$$\int_{t_0}^{\infty} \frac{1}{e(t)} dt = \infty$$
(2)
$$\int_{t_0}^{\infty} \frac{1}{e(t)} dt < \infty,$$
(3)

By a solution z of (1) a function be

$$e \in C^{m-1}([t_x,\infty),E)$$
 for some $t_z \ge t_0$,

Where $z(t) = x(t) + a(t)x(\rho(t))$, has a property $ez^{n-1} \in C^{1}([t_{x},\infty),E)$ and satisfies (1) on (t_{z},∞) . Then (1) satisfies $sup\{|x|t\}: t \ge T|\} > 0$ for all $T \ge t_x$ is called oscillatory.

In certain case when n = 2 the equation (1) lessen to the following equations

$$(e(t)\left(x(t)+p(t)x(\rho(t))\right) + r(t)f(h(\gamma(t)) + v(t)f(\delta(t)) = 0, t \ge t_{0},$$

(4)

Where
$$\int_{t_0}^{x} e^{-1}(t) dt = \infty$$
,
 $\rho(t) \le t, \gamma(t) \le t, \delta(t) \le t$,

 $0\leq p(t)\leq p_0<\infty.$

Then the oscillatory behavior of the solutions of the neutral differential equations of the second order

$$(e(t)\left(x(t) + p(t)x(\rho(t))'\right) + r(t)(h(\gamma(t)) + v(t)(\delta(t)) = 0, t \ge t_0$$
(5)

Where $\int_{t_0}^x e^{-1}(s) ds = \infty$,

$$0\leq p(t)\leq p_0<\infty.$$

The usual limitations on the coefficient of (5) be $\rho(t) \le t, \gamma(t) \le \rho(t), \delta(t) \le \rho(t),$

$$\gamma(t) \le t, \delta(t) \le t, 0 \le p(t) < 1$$
, are not assumed.

 ρ Could be a advanced argument and γ , δ could be a **Proof** delay argument,

Some known expand results are seen in [1,5]. Then the

Even-order nonlinear neutral functional differential equations

$$(x(t) + p(t)x(\rho(t)))^{(n)} + r(t)f(h(\gamma(t)) + v(t)f(\delta(t)) = 0, t \ge t_{0,}$$

$$(6)$$

Where n is even $0 \le p(t) < 1$ and $\rho(t) \le t$.

(A) Lemma. 1

The oscillatory behavior of solutions of the following linear differential inequality

$$w'(t) + r(t)h(\gamma)) + v(t)g(\delta(t)) \le 0$$

Where $r, v, \gamma, \delta \in C([t_0, \infty))$,

 $\gamma(t)t$, $\delta(t) \leq t$

$$\lim_{t\to\infty}\gamma(t)=\infty \quad , \lim_{t\to\infty}\delta(t)=\infty$$

Now integrating from $\gamma(t)$ to t and $\delta(t)$ to t

If

$$\liminf_{t\to\infty} \inf_{\gamma(t)} \int_{\gamma(t)}^t r(s)ds + \liminf_{t\to\infty} \inf_{\delta(t)} v(s)ds > \frac{1}{e},$$

Then it has no finally positive solutions.

Main results

The main results which covenant that every solution of (1) is oscillatory

(1)
$$\lim_{t\to\infty} \inf \int_{\gamma(t)}^t J(s) ds > \frac{1}{e}$$

(2) $\lim_{t\to\infty} \sup \int_{\delta(t)}^t J(s) ds > 1$

B.Theorem. 2.1

Assume that
$$\int_{t_0}^{\infty} \frac{1}{e(t)} dt = \infty$$
 holds. If

$$\int_{t_0}^{\infty} S_1(t) + \int_{t_0}^{\infty} S_2(t) dt = \infty$$

Where $S_1(t) = \min \{r(t), r(\rho(t))\}$ $S_2(t) = \min\{v(t), v(\rho(t))\}$, then every solutions of (1) is oscillatory.

