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ABSTRACT 
 
The present paper is particularly exhibits about the 
derive results of a third-order singular multipoint 
boundary value problem at resonance using coindence 
degree arguments. 
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INTRODUCTION 

This paper derive the existence for the third
singular multipoint boundary value problem at 
resonance of the form 

𝑢′′′ = 𝑔(𝑡), 𝑢(𝑡), 𝑢′(𝑡), 𝑢′′(𝑡)) +

𝑢′(0) = 0, 𝑢′′(0) = 0, 

𝑢(1) = ሧ 𝑎𝑏  𝑢൫𝜍൯,

ିଷ

,ୀଵ

 

Where 𝑔 ∶ [0,1] × ℝଶ → ℝ is caratheodory’s  function 
(i.e., for each (𝑢, 𝑣) ∈ ℝଶ the function 
measurable on [0,1]; for almost everywhere 
the function 𝑔(𝑡, . , . ) is continuous on 
𝜍 ∈ (0,1), 𝑖, 𝑗 = 1,2, … , 𝑚 − 3,  and 
1,  where 𝑔 and ℎ have singularity at 𝑡=1.

In [1] Gupta et al. studied the above equation when 
and ℎ have no singularity and ⋁ 𝑎

ିଷ
,ୀଵ

obtained existence of a 𝐶ଵ[0,1] solution by utilizing 
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The present paper is particularly exhibits about the 
order singular multipoint 

boundary value problem at resonance using coindence 

e present paper is particularly exhibits 
order singular 

multipoint boundary value problem at resonance 

This paper derive the existence for the third-order 
multipoint boundary value problem at 

) + ℎ(𝑡) 

൫ ൯  

is caratheodory’s  function 
the function 𝑔(. , 𝑢, 𝑣) is 

for almost everywhere 𝑡 ∈ [0,1], 
is continuous on ℝଶ). Let 

and   ⋁ 𝑎𝑏 =ିଷ
,ୀଵ

=1. 

In [1] Gupta et al. studied the above equation when 𝑔 

𝑏 ≠ 1.  They 
solution by utilizing 

Letay-Schauder continuation principle. These results 
correspond to the nonresonance case. The scope of 
this article is therefore to obtained 
when ⋁ 𝑎𝑏 = 1ିଷ

,ୀଵ   (the resonance case) and when 
𝑔 and ℎ have a singularity at 𝑡

Definition 1  

Let 𝑈 and 𝑊 be real Banach spaces. One says that the 
linear operator 𝐿: 𝑑𝑜𝑚 𝐿 ⊂ 𝑈
mapping of index zero if Ker 
finite dimension, where 𝐼𝑚 𝐿 denotes the image of 

Note   

We will require the continuous projections 
𝑄: 𝑊 → 𝑊 such that Im P = Ker L,Ker Q = Im L, 
𝑈 =Ker L ⨁ Ker 𝑃, 𝑊
𝐿|ௗ  ⋂   : dom L ⋂ 
isomorphism. 

Definition 2 

Let 𝐿 be a Fredholm mapping of index zero and 
bounded open subset of U such that         dom 
𝐿⋂Ω ≠ 𝜙. The map M: 𝑈 → 𝑊
on 𝛀ഥ , if the map 𝑄𝑁(Ωഥ) is bounded and 
compact, where one denotes by 
 𝑑𝑜𝑚 𝐿 ⋂ 𝐾𝑒𝑟 𝑃 the generalized inverse of 
addition 𝑀 is 𝐿-completely continuous if it 
on every bounded Ω ⊂ 𝑈. 
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Schauder continuation principle. These results 
correspond to the nonresonance case. The scope of 
this article is therefore to obtained the survive results 

(the resonance case) and when 
𝑡 = 1. 

be real Banach spaces. One says that the 
𝑈 → 𝑊 is a Fredholm 

if Ker 𝐿 and 𝑊/𝐼𝑚 𝐿 are of 
denotes the image of 𝐿. 

