<b>Crop Prediction System using Machine Learning</b> India s economy is mostly based on agricultural yield growth and linked agro industry products, as it is an agricultural country. Rainwater, which is often unpredictable in India, has a significant impact on agriculture. Agriculture growth is also influenced by a variety of soil parameters, such as nitrogen, phosphorus, and potassium, as well as crop rotation, soil moisture, and surface temperature, as well as climatic factors such as temperature and rainfall. India is quickly advancing in terms of technical advancement. As a result, technology will benefit agriculture by increasing crop productivity, resulting in higher yields for farmers. The suggested project provides a solution for storing temperature, rainfall, and soil characteristics in order to determine which crops are suited for cultivation in a given area. This paper describes a system, implemented as an android application, that employs data analytics techniques to predict the most profitable crop based on current weather and soil conditions. The suggested system will combine data from the repository and the meteorological department to make a prediction of the most suited crops based on current environmental conditions using a machine learning method called Multiple Linear Regression. This gives a farmer a wide range of crops to choose from. As a result, the project creates a system that integrates data from diverse sources, performs data analytics, and conducts predictive analysis in order to improve crop production productivity and boost farmer profit margins over time. Machine learning, crop prediction, and yield estimation are some of the terms used in this paper. machine learning, crop prediction 8-10 Issue-3 Volume-6 Manju D C | Murugan R