Suppose, on the contradictory, x is a nonoscillatory solutions of (1). Without loss of generality, we may assume that there exists a constant $t_1 \ge t_0$, such that

 $x(t) > 0, x(\rho(t)) > 0$ and $(\gamma(t)) > 0$,

 $x(\delta(t)) > 0$ for all $t \ge t_1$. Using the definitions of z and x is a eventually positive solution of (1). Then there exists $t_1 \ge t_0$, such that

 $z(t) > 0, z'(t) > 0, z^{(n-1)}(t) > 0$ and $z^n(t) \le 0$ for all $t \ge t_1$.

.Hencelim_{$t\to\infty$} $z(t) \neq 0$.

Applying (E_4) and (1) we get

$$(e(t)z^{(n-1)}(t))' \leq -M_1 r(t)h(\gamma(t)) < 0, \qquad t \geq t_1$$
$$(e(t)z^{(n-1)}(t))' \leq -M_2 v(t)g(\delta(t)) < 0, \ t \geq t_1.$$

Therefore $(e(t)z^{(n-1)}(t))$ is a nonincreasing function. Besides, from the above inequality and the definition of z, we get

Case (1)

$$\begin{pmatrix} e(t)z^{(n-1)}(t) \end{pmatrix}' + M_1 r(t)h(\gamma(t)) + \\ \frac{p_0}{\rho'(t)} (e(\rho(t))z^{(n-1)}(\rho(t))' + \\ M_1 p_0 r((\rho(t))h(\gamma((\rho(t)))) \le 0 \\ (e(t)z^{(n-1)}(t))' + M_1 R(t)z(\gamma(t)) + \\ \frac{p_0}{\rho_0} (e(\rho(t))z^{(n-1)}(\rho(t)))' \le 0$$
(7)

Integrating (7) from t_1 to t, we have

$$\left(e(t)z^{(n-1)}(t) \right) + M_2 V(t)z(\delta(t)) + \frac{p_0}{\rho_0} (e(\rho(t))z^{(n-1)}(\rho(t))'$$
(10)

Integrating (10) from t_1 to t, we have

$$\int_{t_1}^t e(s) z^{(n-1)}(s) ds + M_2 \int_{t_1}^t V(s) z(\delta(s)) ds + \frac{p_0}{\rho_0} \int_{t_1}^t (e(\rho(s)) z^{(n-1)}(\rho(s))' ds \le 0$$

Pointing that $\rho'(t) \ge \rho_0 > 0$

Pointing that
$$\rho'(t) \ge \rho_0 > 0$$

 $\int_{t}^{t} (e(s)z^{(n-1)}(s))' ds$

$$M_{1} \int_{t_{1}}^{t} R(s)z(\gamma(s))ds \leq -\int_{t_{1}}^{t} e(s)z^{(n-1)}(s))'ds \qquad \begin{pmatrix} e(\rho(t))z^{(n-1)}(e(t)) \end{pmatrix} \qquad (11) \\ \text{Since } z'(t) > 0 \text{ for } t \geq t_{1}. \text{ We can find a invariable} \\ -\frac{p_{0}}{\rho_{0}} \int_{t_{1}}^{t} \frac{1}{\rho'(s)} (e(\rho(s))z^{(n-1)}(\rho(s)))'ds d(\rho(s) = 0 \text{ such that} \\ \text{Developme } z(\delta(t)) \geq c, t \geq t_{1}. \end{cases}$$

 \leq

$$\frac{\sum}{e(t_1)z^{(n-1)}t_1 - (e(t)z^{(n-1)}(t)) + \frac{p_0}{\rho_0^2}(e(\rho(t_1))z^{(n-1)}(\rho(t_1) - (e(\rho(t))z^{(n-1)}(e(t)))$$

Since z'(t) > 0 for $t \ge t_1$. We can find a invariable c > 0 such that

 $z(\gamma(t)) \ge c, t \ge t_1.$

Then from (8) and the fact that $(e(t)z^{(n-1)}(t))$ is non increasing, we obtain

$$\int_{t_0}^{\infty} S_1(t) < \infty \tag{9}$$

$$\begin{aligned} (e(t)z^{(n-1)}(t))' + M_2 v(t)g(\delta(t)) \\ &+ \frac{p_0}{\rho'(t)} (e(\rho(t))z^{(n-1)}(\rho(t))' \\ &+ M_2 p_0 v((\rho(t))g(\delta((\rho(t)))) \leq 0 \end{aligned}$$

