

 @ IJTSRD | Available Online @ www.ijtsrd.com

 ISSN No: 2456

International
Research

Alternative RAM Mapping Algorithm
for Embedded Memory Blocks in FPGA

Bhagyashree Ashok Gavhane
Department of Electronics &

DYPCOE, Savitribai Phule Pune University, Pune, Maharashtra,

ABSTRACT

Contemporary field-programmable gate array (FPGA)
design requires a spectrum of available physical
resources. As FPGA logic capacity has grown, locally
accessed FPGA embedded memory blocks have
increased in importance. When targeting FPGAs,
application designers often specify high-
functions, which exhibit a range of sizes and control
structures. These logical memories must be mapped to
FPGA embedded memory resources such that
physical design objectives are met. In this paper, a set
of power efficient logical-to-physical RAM mapping
algorithms is described, which converts user
memory specifications to on-chip FPGA memory
block resources. These algorithms minimize RAM
dynamic power by evaluating a range of possible
embedded memory block mappings and selecting the
most power-efficient choice. Our automated approach
has been validated with both simulation of power
dissipation and measurements of power dissipation on
FPGA hardware. A comparison of measured power
reductions to values determined via simulation
confirms the accuracy of our simulation approach.
Our power-aware RAM mapping algorithm
been integrated into a commercial FPGA compiler
and tested with 34 large FPGA benchmarks. Through
experimentation, we show that, on average, embedded
memory dynamic power can be reduced by 26% and
overall core dynamic power can be reduced by 6%
with a minimal loss (1%) in design performance. In
addition, it is shown that the availability of multiple
embedded memory block sizes in an FPGA reduces
embedded memory dynamic power by an additional
9.6% by giving more choices to the computer
design algorithms.

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018

ISSN No: 2456 - 6470 | www.ijtsrd.com | Volume

International Journal of Trend in Scientific
Research and Development (IJTSRD)

International Open Access Journal

Alternative RAM Mapping Algorithm
for Embedded Memory Blocks in FPGA

Bhagyashree Ashok Gavhane, Prashant Vitthalrao Kathole
Department of Electronics & Telecommunication Engineering,

ibai Phule Pune University, Pune, Maharashtra, India

programmable gate array (FPGA)
design requires a spectrum of available physical
resources. As FPGA logic capacity has grown, locally
accessed FPGA embedded memory blocks have
increased in importance. When targeting FPGAs,

-level memory
functions, which exhibit a range of sizes and control

ures. These logical memories must be mapped to
FPGA embedded memory resources such that

. In this paper, a set
physical RAM mapping

described, which converts user defined
chip FPGA memory

block resources. These algorithms minimize RAM
dynamic power by evaluating a range of possible
embedded memory block mappings and selecting the

ficient choice. Our automated approach
oth simulation of power

dissipation and measurements of power dissipation on
FPGA hardware. A comparison of measured power
reductions to values determined via simulation

firms the accuracy of our simulation approach.
aware RAM mapping algorithms have

been integrated into a commercial FPGA compiler
and tested with 34 large FPGA benchmarks. Through
experimentation, we show that, on average, embedded
memory dynamic power can be reduced by 26% and
overall core dynamic power can be reduced by 6%

a minimal loss (1%) in design performance. In
addition, it is shown that the availability of multiple
embedded memory block sizes in an FPGA reduces
embedded memory dynamic power by an additional
9.6% by giving more choices to the computer-aided

Keywords: Design automation,
gate arrays (FPGAs), memory architecture, power
demand

I. INTRODUCTION

AS FIELD-PROGRAMMABLE gate arrays (FPGAs)
have grown in logic capacity, the need for on
data storage has increased since
designs contain memory. In contemporary FPGAs,
most on-chip storage is implemented in large RAM
blocks integrated into the FPGA architecture. These
storage blocks allow for the implementation of a
variety of memory structures, including
out (FIFO) memories, scratch pad memories, and shift
registers, within close physical proximity of logic
resources. Due to their extensive use, embedded
memory blocks have been found to consume

Fig. 1. Core dynamic power distribution for 124
benchmarks mapped to Stratix II devices. Test
vectors are not available for these designs; thus,

Apr 2018 Page: 2542

6470 | www.ijtsrd.com | Volume - 2 | Issue – 3

Scientific
(IJTSRD)

International Open Access Journal

for Embedded Memory Blocks in FPGA

Prashant Vitthalrao Kathole

India

Design automation, field-programmable
mory architecture, power

PROGRAMMABLE gate arrays (FPGAs)
have grown in logic capacity, the need for on-chip

has increased since almost all modern
designs contain memory. In contemporary FPGAs,

chip storage is implemented in large RAM
blocks integrated into the FPGA architecture. These
storage blocks allow for the implementation of a
variety of memory structures, including first in–first

ories, scratch pad memories, and shift
registers, within close physical proximity of logic
resources. Due to their extensive use, embedded
memory blocks have been found to consume.

