

ISSN No: 2456 - 6470 | www.ijtsrd.com | Volume - 2 | Issue - 3

Singular Third-Order Multipoint Boundary Value Problem at Resonance

G. Pushpalatha

Assistant Professor, Department of Mathematics, Vivekanandha College of Arts and Sciences for Women, Tiruchengode, Namakkal, Tamilnadu, India

S. K. Reka

Research Scholar, Department of Mathematics, Vivekanandha College of Arts and Sciences for Women, Tiruchengode, Namakkal, Tamilnadu, India

ABSTRACT

The present paper is particularly exhibits about the derive results of a third-order singular multipoint boundary value problem at resonance using coindence degree arguments.

Keywords: The present paper is particularly exhibits about the derive results of a third-order singular Definition 1 multipoint boundary value problem at resonance using coindence degree arguments.

INTRODUCTION

This paper derive the existence for the third-order singular multipoint boundary value problem at resonance of the form

$$u''' = g(t), u(t), u'(t), u''(t)) + h(t)$$
$$u'(0) = 0, u''(0) = 0,$$
$$u(1) = \bigvee_{i \ i=1}^{m-3} a_i b_j u(\varsigma_{ij}),$$

Where $g : [0,1] \times \mathbb{R}^2 \to \mathbb{R}$ is caratheodory's function (i.e., for each $(u, v) \in \mathbb{R}^2$ the function g(., u, v) is measurable on [0,1]; for almost everywhere $t \in [0,1]$, the function g(t,...) is continuous on \mathbb{R}^2). Let $\varsigma_{ij} \in (0,1), i, j = 1, 2, ..., m - 3$, and $\bigvee_{i,j=1}^{m-3} a_i b_j =$ 1, where g and h have singularity at t=1.

In [1] Gupta et al. studied the above equation when g and h have no singularity and $\bigvee_{i,i=1}^{m-3} a_i b_i \neq 1$. They obtained existence of a $C^{1}[0,1]$ solution by utilizing Letay-Schauder continuation principle. These results correspond to the nonresonance case. The scope of this article is therefore to obtained the survive results when $\bigvee_{i,i=1}^{m-3} a_i b_i = 1$ (the resonance case) and when g and h have a singularity at t = 1.

Let U and W be real Banach spaces. One says that the linear operator $L: dom L \subset U \rightarrow W$ is a Fredholm mapping of index zero if Ker L and W/Im L are of finite dimension, where Im L denotes the image of L.

Note

We will require the continuous projections $P: U \rightarrow U$, $Q: W \to W$ such that Im P = Ker L, Ker Q = Im L, $U = \text{Ker} \ L \oplus \ \text{Ker} \ P, \ W = \text{Im} \ L \oplus \ \text{Im} \ Q,$ $L|_{dom \ L \ \cap Ker \ P}$: dom $L \ \cap ker \ P \rightarrow Im \ L$ lis an isomorphism.

Definition 2

Let L be a Fredholm mapping of index zero and Ω a bounded open subset of U such that dom $L \cap \Omega \neq \phi$. The map M: $U \rightarrow W$ is called **L-compact** on $\overline{\Omega}$, if the map $QN(\overline{\Omega})$ is bounded and $R_P(I-Q)$ is compact, where one denotes by R_P : Im $L \rightarrow$ $dom \ L \cap Ker \ P$ the generalized inverse of L. In addition *M* is *L*-completely continuous if it *L*-compact on every bounded $\Omega \subset U$.

Theorem 1

Let L be a Fredholm operator of index zero and let N be *L*-compact on $\overline{\Omega}$. Assume that the following conditions are satisfied :

- (i) $Lu \neq \kappa Mu$ for every $(u, \kappa) \in$
- $[(dom L \setminus Ker L) \cap \partial \kappa] \times (0,1).$
- $Mu \notin Im L$, for every $u \in Ker L \cap \partial \kappa$. (ii)
- $\deg \left(QM \right|_{Ker \ L \ \cap \partial \kappa}, \kappa \cap Ker \ L, 0 \right) \neq 0,$ (iii)

with $Q: W \to W$ being a continuous projection such that Ker Q = Im L, then the equation Lu = Mu has at least one solution in dom $L \cap \overline{\Omega}$.