We will require the continuous projections 𝑃: 𝑈 → 𝑈, 
such that Im P = Ker L,Ker Q = Im L, 

𝑊 =Im L ⨁ Im Q, 
 ker 𝑃 → Im 𝐿 Iis an 

be a Fredholm mapping of index zero and Ω a 
bounded open subset of U such that         dom 

𝑊 is called   𝑳-compact 
is bounded and 𝑅(𝐼 − 𝑄) is 

compact, where one denotes by 𝑅 ∶  Im 𝐿 →
the generalized inverse of 𝐿. In 

completely continuous if it 𝐿-compact 
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Theorem 1 

Let 𝐿 be a Fredholm operator of index zero and let 𝑁 
be 𝐿-compact on Ωഥ. Assume that the following 
conditions are satisfied : 

(i) 𝐿𝑢 ≠ 𝜅𝑀𝑢 for every (𝑢, 𝜅) ∈
[(𝑑𝑜𝑚 𝐿 ∖ 𝐾𝑒𝑟 𝐿) ∩ 𝜕𝜅] × (0,1). 

(ii) 𝑀𝑢 ∉ 𝐼𝑚 𝐿, for every 𝑢 ∈ 𝐾𝑒𝑟 𝐿 ∩ 𝜕𝜅.  
(iii) deg (𝑄𝑀|  ∩డ , 𝜅 ∩ 𝐾𝑒𝑟 𝐿, 0) ≠ 0, 

with 𝑄: 𝑊 → 𝑊 being a continuous projection such 
that 𝐾𝑒𝑟 𝑄 = 𝐼𝑚 𝐿. then the equation 𝐿𝑢 = 𝑀𝑢 has at 
least one solution in 𝑑𝑜𝑚 𝐿 ∩ Ωഥ. 

Proof : 

We shall make use of the following classical spaces, 
𝐶[0,1], 𝐶ଵ[0,1], 𝐶ଶ[0,1], 𝐿ଵ[0,1], 𝐿ଶ[0,1],   

and 𝐿∞[0,1]. Let 𝐴𝐶[0,1] denote the space of all 
absolute continuous functions on [0,1], 𝐴𝐶ଵ[0,1] =
{𝑢 ∈  𝐶ଶ[0,1] ∶ 𝑢′′(𝑡) ∈  𝐴𝐶[0,1]}, 𝐿

ଵ [0,1] =

൛𝑢: 𝑢|[,ௗ] ∈  𝐿ଵ[0,1]ൟ for every compact interval 
[0, 𝑑] ⊆ [0,1]. 

𝐴𝐶[0,1) = ൛𝑢: 𝑢|[,ௗ] ∈  𝐴𝐶[0,1]ൟ. 

Let U be the Banach space defined by 

 
𝑈 = {𝑢 ∈ 𝐿

ଵ [0,1] ∶ (1 − 𝑡ଶ)𝑢(𝑡) ∈ 𝐿ଵ[0,1]}, 

With the norm  

‖𝑣‖௨ = න (1 − 𝑡ଶ)
ଵ



|𝑣(𝑡)|𝑑𝑡. 

Let 𝑈 be the Banach space 

𝑈 = {𝑢 ∈ 𝐶ଶ[0,1): 𝑢 ∈ 𝐶[0,1], lim௧→ଵష(1 −

𝑡ଶ) 𝑢′′  𝑒𝑥𝑖𝑠𝑡𝑠} ,  

With the norm  

‖𝑢‖௨ = max ቄ ‖𝑢‖∞ , ฮ(1 − 𝑡ଶ)𝑢′′(𝑡)ฮ
∞

ቅ. 

                                                                  (1) 

Where ‖𝑢‖∞ = sup௧∈[,ଵ]|𝑢(𝑡)| . 

We denote the norm in 𝐿ଵ[0,1] by ‖. ‖ଵ. we define the 
linear operator   𝐿: 𝑑𝑜𝑚 𝐿 ⊂ 𝑈 → 𝑊  by 

  𝐿𝑢 = 𝑢′′′(𝑡),                       (2) 

Where  

𝑑𝑜𝑚 𝐿 =  ቐ𝑢 ∈ 𝑈 ∶  𝑢′(0) = 0, 𝑢′′(0) = 0, 𝑢(1)

= ሧ 𝑎𝑏𝑢(𝜍)

ିଷ

,ୀଵ

ൡ 

And 𝑀: 𝑈 → 𝑊 is defined by  

𝐿𝑢 = 𝑔 ቀ𝑡, 𝑢(𝑡), 𝑢′(𝑡), 𝑢′′(𝑡)ቁ + ℎ(𝑡). 

