

# **Three-Term Linear Fractional Nabla Difference Equation**

G. Pushpalatha Assistant Professor, Department of Mathematics, Vivekanandha College of Arts and Sciences for Women, Tiruchengode, Namakkal, Tamilnadu, India

## **R.** Ranjitha

Research Scholar, Department of Mathematics, Vivekanandha College of Arts and Sciences for Women, Tiruchengode, Namakkal, Tamilnadu, India

## ABSTRACT

In this present paper, a study on nabla difference equations. We shall consider the three term equations, equation and its third order linear fractional difference equation. A new generalized nabla difference equation is investigated from Three-term linear fractional nabla difference equation. A relevant example is proved and justify the proposed notions.

Keywords: Fractional difference operator, nabla difference equation, linear fractional, Third-term equation. Trend in Scienti

## 1. Introduction

In this present paper, we shall use the transform Assume that method to obtain solutions of a linear fractional nabla difference equation of the form

(1) 
$$\nabla_0^{\nu} x(t) + C_1 \nabla x(t) + C_2 x(t) = g(t),$$

t = 1, 2, 3...,

Where  $1 < v \le 2$ . The fractional difference operator,  $\nabla_0^{\nu}$  is of R-L type and the operator  $\nabla_0^{\nu}$  is a Riemann-Liouville fractional difference operator, is defined by,

If  $\mu > 0$ , define the  $\mu^{th}$ -term of fractional sum by

(2) 
$$\nabla_a^{-\mu} x(t) = \sum_{s=a}^{t} \frac{(t-\rho(s))^{\mu-1}}{\Gamma\mu} x(s)$$

Where  $\rho(s) = s - 1$ .

The aim for this paper is to develop and preserve the theory of linear fractional nabla difference equations as a corresponds of the theory of linear difference (1) is limited. An equation of the form

(3) 
$$\nabla_0^{2\mu} x(t) + C_1 \nabla_0^{\mu} x(t) + C_2 x(t) = g(t),$$
  
t = 1, 2, 3...,

is called a sequential fractional difference equation.

In general equation is,

search 1,2,3.

$$C_0^{\nu_2} x(t) + C_1 \nabla_0^{\nu_1} x(t) + C_2 x(t) = g(t),$$

 $0 < v_1 \le 1 < v_2 \le 2$ the as only connection between  $v_1$  and  $v_2$ . The operator of nabla is usually represents the backward difference operator and in this paper

5) 
$$\nabla x(t) = x(t) - x(t-1)$$
,  
 $\nabla^{k} x(t) = \nabla \nabla^{k-1} x(t), \quad k = 1, 2, 3$ 

The raising factorial power function is defined below,

(6) 
$$t^{\overline{\alpha}} = \frac{\Gamma(t+\alpha)}{\Gamma(\alpha)}$$

Then if  $0 \le m - 1 < \upsilon \le m$ , define by the Riemann-Liouville fractional difference equation is

(7) 
$$\nabla_c^{\nu} x(t) = \nabla^m \nabla_c^{\nu-m} x(t)$$

Where  $\nabla^m$  denotes the standard  $m^{th}$  order nabla (backward) difference.

In section 2, we shall use the transform method to (1)and we find out the solutions. And the same time we shall expressed as a sufficient condition as a function of  $C_1$  and  $C_2$  for convergent of the solutions.

In section 3, we apply the algorithm in the case of a solution is  $2^t$  and verified independently that the series represents the known function.

For further studying in this previous area, we refer the reader to the article on two-term linear fractional nabla difference equation [7].

#### 2. Three-term Linear fractional nabla difference equation

In this section, we describe an algorithm to form a solution of an initial value problem for a three-term linear fractional nabla difference equation of the form,

(8) 
$$\nabla_0^{\nu} x(t) + C_1 \nabla x(t) + C_2 x(t) = 0,$$
  
 $x(1) = c, \quad \text{for} \quad t = 1, 2, 3, ...$ 

Where  $1 < \upsilon \le 2$ .

