Home > Engineering > Electrical Engineering > Volume-3 > Issue-2 > Modelling and Operation of HVDC Based Power Transmission System

Modelling and Operation of HVDC Based Power Transmission System

Call for Papers

Volume-8 | Advancing Multidisciplinary Research and Analysis - Exploring Innovations

Last date : 28-Mar-2024

Best International Journal
Open Access | Peer Reviewed | Best International Journal | Indexing & IF | 24*7 Support | Dedicated Qualified Team | Rapid Publication Process | International Editor, Reviewer Board | Attractive User Interface with Easy Navigation

Journal Type : Open Access

First Update : Within 7 Days after submittion

Submit Paper Online

For Author

Research Area


Modelling and Operation of HVDC Based Power Transmission System


Mohd Liaqat

https://doi.org/10.31142/ijtsrd20319



Mohd Liaqat "Modelling and Operation of HVDC Based Power Transmission System" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-3 | Issue-2, February 2019, pp.172-179, URL: https://www.ijtsrd.com/papers/ijtsrd20319.pdf

Submodule overcurrent caused by DC pole-to-pole fault in modular multilevel converter HVDC (MMC-HVDC) system is one of the important research objects about its electrical characteristics. In this paper, the fault mechanism before and after the converter blocked was analyzed respectively and the circuit model for the analysis of submodule overcurrent was explored. The analytic equation for overcurrent calculation was deduced and a detailed analysis was also performed. The changes of submodule overcurrent stress with different circuit parameters were obtained and the key issues were also summed up. The results indicate that the submodule overcurrent is the AC system three-phase short-circuit current superposed the discharging current before the converter blocked, and the submodule overcurrent is the AC system three-phase short-circuit current superposed the valve reactor freewheeling current after the converter blocked. From the computation and simulation results, it is concluded that the analytical method is feasible and its calculation results are comparatively precise.

HVDC circuit breakers (CBs), HVDC interrupters, HVDC transmission, HVDC converters, power transmission, switchgear


IJTSRD20319
Volume-3 | Issue-2, February 2019
172-179
IJTSRD | www.ijtsrd.com | E-ISSN 2456-6470
Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

International Journal of Trend in Scientific Research and Development - IJTSRD having online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International Journal which provides rapid publication of your research articles and aims to promote the theory and practice along with knowledge sharing between researchers, developers, engineers, students, and practitioners working in and around the world in many areas like Sciences, Technology, Innovation, Engineering, Agriculture, Management and many more and it is recommended by all Universities, review articles and short communications in all subjects. IJTSRD running an International Journal who are proving quality publication of peer reviewed and refereed international journals from diverse fields that emphasizes new research, development and their applications. IJTSRD provides an online access to exchange your research work, technical notes & surveying results among professionals throughout the world in e-journals. IJTSRD is a fastest growing and dynamic professional organization. The aim of this organization is to provide access not only to world class research resources, but through its professionals aim to bring in a significant transformation in the real of open access journals and online publishing.

Thomson Reuters
Google Scholer
Academia.edu

ResearchBib
Scribd.com
archive

PdfSR
issuu
Slideshare

WorldJournalAlerts
Twitter
Linkedin