                                                                   (3) 

Then boundary value problem (1) can be written as 

  𝐿𝑢 = 𝑁𝑢. 

Therefore 𝐿 = 𝑁. 

Lemma  

If ⋁ 𝑎𝑏 = 1ିଷ
,ୀଵ  then  

(i) 𝐾𝑒𝑟 𝐿 = {𝑢 ∈ 𝑑𝑜𝑚 𝐿: 𝑢(𝑡) = 𝑐, 𝑐 ∈ ℝ, 𝑡 ∈
[0,1]} ; 

(ii) 𝐼𝑚 𝐿 = ቊ
𝑣 ∈ 𝑧:

⋁ 𝑎𝑏 ∫ ∫ ∫ 𝑣(𝜚)𝑑𝜚𝑑𝑠 = 0
௦



ଵ

ೕ

ଵ



ିଷ
,ୀଵ

ቋ  

(iii) 𝐿: 𝑑𝑜𝑚 𝐿 ⊂ 𝑈 → 𝑊 is a Fredholm operator 
𝑄: 𝑊 → 𝑊 can be defined by  

𝑄𝑣 =
𝑒௧

ℎ
ሧ 𝑎𝑏 න න න 𝑣(𝜚)𝑑𝜚𝑑𝑠

௦



ଵ

ೕ

ଵ



ିଷ

,ୀଵ

,  

                                                                   (4) 

Where  

ℎ = ሧ 𝑎𝑏

ିଷ

,ୀଵ

ൣ𝑒 + 𝜁 + 𝜁 − 𝑒 − 𝑒ೕ − 1൧ 

(iv) The linear operator 𝑅: 𝐼𝑚 𝐿: →

𝑑𝑜𝑚 𝐿 ⋂ 𝐾𝑒𝑟 𝑃 can be defined as 

𝑅 = න න න 𝑣(𝜚)𝑑𝜚          (5)
௦



ଵ

ೕ

ଵ



 

(v) ฮ𝑅𝑣ฮ


≤ ‖𝑣‖ௐ for all 𝑣 ∈ 𝑊. 

Proof : 

(i) It is obvious that 
𝐾𝑒𝑟 𝐿 = {𝑢 ∈ 𝑑𝑜𝑚 𝐿: 𝑢(𝑡) =
                  𝑐, 𝑐 ∈ ℝ}.      
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(ii) We show that  

𝐼𝑚 𝐿 =

ቊ
𝑣 ∈ 𝑊:

⋁ 𝑎𝑏 ∫ ∫ ∫ 𝑣(𝜚)𝑑𝜚𝑑𝑠 = 0
௦



ଵ

ೕ

ଵ



ିଷ
,ୀଵ

ቋ.      (7)  

To do this, we consider the problem 

  𝑤 ′′′(𝑡) = 𝑣(𝑡)                              (8) 

And we show that (5) has a solution 𝑤(𝑡) satisfying  

 𝑤 ′′(0) = 0,  𝑤 ′(0) = 0, 𝑤(𝑡) = ሧ 𝑎𝑏𝑤൫𝜁𝜁൯

ିଷ

,ୀଵ

 

If and only if 

ሧ 𝑎𝑏 න න න 𝑣(𝜚)𝑑𝜚𝑑𝑠 = 0
௦



ଵ

ೕ

ଵ



ିଷ

,ୀଵ

       

                                                                 (9) 

Suppose (3) has a solmution 𝑤(𝑡) satisfying  

 𝑤 ′′(0) = 0,  𝑤 ′(0) = 0, 𝑤(𝑡) = ሧ 𝑎𝑏𝑤൫𝜁𝜁൯

ିଷ

,ୀଵ

 

Then we obtain from (5) that  

     