Next, consider the term 
$$N_2(\nabla x(t))$$
 on (9) and also, we know that the result [7],

"If 
$$0 < \upsilon \le 1$$
,  $N_{a+1} \left( \nabla^{\upsilon}_{a} f(t) \right)(s) = s^{\upsilon} N_{a} \left( f(t) \right)(s)$   
 $-(1-s)^{a-1} f(a)$ ."

Which implies

$$N_2(\nabla x(t)) = N_2(\nabla x(t)) + \nabla x(1) - \nabla x(1)$$
$$= N_1(\nabla x(t)) - \nabla x(1)$$

$$= sN_1(x(t)) - (1-s)^{-1}c_0 - (c_1 - c_0)$$

$$= sN_0(x(t)) - \frac{1}{(1-s)}c_0 - c_1 + c_0\frac{(1-s)}{(1-s)}$$

$$x(t) + C_2 x(t) = 0, x(0) = c_0, = sN_0(x(t)) - \frac{1}{(1-s)}c_0 - c_1 + \frac{1}{(1-s)}c_0 - \frac{s}{(1-s)}c_0$$
  

$$t = 1, 2, 3... (11) N_2(\nabla x(t)) = sN_0(x(t)) - \frac{s}{(1-s)}c_0 - c_1$$

Similarly, we consider the last term, Apply the operator N, to the equation (8) we get  $N_{2}(\nabla_{0}^{\nu}x(t) + C_{1}\nabla x(t) + C_{2}x(t)) = 0$ 

(9)  $N_2(\nabla_0^{\nu} x(t)) + C_1 N_2(\nabla x(t)) + C_2 N_2 x(t) = 0$ First, consider a term  $N_2(\nabla_0^{\nu} x(t))$  from (8) and use the result [7] we get,

"If 
$$1 < \upsilon \le 2$$
,  
 $N_{a+2}(\nabla^{\upsilon}_{a}f(t))(s) = s^{\upsilon}N_{a}(f(t))(s)$   
 $-s(1-s)^{a-1}f(a) - (1-s)^{a}\nabla^{\upsilon-1}_{a}f(a+1)$   
 $= s^{\upsilon}N_{a}(f(t))(s) - s(1-s)^{a-1}f(a)$   
 $-(1-s)^{a}(f(a+1) - (\upsilon-1)f(a))$ ."

Which implies that,

$$N_2(\nabla_0^{\nu} x(t)) = s^{\nu} N_0(x(t)) - s(1-s)^{0-1} x(0)$$

$$-(1-s)^{0}(x(1)) - (v-1)x(0))$$

(10)  $N_2(\nabla_0^{\nu} x(t)) = s^{\nu} N_0(x(t))$ 

$$-s(1-s)^{-1}c_0 - (c_1 - (v-1)c_0)$$

 $N_2(x(t)) = N_2(x(t)) + c_1 - c_1 + \frac{1}{(1-s)}c_0 - \frac{1}{(1-s)}c_0$ evelopm  $= N_2(x(t)) + c_1 + (1-s)^{-1}c_0 - c_1 + (1-s)^{-1}c_0$ 

> In particular (12)  $N_2(x(t)) = N_0(x(t)) - c_1 - (1-s)^{-1}c_0$

Substitute (10), (11) and (12) in (9) we get  

$$N_2(\nabla_0^{\nu} x(t)) + C_1 N_2(\nabla x(t)) + C_2 N_2 x(t) = 0$$
  
 $s^{\nu} N_0(x(t)) - s(1-s)^{-1} c_0 - (c_1 - (\nu - 1)c_0)$   
 $+ C_1 \left( s N_0(x(t)) - \frac{s}{(1-s)} c_0 - c_1 \right)$   
 $+ C_2 \left( N_0(x(t)) - c_1 - (1-s)^{-1} c_0 \right) = 0$ 

$$(s^{\nu} + C_1 s + C_2) N_0(x(t)) - \frac{1}{(1-s)} (s + C_1 s + C_2) c_0 - (1 + C_1 + C_2) c_1 - (1 - \nu) c_0 = 0$$