Then from (8) and the fact that $(e(t)z^{(n-1)}(t))$ is nonincreasing, we obtain $\int_{t_0}^{\infty} S_2(t) < \infty$

We get inconsistency with (9),(12).

$$\int_{t_0}^{\infty} S_1(t) + \int_{t_0}^{\infty} S_2(t) = \infty$$

Theorem. 2.2

Assume that $\int_{t_0}^{\infty} \frac{1}{e(t)} dt = \infty$ holds and $\rho(t) \ge t$. if either

$$\lim_{t \to \infty} \inf \left(\int_{\gamma(t)}^{t} \frac{\gamma^{n-1}(s)J(s)}{e(\gamma(s))} ds + \int_{\delta(t)}^{t} \frac{\delta^{n-1}(s)K(s)}{e(\delta(s))} ds \right) > \frac{(p_0 + \rho_0)(n-1)!}{\rho_0^e}, \quad (13)$$

Or when γ , δ is increasing,

$$\lim_{t \to \infty} \sup(\int_{\gamma(t)}^{t} \frac{\gamma^{n-1}(s)J(s)}{e(\gamma(s))} ds + \int_{\delta(t)}^{t} \frac{\delta^{n-1}(s)K(s)}{e(\delta(s))} ds) > \frac{(p_0 + \rho_0)(n-1)!}{\rho_0}, \quad (14)$$

Where $(t) = \min\{M_1 j(t), M_1 j(\rho(t))\},\$

then every solution of (1) is oscillatory.

Proof

Suppose, on the contrary x is a oscillatory solution of (1). Without loss of generality, we may assume that there exists a constant $t_1 \ge t_0$, such that t x(t) > 0,

 $x(\rho(t)) > 0$ and $x(\gamma(t)) > 0$, $x(\delta(t)) > 0$ for all $t \ge t_1$.

$$y(t) \le \left(1 + \frac{p_0}{\rho_0}\right) x(t)$$
 (16)

By combining (15) and (16), we get

$$y'(t) + \frac{\rho_0}{p_0 + \rho_0} \frac{\lambda}{(n-1)!} \left(\frac{\gamma^{n-1}(t)J(t)}{e(\gamma(t))} y(\gamma(t)) + \frac{\delta^{n-1}(t)K(t)}{e(\delta(t))} y(\delta(t)) \right) \le 0$$
(17)

Therefore, y is a non negative solutions of (17).

Then there will be two cases

Assume that $x^{(n)}(t)$ is not consonantly zero on any $\lim_{t\to\infty} inf(\int_{\gamma(t)}^{t} \frac{\gamma^{n-1}(s)J(s)}{e(\gamma(s))} ds + interval <math>[t_0, \infty)$, and there exists a $t_1 > t_0$. Such that $x^{(n-1)}(t)u^{(n)}(t) \le 0$ for all $t \ge t_1$. If $\int_{\delta(t)}^{t} \frac{\delta^{n-1}(s)K(s)}{e(\delta(s))} ds > \frac{(p_0+\rho_0)(n-1)!}{\rho_0^e}$ holds then a $\lim_{t\to\infty} x(t) \ne 0$, then for every λ , $0 < \lambda < 1$, there constant be $0 < \lambda_0 < 1$, such that exists $T \ge t_1$, such that for all $t \ge T$,

••••

 $(e(t)z^{(n-1)}(t))' + \frac{p_0}{\rho_0}(e(\rho(t))z^{(n-1)}(\rho(t))' + equal Solutions, which is contradictory.$

$$\frac{\lambda}{(n-1)!} \gamma^{n-1}(t) J(t) z^{(n-1)}(\gamma((t)) +$$

$$\frac{\lambda}{(n-1)!} \delta^{n-1}(t) K(t) z^{(n-1)}(\gamma((t)) \le 0,$$
(5)

$$(e(t)z^{(n-1)}(t))' + M_1R(t)z(\gamma(t)) -$$

By the definition of y and

For every *t* sufficiently large.