Core dynamic power distribution for 124

benchmarks mapped to Stratix II devices. Test
vectors are not available for these designs; thus,

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

 @ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 2543

logic is assumed to toggle during 12.5% of clock
cycles.

between 10% and 20% of core dynamic power in
typical FPGA designs [1]. For example, Fig. 1
illustrates the core dynamic power breakdown for 124
FPGA designs of varying sizes and functionalities
mapped to Altera Stratix II [2] devices. On average,
embedded memory consumes as much power as
lookup tables (LUTs) in these designs. As the amount
of FPGA logic and on-chip memory increases over
the next few years and the application domain of
FPGAs expands to include mobile and power-
sensitive environments, the power-efficient use of
embedded memory blocks will become increasingly
important. Embedded memory blocks in
contemporary FPGAs are typically implemented with
synchronous static RAM (SRAM) [2], [19] to
improve design performance. Like other synchronous
SRAM architectures, FPGA embedded memory
accesses are performed in concert with a design clock
and a series of interface signals including read/write
(R/W) enables, clock enables, address, and data
signals. During application development, designers
usually do not specify RAM blocks that precisely
match the size and fully specify the control signals of
the physical RAM blocks on an FPGA. More
typically, a higher level “logical memory”
representation is specified, and the computer-aided
design (CAD) flow automatically implements this
specification using “physical memories” and any
required control circuitry. Synchronous FPGA
embedded memories primarily consume dynamic
power as a result of internal RAM clocking. To save
power, RAM control signals can be configured to
suppress internal clocking when RAM access is
unnecessary on a specific clock cycle. Although user-
defined or generated control signals provide for valid
functional embedded memory behaviour, their
configuration may not efficiently suppress
unnecessary clocked memory accesses, leading to
wasted RAM dynamic power. These limitations
motivate the development of RAM mapping
algorithms that take power objectives into account
while maintaining valid functional behaviour. In this
paper, we describe a series of algorithms to
automatically map user-specified logical memories to
available physical embedded memory block resources
with the goal of reducing overall FPGA dynamic
power consumption. In considering feasible RAM
mappings, our approach estimates the relative
dynamic power consumption of each potential

implementation and selects the most power-efficient
implementation subject to on-chip RAM availability
constraints. When necessary, userspecified RAM
control signals (R/W enable and clock enables) are
remapped to achieve a logically equivalent RAM
implementation with reduced dynamic power
consumption. If an FPGA contains embedded
memory blocks of different sizes, a mapping using
each block type is considered. Our mapping
techniques have been integrated into the Altera
Quartus II synthesis system [1] and targeted to several
Altera FPGA families, which contain embedded
memories. To determine the benefit of our approach,
we evaluate the power reduction for 34 designs,
which contain RAM using a power estimation
methodology based on digital simulation and circuit
level power models. To evaluate the accuracy of the
simulation based approach, we first map a sample set
of six large FPGA designs and a group of primitive
RAM instantiations to an FPGA-based board, which
allows for accurate dynamic power measurements.
Through experimentation with the sample designs, it
is shown that the measured and predicted power
savings due to our mapping optimizations differ by a
little more than one percentage point. Subsequent
simulation-based experimentation with the 34 RAM-
based designs demonstrates an average embedded
memory dynamic power reduction of 26% and overall
core dynamic power reduction of 6% on Stratix II
devices. In addition, the availability of multiple types
of embedded memory blocks in an FPGA device
reduces memory dynamic power and overall core
dynamic power by an additional 9.6% and 2%,
respectively. In the next section, we discuss related
power-aware memory mapping techniques. In Section
III, the basic operation of FPGA embedded memories
is described along with details of the basic mapping
flow used to translate user-specified logical memory
to physical embedded memory blocks. Section IV
provides the details of our power-aware RAM
mapping techniques and supporting algorithms.
Experimental results are presented in Section V.
Section VI summarizes the paper and provides
directions for future work.