𝑤(𝑡) = 𝑤(0) + න න න 𝑣(𝜚)𝑑𝜚𝑑𝑠,
௦



ଵ

ೕ

ଵ



 

                                                                (10) 

And applying the boundary conditions we get 

   ሧ 𝑎𝑏 න න න 𝑣(𝜚)𝑑𝜚𝑑𝑠
௦



ଵ

ೕ

ଵ



ିଷ

,ୀଵ

= න න න 𝑣(𝜚)𝑑𝜚𝑑𝑠,
௦



ଵ

ೕ

ଵ



              (11) 

Since ⋁ 𝑎𝑏 = 1ିଷ
,ୀଵ , and using (i) and we get  

ሧ 𝑎𝑏 න න න 𝑣(𝜚)𝑑𝜚𝑑𝑠 = 0
௦



ଵ

ೕ

ଵ



ିଷ

,ୀଵ

 

On the other hand if (6) holds, let 𝑢 ∈ ℝ; then  

𝑤(𝑡) = 𝑤(0) + න න න 𝑣(𝜚)𝑑𝜚𝑑𝑠,
௦



ଵ

ೕ

ଵ



 

Where  𝑣 ∈ 𝑍           

               𝑤 ′′′(𝑡) = 𝑣(𝑡)                       (12) 

(iii) For  𝑣 ∈ 𝑍, we define the projection 𝑄𝑣 as 

      𝑄𝑣 =
𝑒௧

ℎ
ሧ 𝑎𝑏 න න න 𝑣(𝜚)𝑑𝜚𝑑𝑠

௦



ଵ

ೕ

ଵ



ିଷ

,ୀଵ

,

𝑡 ∈ [0,1],                                 (13) 

Where  

ℎ = ሧ 𝑎𝑏

ିଷ

,ୀଵ

ൣ𝑒 + 𝜁 + 𝜁 − 𝑒 − 𝑒ೕ − 1൧ ≠ 0. 

We show that 𝑄: 𝑊 → 𝑊 is well defined and 
bounded. 

|𝑄𝑣(𝑡)| ≤
|𝑒௧|

|ℎ|
ሧ |𝑎|ห𝑏ห

ିଷ

,ୀଵ

න(1 − 𝑠)ଶ

ଵ



|𝑣(𝑠)|𝑑𝑠 

=
1

|ℎ|
ሧ |𝑎|ห𝑏ห

ିଷ

,ୀଵ

‖𝑣‖ௐ|𝑒௧| 

‖𝑄𝑣‖ௐ ≤ න(1 − 𝑡)ଶ

ଵ



|𝑄𝑣(𝑡)|𝑑𝑡 

≤
1

|ℎ|
ሧ |𝑎|ห𝑏ห

ିଷ

,ୀଵ

‖𝑣‖ௐ|𝑒௧| න(1 − 𝑠)ଶ

ଵ



𝑑𝑠 

=
1

|ℎ|
ሧ |𝑎|ห𝑏ห

ିଷ

,ୀଵ

‖𝑣‖ௐ‖𝑒௧‖ௐ . 

In addition it is easily verified that  

     𝑄ଶ𝑣 = 𝑄𝑣, 𝑣 ∈ 𝑊.                             (14) 

We therefore conclude that 𝑄: 𝑊 → 𝑊 is a projection. 
If 𝑣 ∈ 𝐼𝑚 𝐿, then from (6) 𝑄𝑣(𝑡) = 0. Hence 
𝐼𝑚 𝐿 ⊆ 𝐾𝑒𝑟 𝑄. Let 𝑣ଵ = 𝑣 − 𝑄𝑣 ; that is, 𝑣ଵ ∈
𝐾𝑒𝑟 𝑄. Then 
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ሧ 𝑎𝑏 න න න 𝑣ଵ(𝜚)𝑑𝜚𝑑𝑠
௦



ଵ

ೕ

ଵ



ିଷ

,ୀଵ

= ሧ 𝑎𝑏 න න න 𝑣(𝜚)𝑑𝜚𝑑𝑠
௦



ଵ

ೕ

ଵ



ିଷ

,ୀଵ

−
1

ℎ
ሧ න න න 𝑣(𝜚)𝑑𝜚𝑑𝑠

௦



ଵ

ೕ

ଵ



ିଷ

,ୀଵ

 