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

(13) 
$$N_{0}(x(t)) = \frac{(s + C_{1}s + C_{2})c_{0}}{(1 - s)(s^{\nu} + C_{1}s + C_{2})} + \frac{(1 + C_{1} + C_{2})c_{1} + (1 - \nu)c_{0}}{(s^{\nu} + C_{1}s + C_{2})}$$

Now take 
$$\frac{1}{(s^{\nu} + C_1 s + C_2)} = \frac{1}{s^{\nu} \left(1 + \frac{C_1 s}{s^{\nu}} + \frac{C_2}{s^{\nu}}\right)}$$

$$=\frac{1}{s^{\nu}\left(1+C_{1}s^{1-\nu}+\frac{C_{2}}{s^{\nu}}\right)}$$

$$(14) \frac{1}{s^{\nu} + C_{1}s + C_{2}} = \sum_{m=0}^{\infty} \sum_{n=0}^{m} (-1)^{m} \binom{m}{n} C_{1}^{m-n} C_{2}^{n} s^{((1-\nu)m)-n-\nu}$$
  
Since  $s^{((1-\nu)m)-n-\nu} = N_{1} \left( \frac{t^{\overline{(\nu-1)m+n+(\nu-1)}}}{\Gamma((\nu-1)m+n+\nu)} \right)$ 
$$= N_{0} \left( \frac{t^{\overline{(\nu-1)m+n+(\nu-1)}}}{\Gamma((\nu-1)m+n+\nu)} \right).$$

By using the result [7], "  $AN_1f(t) = -\frac{Af(0)}{1-s} + AN_0f(t)$ ".

Now, the above equation is re-express  $N_1$  as  $N_0$ , and we have,

$$\frac{1}{(s^{o} + C_{1}s + C_{2})} = \frac{1}{s^{o}(1 + C_{1}s^{1-o})\left(1 + \frac{C_{2}}{s^{o'}(1 + C_{1}s^{1-o})}\right)} \text{ In we have,}$$

$$\frac{1}{s^{o} + C_{1}s + C_{2}} = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} (-1)^{n} \binom{m}{n} C_{1}^{n-n} C_{2}^{n}$$

$$\frac{1}{s^{o'} + C_{1}s + C_{2}} = \sum_{n=0}^{\infty} (-1)^{n} s^{-o(n+1)} C_{2}^{n} \left(\frac{1}{1 + C_{1}s^{1-o}}\right)^{n+1} \text{ In constraints}} \left(S_{1} + C_{1}s^{1-o}\right) \left(S_{1} + C_{1}s^{1-o}\right)^{n-1} \left(S_{1} + C_{1}s^{1-o}\right)^{n+1} \left(S_{1} + C_{1}s^{1-o}\right)^{n-n} \left(S_{1} + C_{1}s^{1-o}\right)^{n-n} \left(S_{1} + C_{1}s^{1-o}\right)^{n+1} \left(S_{1} + C_{1}s^{1-o}\right)^{n+1} \left(S_{1} + C_{1}s^{1-o}\right)^{n+1} \left(S_{1} + C_{1}s^{1-o}\right)^{n+1} \left(S_{1} + C_{1}s^{1-o}\right)^{n-n} \left(S_{1} + C_{1}s^{1-o}\right)^{n-n$$