II. RELATED WORK

RAM dynamic power-reduction techniques for
application specified integrated circuits (ASICs) and
microprocessor systems have been considered at the
application mapping, compiler, and circuit levels.
Although these approaches provide insight into

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

 @ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 2544

reducing FPGA embedded memory power, none are
directly applicable. Several synthesis techniques for
application-specific embedded systems create power-
optimized memory structures based on application
address traces. In [5], the memory trace of an
embedded application is analyzed by an algorithm to
determine the portion of program and data memory
that is most frequently accessed. These addresses are
then grouped into memory banks, which are
implemented with scratch pad memories. Infrequently
accessed addresses are grouped into larger physical
memory blocks. Later work by Cao et al. [6] extends
this optimization to consider data width scaling.
Wuytack et al. [18] have developed techniques to
optimize the entire memory hierarchy of an
application for power consumption based on
application information. These previous approaches
rely on application trace information to perform
memory partitioning. A number of compiler
techniques have been developed for processor-based
systems, which optimize power while mapping data to
fixed system memory resources. For example, in [16],
a series of memory locations for multimedia
applications are remapped to a small local scratch pad
memory to save dynamic power. In [13], the
organization and power consumption of a translation
look-aside buffer are adjusted on a per-application
basis. In [8], memory energy is managed through
memory and register allocation using a network flow
algorithm. In [7], a compiler technique to optimize
sleep-mode operation for memories is described.
Memory reactivations are minimized via scheduling
to save dynamic power. Numerous circuit-level
techniques for power reduction have been explored
[11] including reduced swing pre-decode lines,
multistage address decoding, and divided word and bit
lines, among others. These techniques may be used in
the future by FPGA designers to reduce FPGA
embedded memory block power and are additive to
the approaches described in this paper.
Although FPGA logic and routing dynamic power
reduction has been studied [10], these techniques were
not applied to embedded memory blocks. Except for
[15], previous research efforts that map design logic
to embedded memory blocks in ASICs [4], [14] and
FPGAs [9] do not consider power optimization as a
mapping goal. This paper extends our earlier work in
[15] by providing more detailed algorithm
descriptions and many new experimental
results. We validate our simulation-based power
estimation approach by comparing the power
reductions estimated via simulation with those

measured on physical hardware for a subset of our
design suite and show that the results are very
consistent. We also measure all power reductions due
to our RAM mapping algorithm using a more recent
version of the Quartus CAD tool than the one used in
[15]. This more recent version of the Quartus software
includes synthesis, placement, and routing algorithms,
which incorporate power optimizations; thus, the
results in this paper show that power-aware RAM
mapping saves significant power even when a CAD
suite incorporates other power-reduction techniques.
Finally, this paper extends [15] by evaluating the
effect of RAM power-reduction techniques across
multiple FPGA device families.

III. BACKGROUND

The development of a power-efficient embedded
RAM mapping strategy requires insight into the
internal behaviour of synchronous SRAM.

Fig. 2. Internal view of embedded memory R/W
port

Typically, each port of an embedded memory block is
controlled by one or more R/W enable signals, clock
(Clk) enable signals, and clock signals. As shown in
Fig. 2, these signals directly or indirectly control data
movement in different parts of the embedded memory
port. During a typical memory “read” operation, the
following events occur in sequence, in response to a
rising clock edge.

1) The memory port clock (MClk) is strobed, causing

the
2) BIT lines to be pre-charged to Vcc.
3) The read address is decoded, and one word line is

activated.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

 @ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 2545

4) The BIT line difference is identified by sense
amplifiers, causing the read data to be strobed into
a column multiplexer.

5) The Read Data passes through the column
multiplexer and a latch conditioned by Read
Enable to the RAM external Read Data lines.

Memory “write” operations require a similar sequence
of operations, which occur in the following order.
1) MClk is strobed, causing the BIT lines to be pre-

charged to Vcc.
2) The Write Enable signal, which is conditioned by

MClk, creates a write pulse that transfers write
data to the write buffers, and a word line is
activated following write address decode.

3) The write buffer data is stored in the RAM cell.
4) For both synchronous read and write RAM

operations, most dynamic power is consumed via
BIT line pre-charging [12].

To control clocking, embedded memory ports often
have a clock enable signal, which can eliminate
internal pre-charging, word-line decoding, and RAM
cell access. The disabling of the clock enable signal
when memory port access is not required provides the
best technique to eliminate embedded memory
dynamic power consumption for a memory port. If a
RAM port is inactive on a given clock cycle and its
clock can be suppressed via an inactive clock enable,
the RAM port will not consume significant dynamic
power. A number of contemporary FPGAs support
embedded memory blocks with enable and clock
enable signals.