Proof:

We shall make use of the following classical spaces, $C[0,1], C^{1}[0,1], C^{2}[0,1], L^{1}[0,1], L^{2}[0,1],$

and $L^{\infty}[0,1]$. Let AC[0,1] denote the space of all absolute continuous functions on [0,1], $AC^{1}[0,1] =$ $\{u \in C^{2}[0,1] : u''(t) \in AC[0,1]\}, L^{1}_{loc}[0,1] =$ $\{u: u|_{[0,d]} \in L^1[0,1]\}$ for every compact interval $[0, d] \subseteq [0, 1].$

$$AC_{loc}[0,1) = \{u: u|_{[0,d]} \in AC[0,1]\}.$$

Let U be the Ba

$$U = \{ u \in L^1_{loc}[0,1] : (1-t^2)u(t) \in L^1[0,1] \},\$$

With the norm

$$\|v\|_{u} = \int_{0}^{1} (1 - t^{2}) |v(t)| dt$$

Let *U* be the Banach space

$$U = \{ u \in C^{2}[0,1) : u \in C[0,1], \lim_{t \to 1^{-}} (1 + t^{2}) u'' \text{ exists} \},\$$

With the norm

$$\|u\|_{u} = \max \left\{ \|u\|_{\infty}, \|(1-t^{2})u''(t)\|_{\infty} \right\}.$$
(1)

Where $||u||_{\infty} = \sup_{t \in [0,1]} |u(t)|$.

We denote the norm in $L^1[0,1]$ by $\|.\|_1$. we define the linear operator $L: dom L \subset U \to W$ by

$$Lu = u^{'''}(t), \qquad (2)$$

Where

$$dom L = \left\{ u \in U : u'(0) = 0, u''(0) = 0, u(1) \\ = \bigvee_{i,j=1}^{m-3} a_i b_j u(\varsigma) \right\}$$

And $M: U \to W$ is defined by

$$Lu = g(t, u(t), u'(t), u''(t)) + h(t).$$
(3)

Then boundary value problem (1) can be written as

$$Lu = Nu.$$

1 then $a_i b_i =$

 $Ker L = \{u \in dom L: u(t) = c, c \in \mathbb{R}, t \in \mathbb{R}\}$ Internation(i) $[0,1]\};$

$$0,1) = \{u: u|_{[0,d]} \in AC[0,1]\}.$$
(ii) Im $L = \begin{cases} v \in z: \\ \bigvee_{i,j=1}^{m-3} a_i b_j \int_{\zeta_j}^1 \int_0^s v(\varrho) d\varrho ds = 0 \end{cases}$

(iii) L: dom
$$L \subset U \to W$$
 is a Fredholm operator
 $Q: W \to W$ can be defined by

Where

$$=\bigvee_{i,j=1}^{m-s}a_ib_j\left[e+\zeta_i+\zeta_j-e^{\zeta_i}-e^{\zeta_j}-1\right]$$

(iv) The linear operator
$$R_p: Im L: \rightarrow$$

 $dom L \cap Ker P$ can be defined as
 $R_p = \int_{\zeta_i}^1 \int_{\zeta_j}^1 \int_0^s v(\varrho) d\varrho$ (5)
(v) $||R_p v||_U \leq ||v||_W$ for all $v \in W$.