$$\frac{s}{s^{n} + C_{1}s + C_{2}} = \sum_{m=0}^{\infty} \sum_{n=0}^{m} (-1)^{m} C_{1}^{m-n} C_{2}^{n} \binom{m}{n} N_{0} \qquad x(t) = C_{2} C_{0} \sum_{m=0}^{\infty} \sum_{n=0}^{m} (-1)^{m} C_{1}^{m-n} C_{2}^{n} \binom{m}{n} \frac{(t+1)^{(v-1)m+n(v-1)}}{\Gamma((v-1)m+n+v)} \\ \left(\frac{t}{\Gamma((v-1)m+n+(v-1))}\right) \qquad +(1+C_{1}c_{1}c_{2})\sum_{m=0}^{\infty} \sum_{n=0}^{m} (-1)^{m} C_{1}^{m-n} C_{2}^{n} \binom{m}{n} +(1+C_{1}c_{2})c_{1}^{m-m(v-1)}}{\Gamma((v-1)m+n+v)} \\ +(1+C_{1}c_{2})\sum_{m=0}^{\infty} \sum_{n=0}^{m} (-1)^{m} C_{1}^{m-n} C_{2}^{n} \binom{m}{n} +(1+C_{1}c_{2})c_{1}^{m-m(v-1)}}{\Gamma((v-1)m+n+v)} \\ +(1+C_{1}c_{2})\sum_{m=0}^{\infty} \sum_{n=0}^{m} (-1)^{m} C_{1}^{m-n} C_{2}^{n} \binom{m}{n} +(1+C_{1}c_{2})c_{1}^{m-m(v-1)}}{\Gamma((v-1)m+n+v)} \\ +(1+C_{1}c_{2})c_{1}^{m-n} C_{2}^{n} \binom{m}{n} +(1+C_{1}c_{2})c_{1}^{m-n(v-1)}}{\Gamma((v-1)m+n+v)} \\ +(1+C_{1}c_{2})c_{1}^{m-n(v-1)}c_{0} +(1+C_{1}c_{2})c_{1}^{m-n(v-1)}c_{0} +(1+C_{1}c_{2})c_{1}^{m-n(v-1)}c_{0} +(1+C_{1}c_{2})c_{1}^{m-n(v-1)}}{\Gamma((v-1)m+n+v)} \\ +\frac{(1+C_{1}+C_{2})c_{1}^{m} (1+D_{1}c_{2})c_{1}^{m-n(v-1)}}{(s''+C_{1}s+C_{2})} \\ (18) \qquad N_{0}x(t) = \frac{C_{2}c_{0}}{(1-s)(s''+C_{1}s+C_{2})} \\ +\frac{s(1+C_{1}+C_{2})c_{1}^{m} (1+D_{1}c_{2})c_{0}}{(1-s)(s''+C_{1}s+C_{2})}} \\ +\frac{s(1+C_{1}+C_{2})c_{1}^{m} (1+D_{1}c_{2})c_{0}}{(1-s)(s''+C_{1}s+C_{2})} \\ +\frac{s(1+C_{1}+C_{2})c_{1}^{m} (1+D_{2}c_{1})c_{0}}{(1-s)(s''+C_{1}s+C_{2})}} \\ +\frac{s(1+C_{1}+C_{1}+C_{2})c_{1}^{m} (1+D_{2}c_{1})c_{0}}}{(1-s)(s''+C_{1}s+C_{2})}} \\ +\frac{s(1+C_{1}+C_{1}+C_{2})c_{1}^{m} (1+D_{2}c_{1})c_{0}}}{(1-s)(s''+C_{1}s+C_{2})}} \\ +\frac{s(1+C_{1}+C_{1}+C_{2})c_{1}^{m} (1+D_{2}c_{1})c_{0}}}{(1-s)(s''+C_{1}s+C_{2})}} \\ +\frac{s(1+C_{1}+C_{1}+C_{2}+C_{2})c_{1}^{m} (1+D$$

+
$$(1+C_1)c_0N_0\sum_{m=0}^{\infty}\sum_{n=0}^{m}(-1)^mC_1^{m-n}C_2^n\binom{m}{n}\frac{(t+1)^{\overline{(\nu-1)m+n+(\nu-2)}}}{\Gamma((\nu-1)m+n+(\nu-1))}$$

$$+KN_{0}\sum_{m=0}^{\infty}\sum_{n=0}^{m}(-1)^{m}C_{1}^{m-n}C_{2}^{n}\binom{m}{n}\frac{t^{\overline{(\nu-1)m+n+(\nu-1)}}}{\Gamma((\nu-1)m+n+\nu)}$$

 $C_2(n)\overline{\Gamma((\upsilon-1)m+n+\upsilon)}$ *m*=0 *n*=0 (20)