Fig. 3. Typical logical RAM to embedded memory
block mapping flow.

Altera Stratix II and Cyclone II [3] devices support
both R/W enables and clock enables on each of the
two ports on every memory block. Each Xilinx
Virtex-II [20] and Virtex-4 [19] embedded Select

RAM block contains write enable and clock enable
control signals on each port, but no separate read
enable. While Stratix II devices support three different
embedded memory block sizes, Cyclone II, Virtex-II,
and Virtex-4 contain embedded memory blocks of a
single size. The goal of power-aware RAM mapping
is to implement the functionality of a user-defined
RAM module (logical memory) in one or more FPGA
embedded memory blocks so that memory pre-
charges are limited. This optimization goal attempts to
minimize RAM dynamic activity through the use of
RAM port clock enables whenever possible. The
effective use of clock enable signals ensures that the
bulk of embedded memory block dynamic power is
consumed when a “required” access to data within a
RAM is performed. In some cases, this goal may
require the synthesis of one of more clock enable
signals during the mapping process. This mapping
must achieve the same functional behaviour for the
RAM as specified by the designer while allowing for
possible tradeoffs between design power
consumption, area, and performance.

A. Typical RAM Mapping Flow-

FPGA embedded memory blocks are used to
implement a variety of RAM components including
FIFOs, shift registers, and single- and dual-port
memories. Logical RAMs are specified by the
designer in register transfer level (RTL) or schematic
form, which is created by the FPGA compiler and
mapped [1], as shown in Fig. 3.
1) Logical memory creation. User-defined RAM

descriptions are processed by the FPGA
compilation software to create logical memories
with the desired characteristics.

2) Logical-to-physical RAM processing. Logical
RAMs are converted into one or more RAM
blocks, which match the external interface and
size constraints of available embedded memory
blocks.

3) Embedded memory block placement. RAM blocks
and associated control logic are assigned to
available on-chip embedded memory block and
logic resources. The power-aware algorithms
developed in this paper are applied in the logical-
to-physical RAM processing step.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

 @ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 2546

Fig. 4. Area-efficient mapping of a 4K × 4 logical
RAM to 4-kb memory blocks.

Traditionally, RAM mapping has targeted logical
RAM performance and FPGA area minimization [9]
rather than power consumption. As shown in Section
IV-B, however, an area optimal embedded memory
implementation does not always minimize dynamic
power. To conserve dynamic power, it is desirable to
map the required memory functions to the available
physical memories so that power consumption is
optimized while meeting area and delay constraints.
The size of both logical and physical (embedded)
memory blocks can be defined in terms of the number
of addressable locations (“depth”) and output bits per
memory (“width”). The number of address bits
required for both logical and physical memories is
directly related to memory block depth. The number
of data-in and data-out bits is related to memory block
width. To promote flexibility, an FPGA embedded
memory block may typically be programmed to
support a range of depth versus width configurations
[2], [19]. Until the relatively recent adoption of
synchronous SRAMs, most user-defined RAM
targeted asynchronous memories, which use read and
write enable for data access control. Although
embedded memory blocks now allow for the use of
either operation-specific enable or clock enable
signals to provide access control, many designers
continue to use the operation-specific enable
approach, ignoring the clock enable. Contemporary
RAM mapping flows (e.g., Fig. 3) automatically map
these user-defined enable signals to the R/W enable
signals located on the embedded memory block ports.
Unspecified clock enables are set to be continuously
active. The use of read and write enable signals for
data access control instead of clock enable signals
leads to suboptimal power consumption in many
cases. A second impediment to reduced RAM power
dissipation is related to logical RAM size. In most
cases, the size of a user specified logical memory will

not exactly match the width and depth dimensions of
an embedded memory block. Since RAM mapping
flows typically focus on optimizing delay and
resource usage rather than power, logical memories
are usually mapped using a minimum of external
logic. As an example, Fig. 4 illustrates the mapping of
a 4K × 4 logical memory to four 4K × 1 embedded
memory blocks. In this case, each memory block is
configured as 4K × 1 so that a single bit of each
addressable location is located in each block. This
configuration requires no external logic. However, all
four memory blocks must be active during each
logical memory access; thus, this is a high-power
implementation.

