Home > Computer Science > Artificial Intelligence > Volume-2 > Issue-1 > K-Nearest Neighbours based diagnosis of hyperglycemia

K-Nearest Neighbours based diagnosis of hyperglycemia

Call for Papers

Volume-8 | Issue-5

Last date : 27-Oct-2024

Best International Journal
Open Access | Peer Reviewed | Best International Journal | Indexing & IF | 24*7 Support | Dedicated Qualified Team | Rapid Publication Process | International Editor, Reviewer Board | Attractive User Interface with Easy Navigation

Journal Type : Open Access

First Update : Within 7 Days after submittion

Submit Paper Online

For Author

Research Area


K-Nearest Neighbours based diagnosis of hyperglycemia


Abid Sarwar

https://doi.org/10.31142/ijtsrd7046



Abid Sarwar "K-Nearest Neighbours based diagnosis of hyperglycemia" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-1, December 2017, pp.611-614, URL: https://www.ijtsrd.com/papers/ijtsrd7046.pdf

AI or artificial intelligence is the simulation of human intelligence processes by machines, especially computer systems. These processes include learning (the acquisition of information and rules for using the information), reasoning (using the rules to reach approximate or definite conclusions), and self-correction. As a result, Artificial Intelligence is gaining Importance in science and engineering fields. The use of Artificial Intelligence in medical diagnosis too is becoming increasingly common and has been used widely in the diagnosis of cancers, tumors, hepatitis, lung diseases, etc... The main aim of this paper is to build an Artificial Intelligent System that after analysis of certain parameters can predict that whether a person is diabetic or not. Diabetes is the name used to describe a metabolic condition of having higher than normal blood sugar levels. Diabetes is becoming increasingly more common throughout the world, due to increased obesity - which can lead to metabolic syndrome or pre-diabetes leading to higher incidences of type 2 diabetes. Authors have identified 10 parameters that play an important role in diabetes and prepared a rich database of training data which served as the backbone of the prediction algorithm. Keeping in view this training data authors developed a system that uses the artificial neural networks algorithm to serve the purpose. These are capable of predicting new observations (on specific variables) from previous observations (on the same or other variables) after executing a process of so-called learning from existing training data (Haykin 1998).The results indicate that the performance of KNN method when compared with the medical diagnosis system was found to be 91%. This system can be used to assist medical programs especially in geographically remote areas where expert human diagnosis not possible with an advantage of minimal expenses and faster results.

Artificial Intelligence, metabolic, Machine Learning, Diabetes, K-nearest neighbors, Medical Diagnosis


IJTSRD7046
Volume-2 | Issue-1, December 2017
611-614
IJTSRD | www.ijtsrd.com | E-ISSN 2456-6470
Copyright © 2019 by author(s) and International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0)

International Journal of Trend in Scientific Research and Development - IJTSRD having online ISSN 2456-6470. IJTSRD is a leading Open Access, Peer-Reviewed International Journal which provides rapid publication of your research articles and aims to promote the theory and practice along with knowledge sharing between researchers, developers, engineers, students, and practitioners working in and around the world in many areas like Sciences, Technology, Innovation, Engineering, Agriculture, Management and many more and it is recommended by all Universities, review articles and short communications in all subjects. IJTSRD running an International Journal who are proving quality publication of peer reviewed and refereed international journals from diverse fields that emphasizes new research, development and their applications. IJTSRD provides an online access to exchange your research work, technical notes & surveying results among professionals throughout the world in e-journals. IJTSRD is a fastest growing and dynamic professional organization. The aim of this organization is to provide access not only to world class research resources, but through its professionals aim to bring in a significant transformation in the real of open access journals and online publishing.

Thomson Reuters
Google Scholer
Academia.edu

ResearchBib
Scribd.com
archive

PdfSR
issuu
Slideshare

WorldJournalAlerts
Twitter
Linkedin