 $K_1 = c_0 (1 + C_1 + C_2),$ (21)  $K_2 = K + c_0 C_2 = (1 + C_1 + C_2)c_1 + (1 - v + C_2)c_0$  Note that

$$\sum_{m=0}^{\infty} \sum_{n=0}^{m} (-1)^m C_1^{m-n} C_2^n \binom{m}{n} \frac{(t+1)^{\overline{(\nu-1)m+n+(\nu-2)}}}{\Gamma((\nu-1)m+n+(\nu-1))} (22)$$
  
and

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

$$\sum_{m=0}^{\infty} \sum_{n=0}^{m} (-1)^{m} C_{1}^{m-n} C_{2}^{n} \binom{m}{n} \frac{t^{(\nu-1)m+n+(\nu-1)}}{\Gamma((\nu-1)m+n+\nu)}$$
(23)

are two linear independent solutions of (8). We give the details to obtain conditions for absolute convergence in (23) for fixed t.

First note that for each  $t \ge 1$ ,  $\frac{t^{\overline{(\nu-1)m+n+(\nu-1)}}}{\Gamma((\nu-1)m+n+\nu)}$  is an increasing function in n. Now consider the ratio  $\frac{t^{\overline{(\nu-1)m+n+1+(\nu-1)}}}{\Gamma((\nu-1)m+n+1+\nu)} / \frac{t^{\overline{(\nu-1)m+n+(\nu-1)}}}{\Gamma((\nu-1)m+n+\nu)}$ 

Then

$$\frac{\Gamma(t + (\upsilon - 1)m + n + 1 + (\upsilon - 1))}{\Gamma(t)\Gamma((\upsilon - 1)m + n + 1 + \upsilon)}$$

$$\frac{\Gamma(t)\Gamma((\upsilon - 1)m + n + (\upsilon - 1))}{\Gamma(t + (\upsilon - 1)m + n + (\upsilon - 1))}$$

$$= \frac{t + (\upsilon - 1)m + n + (\upsilon - 1)}{(\upsilon - 1)m + n + \upsilon} \ge 1$$
and the inequality is strict if  $t > 1$ .  
Thus, compare (23) to
$$\sum_{m=0}^{\infty} \frac{t^{\overline{(\upsilon m + (\upsilon - 1))}}}{\Gamma(\upsilon m + \upsilon)} \left| \sum_{n=0}^{m} C_{2}^{n} \binom{m}{n} \right|$$

$$= \sum_{m=0}^{\infty} \frac{(t)^{\overline{(\upsilon m + (\upsilon - 1))}}}{\Gamma(\upsilon m + \upsilon)} \left| C_{1} + C_{2} \right|^{m}}$$
and apply the ratio test. Thus, each of (22) and (23)
$$\sum_{n=0}^{\infty} \frac{m}{n} \binom{1}{10}^{n} \binom{m}{n} \binom{m}{n} \frac{1}{\Gamma(m + n + 2)}.$$

(25)

and apply the ratio test. Thus, each of (22) and (23) are absolutely convergent if  $|C_1 + C_2| < 1$ .

#### **Description of known functions:**

We represent this method with an initial value problem for a classical second order finite difference equation. The unique solution of the initial value problem is  $x(t) = 2^t$ , thus we obtain a series representation of  $2^t$  as a linear combination of the forms (22) and (23).

Consider the initial value problem

(24)  $10\nabla^2 x(t) - \nabla x(t) - 2x(t) = 0$ , t = 2, 3, ..., x(0) = 1, x(1) = 2.

The unique solution of (24) is 2<sup>t</sup> and the series given in (25) absolutely convergent for all t = 0, 1, 2, ... Write (25) as  $x(t) = \frac{7}{10}C(t) + \frac{1}{5}D(t)$ .