Proof:

(i) It is obvious that

$$Ker L = \{u \in dom L: u(t) = c, c \in \mathbb{R}\}.$$

(4)

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

$$Im L = \begin{cases} v \in W: \\ \bigvee_{i,j=1}^{m-3} a_i b_j \int_{\zeta_i}^1 \int_{\zeta_j}^1 \int_0^s v(\varrho) d\varrho ds = 0 \end{cases}.$$
(7)

To do this, we consider the problem

 $w^{'''}(t) = v(t)$

And we show that (5) has a solution w(t) satisfying

$$w''(0) = 0, w'(0) = 0, w(t) = \bigvee_{i,j=1}^{m-3} a_i b_j w(\zeta_i \zeta_j)$$

(8)

If and only i

m-

if

$$h = \bigvee_{i,j=1} a_i b_j \left[e + \zeta_i + \zeta_j - e^{\zeta_i} - e^{\zeta_j} - 1 \right] \neq 0.$$
We show that $Q: W \to W$ is well defined and bounded.

 $|Qv(t)| \le \frac{|e^{s}|}{|h|} \bigvee_{i=1} |a_i| |b_j| \int (1-s)^2 |v(s)| ds$ Suppose (3) has a solution w(t) satisfying mational Journa

$$w''(0) = 0, w'(0) = 0, w(t) = \bigvee_{i,j=1}^{m-3} a_i b_j w(\zeta_i \zeta_j)$$
 and $\sum_{i,j=1}^{m-3} a_i |b_j| ||v||_w |e^t|$

Then we obtain from (5) that

$$w(t) = w(0) + \int_{\zeta_i}^1 \int_0^1 \int_0^s v(\varrho) d\varrho ds,$$
(10)

And applying the boundary conditions we get

$$\bigvee_{i,j=1}^{m-3} a_i b_j \int_{\zeta_i}^1 \int_{\zeta_j}^1 \int_0^s v(\varrho) d\varrho ds$$
$$= \int_{\zeta_i}^1 \int_{\zeta_j}^1 \int_0^s v(\varrho) d\varrho ds, \qquad (11)$$

Since $\bigvee_{i,j=1}^{m-3} a_i b_j = 1$, and using (i) and we get

$$\bigvee_{i,j=1}^{m-3} a_i b_j \int_{\zeta_i}^1 \int_{\zeta_j}^1 \int_0^s v(\varrho) d\varrho ds = 0$$

On the other hand if (6) holds, let $u_0 \in \mathbb{R}$; then

$$w(t) = w(0) + \int_{\zeta_i}^1 \int_{\zeta_j}^1 \int_0^s v(\varrho) d\varrho ds,$$

Where $v \in Z$

$$w'''(t) = v(t)$$
 (12)

(iii) For
$$v \in Z$$
, we define the projection Qv as

$$Qv = \frac{e^{t}}{h} \bigvee_{i,j=1}^{m-3} a_{i}b_{j} \int_{\zeta_{i}}^{1} \int_{\zeta_{j}}^{1} \int_{0}^{s} v(\varrho)d\varrho ds,$$

$$t \in [0,1], \qquad (13)$$

Where

$$h = \bigvee_{i,j=1}^{m-3} a_i b_j \left[e + \zeta_i + \zeta_j - e^{\zeta_i} - e^{\zeta_j} - 1 \right] \neq 0.$$

d

$$\|Qv\|_{W} \le \int_{0}^{1} (1-t)^{2} |Qv(t)| dt$$

$$\leq \frac{1}{|h|} \bigvee_{i,j=1}^{M-3} |a_i| |b_j| ||v||_W |e^t| \int_0^1 (1-s)^2 ds$$

m-3 $|a_i||b_j|||v||_W||e^t||_W$.

