Home > Computer Science > Data Miining > Volume-3 > Issue-5 > Prognosis of Cardiac Disease using Data Mining Techniques: A Comprehensive Survey

Prognosis of Cardiac Disease using Data Mining Techniques: A Comprehensive Survey

Call for Papers

Volume-4 | Issue-2

Last date : 25-Feb-2020

Best International Journal
Open Access | Peer Reviewed | Best International Journal | Indexing & IF | 24*7 Support | Dedicated Qualified Team | Rapid Publication Process | International Editor, Reviewer Board | Attractive User Interface with Easy Navigation

Journal Type : Open Access

Processing Charges : 700/- INR Only OR 25 USD (for foreign users)

Paper Publish : Within 2-4 Days after submitting

Submit Paper Online

For Author

IJTSRD Publication

Research Area


Prognosis of Cardiac Disease using Data Mining Techniques: A Comprehensive Survey


D. Haripriya | Dr. M. Lovelin Ponn Felciah



D. Haripriya | Dr. M. Lovelin Ponn Felciah "Prognosis of Cardiac Disease using Data Mining Techniques: A Comprehensive Survey" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-3 | Issue-5, August 2019, pp.1212-1216, URL: https://www.ijtsrd.com/papers/ijtsrd26605.pdf

The Healthcare exchange generally clinical diagnosis is ended commonly by doctor’s knowledge and practice. Computer Aided Decision Support System plays a major task in the medical field. Data mining provides the methodology and technology to modify these rises of data into valuable data for decision making. By utilizing data mining techniques it requires less time for the prediction of the diseases with more accuracy. Among the expanding research on coronary diseases predicting system, it has happened significant to classifications the exploration results and gives readers with a layout of the current coronary diseases forecast strategies in every discussion. Data mining tools can respond to exchange addresses that expectedly being used much time over riding to decide. In this paper we study different papers in which at least one algorithm of data mining used for the prediction of coronary diseases. As of the study it is observed that Naïve Bayes Technique increase the accuracy of the coronary diseases prediction system. The commonly used techniques for Heart Disease Prediction and their complexities are outlined in this paper.

Data Mining, Cardiac diseases prediction, Naïve Bayes


IJTSRD26605
Volume-3 | Issue-5, August 2019
1212-1216
IJTSRD | www.ijtsrd.com | E-ISSN 2456-6470
Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

International Journal of Trend in Scientific Research and Development - IJTSRD having online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International Journal which provides rapid publication of your research articles and aims to promote the theory and practice along with knowledge sharing between researchers, developers, engineers, students, and practitioners working in and around the world in many areas like Sciences, Technology, Innovation, Engineering, Agriculture, Management and many more and it is recommended by all Universities, review articles and short communications in all subjects. IJTSRD running an International Journal who are proving quality publication of peer reviewed and refereed international journals from diverse fields that emphasizes new research, development and their applications. IJTSRD provides an online access to exchange your research work, technical notes & surveying results among professionals throughout the world in e-journals. IJTSRD is a fastest growing and dynamic professional organization. The aim of this organization is to provide access not only to world class research resources, but through its professionals aim to bring in a significant transformation in the real of open access journals and online publishing.

Thomson Reuters
Google Scholer
Academia.edu

ResearchBib
Scribd.com
archive

PdfSR
issuu
Slideshare

WorldJournalAlerts
Twitter
Linkedin