Let $x(t) = (e(t)z^{(n-1)}(t)) > 0$. Then for all t large enough, we have

$$\left(x(t) + \frac{p_0}{\rho_0} x(\rho(t))\right) + \frac{\lambda}{(n-1)!} \frac{\gamma^{n-1}(t)J(t)}{e(\gamma(t))} x(\gamma(t)) + \frac{\lambda}{(n-1)!} \frac{\delta^{n-1}(t)K(t)}{e(\delta(t))} x(\delta(t)) \le 0$$
(15)

Next, let us denote

 $y(t) = x(t) + \frac{p_0}{\rho_0} x(\rho(t))$. Since x is non increasing, it follows from $\rho(t) \ge t$ that

$$e(t)z^{(n-1)}(t))' + M_1R(t)z(\gamma(t)) + \frac{p_0}{\rho_0}(e(\rho(t))z^{(n-1)}(\rho(t)))' \le 0$$

we get,

Case (2)

$$y'(t) = x'(t) + \frac{p_0}{\rho_0} \left(x(\rho(t)) \right)' \leq -J(t) z(\gamma(t)) - K(t) z(\delta(t)) < 0$$
(19)
pointing that $\gamma(t) \leq t, \delta(t) \leq t$, there exists $t_2 \geq t_1$, such that

$$y(\gamma(t)) \ge y(t), y(\delta(t)) \ge y(t), t \ge t_2.$$
(20)

Integrating (17) from $\gamma(t)$ to t and $\delta(t)$ to t and applying γ , δ is increasing, we have

$$\begin{split} y(t) &- \left(y\big(\gamma(t)\big) + y\big(\delta(t)\big)\right) + \\ \frac{\rho_0}{p_0 + \rho_0} \frac{\lambda}{(n-1)!} \int_{\gamma(t)}^t \frac{\gamma^{n-1}(s)J(s)}{e(\gamma(s))} \left(y\big(\gamma(s)\big) + \\ \int_{\gamma(t)}^t \frac{\delta^{n-1}(s)K(s)}{e(\delta(s))} y\big(\delta(s)\big)\right) ds \leq 0, t \geq t_2 \end{split}$$

Thus

$$y(t) - (y(\gamma(t)) + y(\delta(t))) + \frac{\rho_0}{p_0 + \rho_0} \frac{\lambda}{(n-1)!} ((y(\gamma(t))) \int_{\gamma(t)}^t \frac{\gamma^{n-1}(s)J(s)}{e(\gamma(s))} + y(\delta(t))) \int_{\gamma(t)}^t \frac{\delta^{n-1}(s)K(s)}{e(\delta(s))}) ds \le 0, t \ge t_2$$

From the above the inequality, we get

$$\frac{y(t)}{(y(\gamma(t)) + y(\delta(t)))} - 1$$

$$+ \frac{\rho_0}{p_0 + \rho_0} \frac{\lambda}{(n-1)!} \int_{\gamma(t)}^t \frac{\gamma^{n-1}(s)J(s)}{e(\gamma(s))}$$

$$+ \int_{\gamma(t)}^t \frac{\delta^{n-1}(s)K(s)}{e(\delta(s))} ds \le 0$$

$$\int_{\gamma(t)}^t \frac{\gamma^{n-1}(s)J(s)}{e(\delta(s))} \frac{\lambda}{ds} \le 0$$

$$\int_{\gamma(t)}^t \frac{\gamma^{n-1}(s)J(t)}{e(\gamma(t))} \frac{\gamma^{n-1}(t)J(t)}{e(\gamma(t))} \frac{\lambda}{x(\gamma(t))} + \frac{\lambda}{(n-1)!} \frac{\delta^{n-1}(t)K(t)}{e(\gamma(t))} \frac{\lambda}{x(\delta(t))} \le 0.$$

$$\frac{\rho_{0}}{p_{0}+\rho_{0}}\frac{\lambda}{(n-1)!}\int_{\gamma(t)}^{t}\frac{\gamma^{n-1}(s)J(s)}{e(\gamma(s))} + \int_{\gamma(t)}^{t}\frac{\delta^{n-1}(s)K(s)}{e(\delta(s))}ds \leq \frac{(n-1)!}{p_{0}}\frac{1}{e(\delta(t))}x(\delta(t))$$

$$y(t) = x(t) + \frac{p_{0}}{\rho_{0}}x(\rho(t))$$

Taking upper limits as $t \to \infty$ in (21) we get

$$\lim_{t\to\infty} \sup(\int_{\gamma(t)}^t \frac{\gamma^{n-1}(s)J(s)}{e(\gamma(s))} ds + \int_{\delta(t)}^t \frac{\delta^{n-1}(s)K(s)}{e(\delta(s))} ds) \le \frac{(p_0+\rho_0)(n-1)!}{\lambda\rho_0},$$

