

International Journal of Trend in Scientific Research and Development (IJTSRD)

International Open Access Journal

ISSN No: 2456 - 6470 | www.ijtsrd.com | Volume - 2 | Issue – 2

Cleanest, Greenest Solution for Maintaining Indoor Air Quality in Urban Areas: Plants

Sangita Devi Sharma Assistant Professor (Botany), Government College Bori, Durg, Chhattisgarh, India

Pankaj Kumar Jain Assistant Professor (Botany), Kalyan P.G. College Bhilai Nagar, Durg, Chhattisgarh, India

ni h

Vaidehi Sharma

Assistant Professor (Geography), Government College Bori, Durg, Chhattisgarh, India

ABSTRACT

In urban area people spend more than 90 percent of their time in indoors environment. All of these are made worse in small or poorly-ventilated spaces (like maybe your apartment with that window that you accidentally painted shut last year). Researchers find that indoor air can emit contaminants like formaldehyde, xylene, benzene; ozone etc. as outdoor air contaminants like car exhaust finds its way into buildings. These cause serious health problem to mankind. NASA scientists have been research to overcome these problem and they find that cheapest, greenest solution for cleaning of contaminated indoor air in urban environment is plants. A beautiful potted plant is much more attractive and discrete than our л , average air filter. They enhance the look and feel of

Symptoms of Sick Building syndrome

our home or office. This study has been focus on indoor plants and their air cleaning abilities.

Keywords: Indoor air, Contaminants, Cheapest and Greenest solution, Plants

Introduction:

In urban areas indoor air pollutants have been ranked among the top five environmental risks to public health. In these areas stagnant indoor environments and lacking decent ventilation can cause "sick building syndrome".

NASA astronauts experience sick building syndrome all the time in their sealed space stations. Sick building syndrome occurs when people who work or live inside a building experience symptoms such as: *Headaches *Nausea *Irritation in the eyes, throat or nose *coughing *Dry and itchy skin *Inability to focus *Allergies These symptoms usually go away when we leave the building for a certain amount of time. While the cause is unknown, sick building syndrome is known to reduce productivity.

These conditions allow pollutants to build up and stick around in greater amounts than we humans should be breathing in.

Major indoor pollutants present in our home

- **a. Benzene** Can be found in Glues, paints, furniture wax and detergents.
- **b.** Formaldehyde Is in emissions, disinfectants and fixatives, or preservatives in consumer products.
- **c.** Trichloroethylene In homes undergoing renovation.
- **d.** Xylene and Toluene In a variety of household sprays and consumer products
- e. Ammonia Aerosols and sprays used in the home.

Living and working in places with these air contaminants can cause headaches, dizziness, nausea, and eye, ear, and nose irritation (Table I and II).

Plants as air purifier: The NASA Clean Air Study (Annexure- I) was led by the National Aeronautics and Space Administration (NASA) in association with the Associated Landscape Contractors of America (ALCA). Its results suggest that certain common indoor plants may provide a natural way of removing toxic agents such as benzene, formaldehyde and trichloroethylene from the air, helping neutralize the effects of sick building syndrome (Table1and 2). NASA researchers suggest efficient air cleaning is accomplished with at least one plant per 100 square feet of home or office space. Other more recent research (Höppe and Martinac. 1998) has shown that micro-organisms in the potting mix (soil) of a potted plant remove benzene from the air, and that some plant species also contribute to removing benzene (Table-I and II). Science Daily. February 20, 2009. Quote: "...Complete plants removed approximately 80% of the formaldehyde within 4 hours. Control chambers pumped with the same amount of formaldehyde, but not containing any plant parts, decreased by 7.3% during the day and 6.9% overnight within 5 hours (Kim et al. 2008). Although house plants may be intimidating to those with a "black thumb" or fear of commitment, it turns out that many plants are easy to care for—so easy".

List of Some important indoor air purifier plants:

The first list of air-filtering plants was compiled by NASA as part of a clean air study published in 1989, (Wolverton, 1984, 1989 and 1994) which researched ways to clean air V in space stations. As well as absorbing carbon dioxide and releasing oxygen, as all plants do, these plants also eliminate significant of benzene, amounts formaldehyde and trichloroethylene (Table III). The second and third lists are from Wolverton and Wolverton (1993) and Wood, et al. (2004) and focus on removal of specific chemicals. There are many more plants that can make home look and beautiful, fresh and healthy by providing natural air filters and increasing the oxygen levels.

