Home > Engineering > Electronics & Communication Engineering > Volume-3 > Issue-2 > Performance Analysis of CIR and Path Loss Propagation Models in the Downlink of 3G Systems

Performance Analysis of CIR and Path Loss Propagation Models in the Downlink of 3G Systems

Call for Papers

Volume-8 | Advancing Multidisciplinary Research and Analysis - Exploring Innovations

Last date : 28-Mar-2024

Best International Journal
Open Access | Peer Reviewed | Best International Journal | Indexing & IF | 24*7 Support | Dedicated Qualified Team | Rapid Publication Process | International Editor, Reviewer Board | Attractive User Interface with Easy Navigation

Journal Type : Open Access

First Update : Within 7 Days after submittion

Submit Paper Online

For Author

Research Area


Performance Analysis of CIR and Path Loss Propagation Models in the Downlink of 3G Systems


Mohamed Bechir DADI

https://doi.org/10.31142/ijtsrd21497



Mohamed Bechir DADI "Performance Analysis of CIR and Path Loss Propagation Models in the Downlink of 3G Systems" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-3 | Issue-2, February 2019, pp.872-877, URL: https://www.ijtsrd.com/papers/ijtsrd21497.pdf

This paper analyses the Carrier to Interference Ratio (CIR) and path Loss (PL) variation in downlink 3G FDD-UMTS mobile system. The evaluation was taken in urban, suburban and rural environments. Also, frequency band of 2110 Hz is used in this work. The received CIR analysis is based on comparative study of seven Path Loss propagation models: COST- 231 Hata, COST-231 WIM (Walfisch-Ikegami Model), SUI (Stanford University Interim), FSM (Free Space Model), PSM (Standard propagation model), Ecricsson and ECC33 (Electronic Communication Committee). Simulation results show that SUI and SPM models showed the lowest Path Loss for all environments. Also, we can show that received CIR is affected not only by the geometry of the UMTS base station location but also by the number of users presented in each cell.

Carrier to Interference Ratio; Path Loss; Propagation models; signal distance; UMTS


IJTSRD21497
Volume-3 | Issue-2, February 2019
872-877
IJTSRD | www.ijtsrd.com | E-ISSN 2456-6470
Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

International Journal of Trend in Scientific Research and Development - IJTSRD having online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International Journal which provides rapid publication of your research articles and aims to promote the theory and practice along with knowledge sharing between researchers, developers, engineers, students, and practitioners working in and around the world in many areas like Sciences, Technology, Innovation, Engineering, Agriculture, Management and many more and it is recommended by all Universities, review articles and short communications in all subjects. IJTSRD running an International Journal who are proving quality publication of peer reviewed and refereed international journals from diverse fields that emphasizes new research, development and their applications. IJTSRD provides an online access to exchange your research work, technical notes & surveying results among professionals throughout the world in e-journals. IJTSRD is a fastest growing and dynamic professional organization. The aim of this organization is to provide access not only to world class research resources, but through its professionals aim to bring in a significant transformation in the real of open access journals and online publishing.

Thomson Reuters
Google Scholer
Academia.edu

ResearchBib
Scribd.com
archive

PdfSR
issuu
Slideshare

WorldJournalAlerts
Twitter
Linkedin