If (14) holds, we choose a constant

 $0 < \lambda_0 < 1$ such that

$$\lim_{t\to\infty} \sup(\int_{\gamma(t)}^t \frac{\gamma^{n-1}(s)J(s)}{e(\gamma(s))} ds + \int_{\delta(t)}^t \frac{\delta^{n-1}(s)K(s)}{e(\delta(s))} ds) > \frac{(p_0+\rho_0)(n-1)!}{\lambda_0\rho_0},$$

Which is in contrary with (22).

Theorem 2.3

Assume that
$$\int_{t_0}^{\infty} \frac{1}{e(t)} dt = \infty \text{ holds and} \gamma(t) \le \rho(t) \le t, \delta(t) \le \rho(t) \le t.$$
 If either
$$\lim_{t \to \infty} \inf \left(\int_{\rho^{-1}\gamma(t)}^{t} \frac{\gamma^{n-1}(s)J(s)}{e(\gamma(s))} ds + \int_{\rho^{-1}\delta(t)}^{t} \frac{\delta^{n-1}(s)K(s)}{e(\delta(s))} ds \right) > \frac{(p_0 + \rho_0)(n-1)!}{\rho_0^e}, \quad (23)$$

Or when $\rho^{-1} o \gamma$, $\rho^{-1} o \delta$ is increasing,

$$\lim_{t \to \infty} \sup(\int_{\rho^{-1}\gamma(t)}^{t} \frac{\gamma^{n-1}(s)J(s)}{e(\gamma(s))} ds + \int_{\rho^{-1}\delta(t)}^{t} \frac{\delta^{n-1}(s)K(s)}{e(\delta(s))} ds) > \frac{(p_0 + \rho_0)(n-1)!}{\rho_0} \quad (24)$$

Where J, K is defined as in theorem (2.2), then every solution of (1) is oscillatory.

Proof

Suppose, on the contrary x is a oscillatory solution of (1). Without loss of generality, we may assume that there exists a constant $t_1 \ge t_0$, such that

$$x(t) > 0, x(\rho(t)) > 0$$
 and

 $(\gamma(t)) > 0x(\delta(t)) > 0$ for all $t \ge t_1$. Continuing as in the proof of the theorem (2.2), we have

< 0. Let

$$y(t) = x(t) + \frac{p_0}{\rho_0} x(\rho(t))$$
 again. Since x is
increasing, it follows from $\rho(t) \le 0$ that

$$y(t) = (1 + \rho_0)x(p(t))$$
 (23)

By combining (15) and (24), we get

$$y'(t) + \frac{\rho_0}{p_0 + \rho_0} \frac{\lambda}{(n-1)!} \left(\frac{\gamma^{n-1}(t)J(t)}{e(\gamma(t))} y\left(\rho^{-1}(\gamma(t))\right) + \frac{\delta^{n-1}(t)K(t)}{e(\delta(t))} y\left(\rho^{-1}(\delta(t))\right) \right) \le 0$$
(26)

Therefore, y is a positive solution of (26). Now, we consider the following two cases, on (23) and (24) holds .

Case (1)

If

 $\lim_{t\to\infty} \inf(\int_{\gamma(t)}^t \frac{\gamma^{n-1}(s)J(s)}{e(\gamma(s))} ds + \int_{\delta(t)}^t \frac{\delta^{n-1}(s)K(s)}{e(\delta(s))} ds) > \frac{(p_0+\rho_0)(n-1)!}{\rho_0^e}$ holds then a constant be $0 < \lambda_0 < 1$, such that

non

 $\lim_{t \to \infty} \inf \left(\int_{\gamma(t)}^{t} \frac{\lambda_{0}}{(n-1)!} \left(\frac{\gamma^{n-1}(s)J(s)}{e(\gamma(s))} ds + \delta tt \delta n - 1sKse\delta sds \right) \right) > 1e$ (27)

Therefore (27) holds (26) has no positive solutions which is a contradiction.