Where 
$$C(t) = \sum_{m=0}^{\infty} \sum_{n=0}^{m} \left(\frac{1}{5}\right)^{n} \left(\frac{1}{10}\right)^{m-n} {m \choose n} \frac{(t+1)^{\overline{m+n}}}{\Gamma(m+n+1)}$$
  
$$D(t) = \sum_{m=0}^{\infty} \sum_{n=0}^{m} \left(\frac{1}{5}\right)^{n} \left(\frac{1}{10}\right)^{m-n} {m \choose n} \frac{(t)^{\overline{m+n}}}{\Gamma(m+n+2)} \text{ To}$$
prove  $x(t+1) = 2x(t)$ , or

Page: 598

Then, apply (13) with

$$C_1 = \frac{-1}{10}, \qquad C_2 = \frac{-1}{5}, \qquad c_0 = 1, \qquad c_1 = 2,$$
  
 $\upsilon = 2,$ 

 $N_0 x(t) = \frac{(s + (-1/10)s + (-1/5))1}{(1 - s)(s^2 + (-1/10)s + (-1/5))}$ 

 $N_0 x(t) = \frac{s - \frac{1}{10}s - \frac{1}{5}}{(1 - s)\left(s^2 - \frac{1}{10}s - \frac{1}{5}\right)} + \frac{2 - \frac{2}{10} - \frac{2}{5} - 1}{\left(s^2 - \frac{1}{10}s - \frac{1}{5}\right)}$ 

 $+\frac{(1+(-1/10)+(-1/5))2+(1-2)1}{(s^2+(-1/10)s+(-1/5))}$ 

To obtain

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

$$\frac{7}{10}C(t+1) + \frac{1}{5}D(t+1) = 2\left(\frac{7}{10}C(t) + \frac{1}{5}D(t)\right)$$

It is sufficient to show that

$$D(t+1) = C(t) + D(t) \text{ and} 
\frac{7}{10}C(t+1) = \left(\frac{6}{5}C(t) + \frac{1}{5}D(t)\right).$$

 $D(t+1) = \sum_{m=0}^{\infty} \sum_{n=0}^{m} \left(\frac{1}{5}\right)^{n} \left(\frac{1}{10}\right)^{m-n} \binom{m}{n} \frac{(t+1)^{m+n+1}}{\Gamma(m+n+2)}$ 

Now consider D(t+1),

$$\nabla^2 D(t) = \sum_{m=1}^{\infty} \sum_{n=0}^{m} \left(\frac{1}{5}\right)^n \left(\frac{1}{10}\right)^{m-n} \binom{m}{n} \frac{t^{m+n-1}}{\Gamma(m+n)}$$

Thus,

$$\nabla^{2} D(t) = \sum_{m=0}^{\infty} \sum_{n=0}^{m+1} \left(\frac{1}{5}\right)^{n} \left(\frac{1}{10}\right)^{m+1-n} \binom{m+1}{n} \frac{t^{\overline{m+n}}}{\Gamma(m+n+1)}$$
$$= \sum_{m=0}^{\infty} \left(\frac{1}{10} \sum_{n=0}^{m} \left(\frac{1}{5}\right)^{n} \left(\frac{1}{10}\right)^{m-n} \left(\binom{m}{n} + \binom{m}{n-1}\right)$$
$$\frac{t^{\overline{m+n}}}{\Gamma(m+n+1)} + \left(\frac{1}{5}\right)^{m+1} \frac{t^{\overline{2m+1}}}{\Gamma(2m+2)}$$
$$= \sum_{m=0}^{\infty} \frac{1}{10} \sum_{n=0}^{m} \left(\frac{1}{5}\right)^{n} \left(\frac{1}{10}\right)^{m-n} \binom{m}{n} \frac{t^{\overline{m+n}}}{\Gamma(m+n+1)}$$
$$\xrightarrow{\infty} \frac{m+1}{2} \binom{1}{10}^{n} \binom{n}{1} \frac{t^{\overline{m+n}}}{\Gamma(m+n+1)}$$