Tip recommended by NASA: You have between 15 and 18 plants in your home to purify the air you breathe

SOME COMMON AND EASILY AVAILABLE INDOOR PLANTS

. .

Epipremnum aureum (Devil's Ivy)

Chrysanthemum morifolium (Florist's Chrysanthemum)

Spathiphyllum (Peace Lily)

Dracaena reflexa Sansevieria trifasciata Gerbera jamesonii Chlorophytum comosum (Red-Edged Dracaena) (Snake Plant) (Barberton Daisy) (Spider Plant)

(Most efficient air freshner according to NASA)

Process of cleaning indoor air by plant:

By adding a potted plants to a room has been shown to reduce the amount of air particulates. When plants take in carbon dioxide which is then processed into oxygen through photosynthesis. At the same time it also absorbs some of the particulates from the indoor air. Microorganisms associated with the plants are also responsible for much of the cleaning effect. Root-associated microbes convert toxins in the air into nutrients the plants eat and thrive on.

Figure: Replace air freshener spray with a jasmine plant for healthy breathing air.

Journal

Indoor Plant vs. Other Types of Air Cleaners

a. Plant vs. HEPA Filter

- 1. Electronic Precipitator efficiency decreases as the collecting plates become loaded with particles or as airflow velocity decreases or becomes less uniform while plants maintains a constant rate of air cleaning indefinitely because it is "self-cleaning". The effectiveness increases over time as the microbes adapt to their environment.
- 2. Electronic Precipitators need to have their collector plates cleaned regularly exposing the user to a significant amount of toxic build-up. Maintenance of the Plant will not expose the user to concentrated toxin cleaning.
- 3. Plant is more naturally attractive than any Electronic Precipitator filter unit.
- 4. Plant will remove Volatile Organic Compounds (VOCs), some of the most dangerous pollutants, whereas HEPA filter (alone) won't.
- 5. Plant adapts to VOCs and other pollutants over time becoming more effective at eliminating them while HEPA filters slowly lose their effectiveness until renewed by replacing the filters.
- 6. HEPA usually requires annual replacement of filters, which can cost as much as the filter unit itself, while the indoor plant requires only water, occasional plant food and no filter to replace, ever. Filters contribute to the solid waste stream and expose the user to a substantial concentration of toxins during the replacement process.
- 7. Indoor plant is more naturally attractive than any HEPA filter unit.

b. Indoor Plant vs. Electronic Precipitator

1. Electronic Precipitator efficiency decreases as the collecting plates become loaded with particles or as airflow velocity decreases or becomes less uniform. Plant Air Purifier® maintains a constant rate of air cleaning indefinitely because it is "self- cleaning". The effectiveness increases over time as the microbes adapt to their environment.

Electronic Precipitators need to have their collector plates cleaned regularly exposing the user to a significant amount of toxic build-up. Maintenance of the indoor plant will not expose the user to concentrated toxin cleaning.

Indoor plant is more naturally attractive than any Electronic Precipitator filter unit.

c. Indoor Plant vs. Ion Generator/ Ozone Generator

1. Ion/ ozone Generator units emit some ozone which is an irritant gas that reacts with lung tissue and can cause various respiratory irritations, and tends to soil interior surfaces with pollutant particles that are difficult to remove while indoor plant is more naturally attractive than any Ion Generator unit and it gives off only clean air.

The Plant Air Purifier's hydro culture system: Mold, fungus, insects, etc., that can be a problem by infesting the soil of potted plants are less of a concern when growing plants in hydro- culture. When watering plants in hydro- culture, the surface pebbles dry quickly and so do not support the growth of molds and fungus. So the present study deals the listing of virtually-indestructible plants. The Plant Air Purifier's hydro culture system is dozens of times more effective than a single house plant grown in soil. The Plant Air Purifier has been found to remove formaldehyde, benzene, and other volatile organic compounds as well as dust, allergens, and pet dander. It is the cleanest greenest solution for pure, cleaner air. For these purpose NASA calls it "nature's life support system."

Beyond air quality, plants just make people feel better. For example, hospital patients with plants in their rooms were more positive and had lower blood pressure and stress levels. Similarly, indoor plants may make people smarter by allowing them to stay alert and reducing mental fatigue.