Here ℎ = 0 we get  

ሧ 𝑎𝑏 න න න 𝑣ଵ(𝜚)𝑑𝜚𝑑𝑠
௦



ଵ

ೕ

ଵ



ିଷ

,ୀଵ

= ሧ 𝑎𝑏 න න න 𝑣(𝜚)𝑑𝜚𝑑𝑠
௦



ଵ

ೕ

ଵ



ିଷ

,ୀଵ

 

Therefore 𝑣ଵ = 𝑣. 

Thus 𝑣ଵ ∈ 𝐼𝑚 𝐿 and therefore 𝐾𝑒𝑟 𝑄 ⊆ 𝐼𝑚 𝐿 and 
hence  

𝑊 = 𝐼𝑚 𝐿 + 𝐼𝑚 𝑄 = 𝐼𝑚 𝐿 + ℝ. 

It follows that since 𝐼𝑚 𝐿 ∩ ℝ = {0}, then 𝑊 =
𝐼𝑚 𝐿 ⨁  𝐼𝑚 𝑄. 

Therefore, 

dim 𝐾𝑒𝑟 𝐿 = dim 𝐼𝑚 𝑄 = dim ℝ = 𝑐𝑜𝑑𝑖𝑚 𝐼𝑚 𝐿 = 1. 

This implies that 𝐿 is Fredholm mapping of index 
zero. 

(iv) We define 𝑃 ∶ 𝑊 → 𝑊 by  
                             
           𝑃𝑢 = 𝑢(0),                 (15) 

And clearly 𝑃 is continuous and linear and 𝑃ଶ𝑢 =
𝑃(𝑃𝑢) = 𝑃𝑢(0) = 𝑢(0) = 𝑃𝑢 and 𝐾𝑒𝑟 𝑃 =
{𝑢 ∈ 𝑈 ∶ 𝑢(0) = 0}. We  now show that the 
generalized inverse 𝐾 = 𝐼𝑚 𝐿 → 𝑑𝑜𝑚 𝐿 ∩ 𝐾𝑒𝑟 𝑃  of 
𝐿 is given by  

𝑅𝑣 = න න න 𝑣(𝜚)𝑑𝜚                   (16)  
௦



ଵ

ೕ

ଵ



 

For 𝑣 ∈ 𝐼𝑚 𝐿 we have 

(𝐿𝑅)𝑣(𝑡) = ൣ൫𝑅𝑣൯(𝑡)൧
′′

= 𝑣(𝑡)      (17)                                   

And for 𝑢 ∈ 𝑑𝑜𝑚 𝐿 ∩ 𝐾𝑒𝑟 𝑃 we know that  

(𝑅 𝐿) 𝑢(𝑡) = න න න 𝑢′′(𝜚)𝑑𝜚𝑑𝑠  
௦



ଵ

ೕ

ଵ



 

                         = න(𝑡 − 𝑠)𝑢′′

௧



𝑑𝑠      (18)       

                                  
                = 𝑢(𝑡) − 𝑢′(0) 𝑡 − 𝑢(0) = 𝑢(𝑡) 

Since 𝑢 ∈ 𝑑𝑜𝑚 𝐿 ∩ 𝐾𝑒𝑟 𝑃, 𝑢(0) = 0, and 𝑃𝑢 = 0. 

This shows that 𝑅 = (𝐿|ௗ ∩ )ିଵ. 

(v) ฮ𝑅𝑣ฮ
∞

≤ max௧∈[,ଵ] ∫ (𝑡 − 𝑠)ଶ|𝑣(𝑠)|𝑑𝑠
௧


 

≤ න(𝑡 − 𝑠)ଶ|𝑣(𝑠)|𝑑𝑠

௧



 

≤ ‖𝑣‖ௐ. 

We conclude that  

ฮ𝑅𝑣ฮ
ௐ

≤ ‖𝑣‖ௐ. 
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