Home > Engineering > Electronics & Communication Engineering > Volume-3 > Issue-5 > Software Implementation of Iris Recognition System using MATLAB

Software Implementation of Iris Recognition System using MATLAB

Call for Papers

Volume-5 | International Conference on Advances in Engineering, Science and Technology – 2021

Last date : 27-May-2021

Best International Journal
Open Access | Peer Reviewed | Best International Journal | Indexing & IF | 24*7 Support | Dedicated Qualified Team | Rapid Publication Process | International Editor, Reviewer Board | Attractive User Interface with Easy Navigation

Journal Type : Open Access

Processing Charges : 700/- INR Only OR 25 USD (for foreign users)

First Update : Within 7 Days after submittion

Submit Paper Online

For Author

Research Area



Software Implementation of Iris Recognition System using MATLAB


Mo Mo Myint Wai | Nyan Phyo Aung | Lwin Lwin Htay



Mo Mo Myint Wai | Nyan Phyo Aung | Lwin Lwin Htay "Software Implementation of Iris Recognition System using MATLAB" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-3 | Issue-5, August 2019, pp.290-295, URL: https://www.ijtsrd.com/papers/ijtsrd25258.pdf

The software implementation of iris recognition system introduces in this paper. This system intends to apply for high security required areas. The demand on security is increasing greatly in these years and biometric recognition gradually becomes a hot field of research. Iris recognition is a branch of biometric recognition method. In thesis, Iris recognition system consists of localization of the iris region and generation of data set of iris images followed by iris pattern recognition. In thesis, a fast algorithm is proposed for the localization of the inner and outer boundaries of the iris region. Located iris is extracted from an eye image, and, after normalization and enhancement, it is represented by a data set. Using this data set a Neural Network (NN) is used for the classification of iris patterns. The adaptive learning strategy is applied for training of the NN. The implementation of the system is developed with MATLAB. The results of simulations illustrate the effectiveness of the neural system in personal identification. Finally, the accuracy of iris recognition system is tested and evaluated with different iris images.

Iris, Biometric, Neural Network, MATLAB


IJTSRD25258
Volume-3 | Issue-5, August 2019
290-295
IJTSRD | www.ijtsrd.com | E-ISSN 2456-6470
Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

International Journal of Trend in Scientific Research and Development - IJTSRD having online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International Journal which provides rapid publication of your research articles and aims to promote the theory and practice along with knowledge sharing between researchers, developers, engineers, students, and practitioners working in and around the world in many areas like Sciences, Technology, Innovation, Engineering, Agriculture, Management and many more and it is recommended by all Universities, review articles and short communications in all subjects. IJTSRD running an International Journal who are proving quality publication of peer reviewed and refereed international journals from diverse fields that emphasizes new research, development and their applications. IJTSRD provides an online access to exchange your research work, technical notes & surveying results among professionals throughout the world in e-journals. IJTSRD is a fastest growing and dynamic professional organization. The aim of this organization is to provide access not only to world class research resources, but through its professionals aim to bring in a significant transformation in the real of open access journals and online publishing.

Thomson Reuters
Google Scholer
Academia.edu

ResearchBib
Scribd.com
archive

PdfSR
issuu
Slideshare

WorldJournalAlerts
Twitter
Linkedin