Conclusion:

Urban peoples spend about 90% of their time indoors (at home, school or office) (Cavallo, 1997; US EPA 2000; Environment Australia (EA) 2003) where air pollution is typically even higher than outdoors (Brown 1997and EA 2003). Overall study shows that the houseplants can absorb harmful toxins from the air, especially in enclosed apartments with no or little ventilation. This study has been the basis for indoor plants and their air cleaning abilities. While they have less horse power than air purifiers, they're more natural, cost effective, and therapeutic. In the presence of plants, CO₂ levels were reduced by about 10% in offices in the air-conditioned building, and by about 25% in the naturally ventilated building and the CO concentrations were greatly reduced with plant presence, with or without air-conditioning, down to 10. Pottorff, L. Plants "Clean" Air Inside Our Homes. about 8-14% of those in unplanted offices (Tarran et al. 2007).

The indoor plant has several advantages

- increase mood and productivity a.
- enhance concentration and memory b.
- reduce stress and fatigue c.
- Root-associated microbes convert toxins in the d. air into nutrients the plants eat and thrive on.
- The beautiful potted indoor plant enhances the e. look and feel of our home or office. Hydroculture, do not support the growth of molds and fungus. So the present study deals the listing of virtually-indestructible plants. While plants have less horse power than air purifiers, they're more natural, cost effective, and therapeutic.

References:

- 1. Aust. Safety & Compensation Council (ASCC) (2006) "Adopted National Exposure Standards for Atmospheric Contaminants in the Occupational Environment".NOHSC: 1033-1995.
- 2. Brown, S. K, 1997 "Volatile organic compounds in indoor air: sources and control", Chemistry in Australia, Vol. 64 (Jan/Feb), 10-13.
- Burchett M. D. 2005. "Improving Indoor 3. Environmental Quality Through the Use of Indoor

Potted Plants", Final Report to Horticulture Australia Ltd, Sydney.

- 4. Cavallo D. 1997. "Exposure to air pollution in home of subjects living in Milan", Proceedings of Healthy Buildings/IAQ '97, Vol. 3, 141-145.
- 5. Environment Australia (EA), 2003. "BTEX Personal Exposure Monitoring in Four Australian Cities", Technical Paper No. 6: EA, 2003. Canberra, ACT, Australia.
- 6. Höppe P. and Martinac I. 1998. "Indoor climate and air quality", International Journal of Biometeorology, Vol. 42, 1-7.
- 7. King G. M. 2007. "Microbial carbon monoxide consumption in salt marsh sediments", FEMS Microbiology Ecology, Vol. 59 (1), 2-9.
- Orwell R. L. 2004. "Removal of benzene by the 8. plant/ substrate microcosm indoor and implications for air quality", Water, Air, and Soil Pollution, Vol. 157, 193-207.
- 9. Orwell R. L. 2006. "The potted-plant microcosm substantially reduces indoor air VOC pollution: II. Laboratory study", Water, Air, and Soil Pollution, Vol. 177, 59-80.
- Colorado State University & Denver County rend in S Extension Master Gardener. 2010.
 - 11. Seppänen, O., Fisk, W. J. and Lei, Q. H. 2006. "Ventilation and performance in office work", Indoor Air, Vol. 16, 28-36.
- Develop Indoor Air, vol. 10, 20-30. 12. Tarran J. Torpy, F. and Burchett, M. 2007. Use of living pot-plants to cleanse indoor air - research review. Proceedings of Sixth International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings - Sustainable Built Environment, Volume III, 249-256.
 - 13. US EPA, 2000. "Healthy buildings, healthy people: a vision for the 21st century", Office of Air and Radiation.
 - 14. Wolverton, B. C.1984. Foliage plants for removing indoor air pollutants from energyefficient homes. Economic Botany 38(2), 224-28.
 - 15. Wolverton, B. C.1989. A study of interior landscape plants for indoor air pollution abatement: report.NASA. an interim September, 1989.
 - 16. Wolverton, B. C. (1996) How to Grow Fresh Air. New York: Penguin Books.
 - 17. Wolverton, B. C. and J. D. Wolverton. (1993). Plants and soil microorganisms: removal of formaldehyde, xylene, and ammonia from indoor environment. Journal of the the

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

Mississippi Academy of Sciences 38(2), 11-15.