$$=\sum_{m=0}^{\infty}\sum_{n=0}^{m}\left(\frac{1}{5}\right)^{n}\left(\frac{1}{10}\right)^{m-n}\binom{m}{n}\frac{\Gamma(t+1+m+n+1)}{\Gamma(t+1)\Gamma(m+n+2)} +\sum_{m=0}^{\infty}\sum_{n=0}^{m+1}\left(\frac{1}{5}\right)^{n}\left(\frac{1}{10}\right)^{m-n}\binom{m}{n-1}\frac{t^{m+n}}{\Gamma(m+n+1)} +\sum_{m=0}^{\infty}\sum_{n=0}^{m}\left(\frac{1}{5}\right)^{n}\left(\frac{1}{10}\right)^{m-n}\binom{m}{n-1}\frac{t^{m+n}}{\Gamma(m+n+1)} +\sum_{m=0}^{\infty}\sum_{n=0}^{m}\left(\frac{1}{5}\right)^{m-n}\binom{m}{n-1}\frac{t^{m+n}}{\Gamma(m+n+1)} +\sum_{m=0}^{\infty}\sum_{n=0}^{m}\left(\frac{1}{5}\right)^{n}\left(\frac{1}{10}\right)^{m-n}\binom{m}{n-1}\frac{t^{m+n}}{\Gamma(m+n+1)} +\sum_{m=0}^{\infty}\sum_{n=0}^{m}\left(\frac{1}{5}\right)^{n}\left(\frac{1}{10}\right)^{m-n}\binom{m}{n-1}\frac{t^{m+n}}{\Gamma(m+n+1)} +\sum_{m=0}^{\infty}\sum_{n=0}^{m}\left(\frac{1}{5}\right)^{m-n}\binom{m}{n-1}\frac{t^{m}}{\Gamma(m+n+1)} +\sum_{m=0}^{\infty}\sum_{n=0}^{m}\left(\frac{1}{5}\right)^{m-n}\binom{m}{n-1}\frac{t^{m}}{\Gamma(m+n+1)} +\sum_{m=0}^{m}\sum_{n=0}^{m}\left(\frac{1}{5}\right)^{m-n}\binom{m}{n-1}\frac{t^{m}}{\Gamma(m+n+1)} +\sum_{m=0}^{m}\sum_{n=0}^{m}\left(\frac{1}{5}\right)^{m-n}\binom{m}{n-1}\frac{t^{m}}{\Gamma(m+n+1)} +\sum_{m=0}^{m}\sum_{n=0}^{m}\left(\frac{1}{5}\right)^{m}\frac{t^{m}}{\Gamma(m+n+1)} +\sum_{m=0}^{m}\sum_{n=0}^{m}\sum_{n=0}^{m}\left(\frac{1}{5}\right)^{m}\frac{t^{m}}{\Gamma(m+n+1)} +\sum_{m=0}^{m}\sum_{n=0}^{m}\sum_{n=0}^{m}\sum_{n=0}^{m}\sum_{n=0}^{m}\sum_{n=0}^{m}\sum_{n=0}^{m}\sum_{n=0}^{m}\sum_{n=0}^{m}\sum_{n=0}^{m}\sum_{n=0}^{m}\sum_{n=0}^{m}\sum_{n=0}^{m}\sum_{n=0}^{m}\sum_{n=0}^{m}\sum_{n=0}^{m}\sum_{n=0}^{m}\sum_$$

$$=\sum_{m=0}^{\infty}\sum_{n=0}^{m} \left(\frac{1}{5}\right) \left(\frac{1}{10}\right) \quad \binom{m}{n} (t+m+n+1) = \frac{1}{10} \nabla D(t) + \frac{1}{5} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \left(\frac{1}{5}\right) \left(\frac{1}{10}\right) \quad \binom{n}{\Gamma(m+n+2)} = \frac{\Gamma(t+m+n+1)}{\Gamma(t+1)\Gamma(m+n+2)} = \frac{\Gamma(t+m+n+1)}{\Gamma(t+1)\Gamma(m+1)} = \frac{\Gamma(t+m+n+1)}{\Gamma(t+1)\Gamma(m+1)} = \frac{\Gamma(t+m+1)}{\Gamma(t+1)\Gamma(m+1)} = \frac{\Gamma(t+m+1)}{\Gamma(t+1)} = \frac{\Gamma(t+m+1)}{\Gamma(t+1)} =$$

$$=\sum_{m=0}^{\infty}\sum_{n=0}^{m} \left(\frac{1}{5}\right)^{n} \left(\frac{1}{10}\right)^{m-n} \binom{m}{n} t \frac{\Gamma(t+m+n+1)}{\Gamma(t+1)\Gamma(m+n+2)}$$
A similar calculation shows that  $C(t)$  satisfies  
 $10\nabla^{2}x(t) - \nabla x(t) - 2x(t) = 0, \quad t = 2,3,.$ 
We close by arguing that