In addition it is easily verified that

$$Q^2 v = Q v, v \in W. \tag{14}$$

We therefore conclude that $Q: W \to W$ is a projection. If $v \in Im L$, then from (6) Qv(t) = 0. Hence Im $L \subseteq Ker Q$. Let $v_1 = v - Qv$; that is, $v_1 \in$ Ker Q. Then

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

$$\begin{split} \bigvee_{i,j=1}^{m-3} a_i b_j \int_{\zeta_i}^1 \int_{\zeta_j}^1 \int_0^s v_1(\varrho) d\varrho ds \\ &= \bigvee_{i,j=1}^{m-3} a_i b_j \int_{\zeta_i}^1 \int_0^1 v(\varrho) d\varrho ds \\ &- \frac{1}{h} \bigvee_{i,j=1}^{m-3} \int_{\zeta_i}^1 \int_{\zeta_j}^1 \int_0^s v(\varrho) d\varrho ds \end{split}$$

Here h = 0 we get

$$\bigvee_{i,j=1}^{m-3} a_i b_j \int_{\zeta_i}^1 \int_{\zeta_j}^1 \int_0^s v_1(\varrho) d\varrho ds$$
$$= \bigvee_{i,j=1}^{m-3} a_i b_j \int_{\zeta_i}^1 \int_0^1 v(\varrho) d\varrho ds$$

Therefore $v_1 = v$.

Thus $v_1 \in Im L$ and therefore $Ker Q \subseteq Im L$ and hence

$$W = Im L + Im Q = Im L + \mathbb{R}$$
. We conclude the

(15)

It follows that since $Im L \cap \mathbb{R} = \{0\}$, then W =and in Scientific $Im L \oplus Im Q$. Research and

Therefore,

dim Ker L = dim
$$Im Q$$
 = dim \mathbb{R} = codim $Im L$ = 1. [1]

This implies that *L* is Fredholm mapping of index zero.

(iv) We define
$$P: W \to W$$
 by

$$Pu = u(0),$$

And clearly *P* is continuous and linear and $P^2u = P(Pu) = Pu(0) = u(0) = Pu$ and $Ker P = \{u \in U : u(0) = 0\}$. We now show that the generalized inverse $K_P = Im L \rightarrow dom L \cap Ker P$ of *L* is given by

$$R_p v = \int_{\zeta_i}^1 \int_{\zeta_j}^1 \int_0^s v(\varrho) d\varrho$$
 (16)

For
$$v \in Im L$$
 we have

$$(LR_P)v(t) = [(R_pv)(t)]'' = v(t)$$
 (17)

And for $u \in dom L \cap Ker P$ we know that

$$(R_{P} L) u(t) = \int_{\zeta_{i}}^{1} \int_{\zeta_{j}}^{1} \int_{0}^{s} u''(\varrho) d\varrho ds$$
$$= \int_{0}^{t} (t-s)u'' ds \quad (18)$$

$$= u(t) - u'(0) t - u(0) = u(t)$$

Since
$$u \in dom \ L \cap Ker \ P, u(0) = 0$$
, and $Pu = 0$.

This shows that
$$R_P = (L|_{dom \ L \cap Ker \ P})^{-1}$$
.

$$||R_p v||_{\infty} \le \max_{t \in [0,1]} \int_0^t (t-s)^2 |v(s)| ds$$

$$\leq \int_{0}^{\infty} (t-s)^2 |v(s)| ds$$

 $\leq \|v\|_{W.}$

$$\left\|R_p v\right\|_W \le \|v\|_W.$$

[1] Gupta C.P, Ntouyas S.K, and Tsamatos P.C, "Solvability of an *m*-point boundary value problem for second order ordinary differential equations," *Journal of Mathematical Analysis and Applications*, vol. 189, no. 2, pp. 575-584, 1995.

[2] Ma R and O'Regan D, "Solvability of singular second order *m*-point boundary value problem," *Journal of Mathematical Analysis and Applications*, vol. 301, no. 1, pp. 124-134, 2005.

[3] Infante G, and Zima M.A, "Positive solutions of multi-point boundary value problems at resonance," *Nonlinear Analysis: Theory, Methods and Applications*, vol. 69, no. 8, pp. 2458-2465, 2008.

[4] Kosmatov N, "A singular non-local problem at resonance," *Journal of Mathematical Analysis and Applications*, vol. 394, no. 1, pp. 425-431, 2012.