- Wood R. A. 2002.) "Potted-plant/growth media interactions and capacities for removal of volatiles from indoor air", Journal of Horticultural Science and Biotechnology, Vol. 77 (1), 120-129.
- Wood, R.; Tarran, J.; Torpy, F.; Burchett, M. (2004). Removal of Benzene by the indoor plant/Substrate microcosm and implications for air quality. Water, Air, & Soil Pollution. 157 (1-4): 193-207.
- 20. Wood R. A. 2006. "The potted-plant microcosm

substantially reduces indoor air VOC pollution: I. Office field-study", Water, Air, and Soil Pollution, Vol. 175, 163-180

- 21. Kim, J. K., et al. 2008. Efficiency of volatile formaldehyde removal by indoor plants: contribution of aerial plant parts versus the root zone. *Horticultural Science* 133: 479- 627.
- 22. Wolverton; WL Douglas; K Bounds 1989. A study of interior landscape plants for indoor air pollution abatement (Report). NASA. NASA-TM 108061.

Table I: Common Indoor Air Pollutants: Sources and Health Impacts

POLLUTANTS FROM NATUR	AL SOURCES			
Pollutant	Major Sources in the Home	Possible Health Impacts		
Radon – Colourless, tasteless, and odourless gas that comes from the radioactive decay of uranium or radium.	*Earth and rock under buildings *Some earth-derived building *Groundwater; well-water from private supplies	*No immediate symptoms. *Lung cancer- Causes estimated 20,000 lung-cancer deaths yearly. Smokers are at higher risk of developing radon induced lung cancer.		
Biological Contaminants – Molds, mildews and fungi, bacteria, viruses, dust, mites	*House dust *Infected humans or animals *Bedding *Poorly maintained humidifiers, dehumidifiers & air conditioners *Wet or moist surfaces *Carpets and home furnishings	*Allergies and asthma *Headaches *Eye, nose and throat irritation *Colds, flu, and pneumonia		

Table II: Common Indoor Air Pollutants: Sources and Health Impacts

Pollutants from Man-Made Sources

Pollutant	Major Sources in the Home	Possible Health Impacts
Asbestos – A natural mineral fibre used in various building materials. All homes more than about 20 years old are likely to have some asbestos.	*Damaged or deteriorating ceiling, wall, and pipe insulation. *Vinyl-asbestos floor material *Fireproof gaskets in heat shields, wood stoves, and furnaces *Acoustical materials *Thermal insulation *Exterior siding	especially among smokers.600 to 1,000 U.S. deaths yearly are asbestos- related mostly from workplace exposure
Volatile Organic Chemicals (VOCs) – Airborne chemicals contained in many household	*Aerosol sprays, hair sprays, perfumes, solvents, glues, cleaning agents, fabric softeners, pesticides,	

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

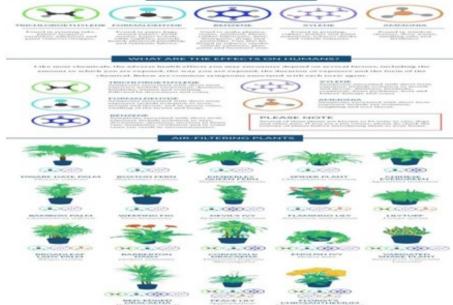
products	paints, moth repellents,	*Confusion
•	deodorizers, and other household	* Damage to liver, kidneys, and
	products	brain
	*Dry-cleaned clothing	*Various types of cancer
	*Moth balls	
	*Tobacco smoke	
Formaldehyde – Pungent gas	*Pressed wood products(plywood,	*Allergic reactions
released into air	panelling, particle board)	*Eye, nose and throat irritation
	*Urea-formaldehyde foam wall	*Headaches
	insulation	*Nausea, dizziness, coughing
	*Carpets, draperies, furniture	*Cancer a possibility # *Sensitivity varies widely
	fabrics	Sensitivity varies widery
	*Paper products, glues, adhesives	
	*Some personal care products	
	*Tobacco smoke	
Lead – Natural element once used	*Household dust from lead paint	*Damage to brain, kidneys, and
as a component in gasoline, house	*Lead-based paint	nervous system
paint, solder and water pipes.	*Water from lead or lead- soldered	0
H.	pipes or brass fixtures *Soil near	problems *Slowed growth
Boo	highways/ lead	*Anaemia
	industries	*Hearing loss
	*Hobbies such as working with	*Large doses can be fatal
	stained glass and target shooting	
23.	Lead-glazed ceramic ware	
	*Some folk medicines	
Carbon monoxide – An	*Appliances or heaters that burn	02
odourless, colourless gas	natural gas, oil, wood, propane or	2 8 De
	kerosene.	00
	*A major component of car exhaust	S A