$$+\sum_{m=0}^{\infty}\sum_{n=0}^{m}\left(\frac{1}{5}\right)^{n}\left(\frac{1}{10}\right)^{m-n}\binom{m}{n}(m+n+1)$$

$$\Gamma(t+m+n+1)$$
Simplify

$$\frac{\Gamma(t+1)\Gamma(m+n+2)}{D(t+1) = D(t) + C(t)}.$$

We have yet to obtain a direct approach to take C(t+1). We begin by showing directly that D(t) satisfies

$$10\nabla^2 x(t) - \nabla x(t) - 2x(t) = 0, \qquad t = 2, 3,.$$

Apply the power rule and

$$D(t) = \sum_{m=0}^{\infty} \sum_{n=0}^{m} \left(\frac{1}{5}\right)^{n} \left(\frac{1}{10}\right)^{m-n} \binom{m}{n} \frac{t^{\overline{m+n+1}}}{\Gamma(m+n+2)}$$

$$\nabla D(t) = \sum_{m=0}^{\infty} \sum_{n=0}^{m} \left(\frac{1}{5}\right)^n \left(\frac{1}{10}\right)^{m-n} \binom{m}{n} \frac{t^{\overline{m+n}}}{\Gamma(m+n+1)}$$

Simplify  

$$10\nabla^2 C(t+1) - \nabla C(t+1) - 2C(t+1) = 0$$
  
 $10(C(t+1) - 2C(t) + C(t-1))$ 

$$-(C(t+1) - C(t)) - 2C(t+1) = 0$$

To obtain 
$$\frac{7}{10}C(t+1) = \frac{19}{10}C(t) - C(t-1)$$
  
=  $\frac{6}{5}C(t) + \left(\frac{7}{10}C(t) - C(t-1)\right)$ 

Now it is sufficient to show that

$$\left(\frac{7}{10}C(t)-C(t-1)\right)=\frac{1}{5}D(t).$$

Employ 
$$C(t) = D(t+1) - D(t)$$
 and  
 $C(t-1) = D(t) - D(t-1)$  to obtain  
 $\left(\frac{7}{10}C(t) - C(t-1)\right) = \frac{7}{10}(D(t+1))$ 

$$-D(t)) - (D(t) - D(t - 1))$$

$$=\frac{7}{10}(D(t+1)-\frac{17}{10}D(t)+D(t-1))$$

....

• .

e 

$$= \left(\frac{7}{10}(D(t+1) - \frac{19}{10}D(t) + D(t-1))\right) + \frac{2}{10}D(t)$$
$$\left(\frac{7}{10}C(t) - C(t-1)\right) = \frac{1}{5}D(t).$$

#### References

- 1. Agarwal, R.P., Difference Equations and Inequalities, Marcel Dekker, New York, 1992.
- 2. Jagan Mohan Jonnalagadda, Asymptotic Behaviour of Linear Fractional Nabla Difference Equations, Inter. Jour. of Differ. Equ., (2017) 255-265.
- 3. Jagan Mohan, J., Variation of Parameters for Nabla Fractional Difference Equations, Novi. Sad J. Math., (2014) 149-159.
- 4. Jagan Mohan Jonnalagadda., Numerical Solutions of Linear Fractional Nabla Difference Equations, Math. CA, (2016).
- 5. Jagan Mohan, J., Deekshitulu, G.V.S.R., Solutions of Nabla Fractional Difference Equations Using N-Transforms, Commun. Math. Stat. (2014) 1-16. 6. Jagan Mohan Jonnalagadda, Analysis of Nonlinear Fractional Nabla Difference Equations, Inter. Jour. of Analy. and App., (2015) 79-95.

Paul Eloe, Zi Ouyang., Multi-term Linear 7. Fractional Nabla Difference Equations with Constant Coefficients, Inter. Jour. of Differ. Eqn, (2015) 91-106. International

of Trend in Scientific **Research and** Development