Case (2)

From (19) and the condition

 $\gamma(t) \le \rho(t), \delta(t) \le \rho(t)$, there exists

 $t_2 \ge t_1$, such that $y\left(\rho^{-1}(\gamma(t))\right) \ge y(t)$,

$$y\left(\rho^{-1}\left(\delta(t)\right)\right) \ge y(t) \quad t \ge t_2.$$
⁽²⁸⁾

Integrating (26) from $\rho^{-1}(\gamma(t))$ to $t, \rho^{-1}(\delta(t))$ and applying $\rho^{-1}o\gamma$ is nondecreasing, then we get

$$y(t) - y\left(\rho^{-1}(\gamma(t))\right) + \frac{\rho_0}{p_0 + \rho_0} \frac{\lambda}{(n-1)!} \int_{\rho^{-1}\gamma(t)}^t \frac{\gamma^{n-1}(s)J(s)}{e(\gamma(s))} y\left(\rho^{-1}(\gamma(t))\right) + \rho^{-1}\delta(t)t\delta n - 1sK(s)e(\delta s)y\rho - 1\delta tds \leq 0, t \geq t2.$$

Thus

$$y(t) - y\left(\rho^{-1}(\gamma(t))\right) + \frac{\rho_0}{p_0 + \rho_0} \frac{\lambda}{(n-1)!} y\left(\rho^{-1}(\gamma(t))\right) \int_{\rho^{-1}\gamma(t)}^t \frac{\gamma^{n-1}(s)J(s)}{e(\gamma(s))} + 2\rho - 1\delta t \rho - 1\delta(t) t \delta n - 1sK(s)e(\delta s) ds \le 0, \quad t \ge t2.$$

.

From the inequality, we obtain

$$\frac{y(t)}{y\left(\rho^{-1}(\gamma(t))\right)} - 1 \frac{\rho_0}{p_0 + \rho_0} \frac{\lambda}{(n-1)!} \int_{\rho^{-1}\gamma(t)}^t \frac{\gamma^{n-1}(s)J(s)}{e(\gamma(s))} + \int_{\rho^{-1}\delta(t)}^t \frac{\delta^{n-1}(s)K(s)}{e(\delta(s))} ds \le 0.$$

From (28) we get

$$\frac{\rho_{0}}{p_{0}+\rho_{0}}\frac{\lambda}{(n-1)!}\int_{\rho^{-1}\gamma(t)}^{t}\frac{\gamma^{n-1}(s)J(s)}{e(\gamma(s))} + \rho - 1\delta(t)t\delta n - 1sK(s)e(\delta s)ds \leq 1, t \geq t2.$$
(29)

Taking the upper limit as $t \to \infty$ in (29), we get

$$\lim_{t\to\infty} \sup(\int_{\gamma(t)}^{t} \frac{\gamma^{n-1}(s)J(s)}{e(\gamma(s))} ds + \delta(t)t\delta n - 1sK(s)e(\delta s)ds) \leq (p0+\rho0)(n-1)!\lambda\rho0,$$
(30)

Then the proof is similar to that of the theorem (2.2) then it is contradiction to (24).

Reference

- M.K.Grammatikopoulos, G. Ladas, A. Meimaridou, Oscillation of second order neutral delay differential equations, Rat. Mat. 1 (1985) 267-274.
- J.Dzurina, I.P.Stavroulakis, Osillation criteria for second order neutral delay differential equations, Appl.Math.Comput. 140 (2003) 445-453.

3) Z. L. Han, T. X. Li, S. R. Sun, Y.B. Sun, Remarks on the paper [Appl. Math. Comput. 207(2009) 388-396], Appl. Math. Comput. 215 (2010) 3998-4007.

-) Q. X. Zhang, J.R. Yan, L. Gao, Oscillation behavior of even – order nonlinear neutral delay differential equations with variable coefficients, Comput. Math.Appl. 59 (2010) 426-430.
- C. H.Zhang, T. X. Li, B. Sun, E. Thandapani, On the oscillation of hogher- order half-linear delay differential equations, Appl.Math. Lett. 24 (2011) 1618-1621.