(Source indoor Air Quality and Your Home. New York State Energy Research and Development Authority, Albany, NY. And Home Indoor Air Quality Assessment. Michael P. Vogel, Ed.D. Extension Housing Specialist, Montana State University Extension Service. And Quick IAQ Facts for the Community Educator. Joseph T. Ponessa, Ph.D., Associate Professor/Housing & Energy Specialist, Rutgers Cooperative Extension Service, New Jersey)

Table III: Indoor Plants and their pollutants removal characteristic
--

Name of plants	Benzene	Formal dehyde	Trichloroethyle ne	Xylene and Toluene	Ammonia	Toxic to dog or cat
Aloe vera	Yes	Yes	Yes	No	No	Toxic
Areca Palm (Dypsis lutescens)	No	Yes	No	Yes	No	Non Toxic
Bamboo Palm (<i>Chamaedorea</i> <i>seifrizii</i>)	Yes	Yes	Yes	Yes	No	Non Toxic
Banana (Musa oriana)	No	Yes	No	No	No	Non Toxic
Barberton Daisy (Gerbera jamesonii)	Yes	Yes	Yes	No	No	Non Toxic

(a) IJTSRD | Available Online (a) www.ijtsrd.com | Volume – 2 | Issue – 2 | Jan-Feb 2018


Boston Fern (<i>Nephrolepis</i> <i>exaltata</i> 'Bostoniensis')	No	Yes	No	Yes	No	Non Toxic
Chinese evergreen (Aglaonema modestum)	Yes	Yes	No	No	No	Toxic
Carnstalk Deracaena (<i>Dracaena</i> <i>fragrans</i> ' Massangeana')	Yes	Yes	No	No	No	Toxic
Dendrobion orchids Dendrobium spp.	No	No	No	Yes	No	Non Toxic
Variegated snake plant mother-in- law's tongue (Sansevieria trifasciata 'Laurentii')	Yes	Yes	Scivesti	Yes	No	Toxic
Heartleaf philodendron(<i>Philo</i> <i>de ndron</i> <i>cordatum</i>)	No	Yes	JTSRD	No C	No	Toxic
Selloum philodendron (Philodendron bipinnatifidum)	No	of Tre Yes	end in Scie No esearch ar	ntific No	No	Toxic
Elephant ear philodendron (Philodendron domesticum)	No	Yes	evelopme Nº N: 2456-647	No	No	Toxic
Janet craig (Dracaena deremensis "Janet Craig")	Yes	Yes	Yes	113 No	Toxic	Toxic
Red edged dracaena (Dracaena marginata)	Yes	Yes	Yes	Yes	No	Toxic
Weeping fig (Ficus benjamina)	No	Yes	No	Yes	No	Toxic
Rubber plant (<i>Ficus elastica</i>)	No	Yes	No	No	No	Toxic
Domb canes (<i>Dieffenbachia</i> spp.)	No	No	No	Yes	No	Toxic
King of hearts (Homalomena wallisii)	No	No	No	Yes	No	Toxic

International Journal of Trend in Scientific Research and Develo	opment (IJTSRD) ISSN: 2456-6470
--	---------------------------------

Moth Orchid (<i>Phalaenopsis</i> spp.)	No	No	No	Yes	No	Non-toxic
Dwarf date palm (Phoenix roebelenii)	No	Yes	No	Yes	No	Non-toxic
Kimbertlay queen fern (Nephrolepis obliterata)	No	Yes	No	Yes	No	Non-toxic
English ivy (<i>Hedera helix</i>)	Yes	Yes	Yes	Yes	No	Toxic
Spider Plant (Chlorophytum comosum)	No	Yes	No	Yes	No	Non-toxic
Devil's ivy Pothos plant (<i>Epipremnum aureum</i>)	Yes	Yes	No	Yes	No	Toxic
Peace Lily (Spathiphyllum' Mauna Loa')	Yes	Yes	Yes	Yes	Yes	Toxic
Flamingo Lily (Anthurium andraeanum)	No	Yes	No	Yes	Yes	Toxic
Florists Chrysanthemum (Chrysanthemum morifolium)	Yes	Yes	JTSeRD	Yes	Yes	Toxic
Warneckei (Dracaena deremensis "Warnecke")	Yes	Yes	lational Jo	Urna No	No	Toxic

b) as a former or secondaries to the setting of the construction of the constructio

lovethegard

m.com