IV. POWER-AWARE RAM MAPPING

Our RAM mapping approach consists of two
algorithms that obtain a power-efficient mapping of
logical memories to FPGA embedded memory blocks.
Two specific cases are targeted.
1) Since most embedded memory block dynamic

power is a result of clock-induced pre-charging,
we identify cases where user-specified logical
RAM read and write enable signals can be
automatically “converted” or “combined” with
corresponding read and write clock enable signals
while maintaining correct functional behaviour.

2) For cases where more than one embedded
memory block is required to implement a logical
RAM, we implement a multi-banked RAM
mapping. As a result of this banked mapping, only
one embedded memory block is clocked per
access. In some cases, the banked structure may
require the inclusion of supporting logic.

A. Conversion of Read and Write Enable to Read and

Write Clock Enable-

In general, synchronous embedded memory blocks
exhibit the same RAM behaviour if either an enable
or a clock enable is used to control a read (or write)
access and the alternate signal is set to an active state.
If present, both read enable and read clock enable
signals must be active to successfully perform an
embedded memory block read transaction [15].
Consider a scenario where a read enable input is
attached to a control signal and read clock enable
input is always tied to active logic 1.
Since the inputs both must be active for reads, the
read clock enable input can be driven by the signal
previously tied to read enable input, and read enable

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

 @ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 2547

input can be tied to logic 1. Similarly, write enable
and write clock enable signals must be active
simultaneously to successfully perform an embedded
memory block write transaction [15]. Consider a
scenario where a write enable input is attached to a
control signal and the write clock enable input is
always tied to active logic 1.

Since the inputs both must be active for writes, the
write clock enable input can be driven by the signal
previously tied to the write enable input, and the write
enable input can be tied to logic 1.

The “conversion” of user-defined read and write
enable signals to respective clock enables primarily
reduces power by eliminating BIT line pre-charging
when embedded memory block data access is not
required. The same functional RAM behaviour is
maintained. For some logical memories, a designer
may specify both an enable and a clock enable signal
for an embedded memory port. In these cases, simple
conversion cannot be performed. Additional logic (an
AND gate) must be added to the user design to allow
the user-defined enable signal to condition the
associated memory port clock.

Fig. 5. Alternate mapping of a 4K × 4 logical RAM
to 4-kb memory blocks.

The “combining” of the enable and clock enable
signal forms a new combined clock enable signal,
which can be attached to the memory port clock
enable input. Depending on designer timing
constraints, the addition of logic delay to the clock
enable path may negatively impact mapped design
performance. As a result, this approach may only be
appropriate if design power reduction is considered
more important than design performance or
preliminary timing information is available to
determine that performance is not likely to be
affected. The mapping steps in Fig. 5 are performed

on each logical RAM. These steps perform enable-to-
clock enable conversion and combining for embedded
memory block inputs Clken and Enable and designer
signals User Clken and User Enable.

B. Parameter Evaluation -
The algorithms described in Sections IV-A have been
integrated into Quartus II and are included in version
5.1 and later versions. Before experimental results on
a range of benchmarks were evaluated, the technology
parameters noted in (1) were determined via
experiments with a representative set of logical
RAMs. The RAMs used for parameter evaluation
include ROMs and single- and dual-port RAMs of
sizes ranging from 512 × 2 to 8K × 132. Parameter
evaluation was performed for the Altera Stratix II
architecture, which contains three types of embedded
memory blocks, each of a different size: 576 bits
(M512), 4608 bits (M4K), and 589 824 bits
(M-RAM) [2]. Each memory block allows for
implementation of both single- and dual-port
synchronous RAMs. Each logical RAM used for
parameter evaluation was mapped to each of the three
Stratix II memory block types using multi-block
partitioning ranging from horizontal slicing to vertical
slicing. Following synthesis with Quartus II, the
memory designs were placed and routed using
Quartus II. All synthesis, place, and route steps used
an unattainable 1-GHz timing constraint to ensure
maximum optimization effort by the CAD software. A
digital simulation of each design at 100 MHz with
random input vectors was performed to find the toggle
rate of each signal. This simulation includes “glitch
filtering,” where changes in logic state that are too
rapid to propagate through the device routing or
functional blocks are removed from the simulation
waveform—This improves power estimation accuracy
[1]. Dynamic power was then estimated by using the
Quartus II Power Play power analyzer to combine the
signal toggle rates with detailed models of the power
dissipated by FPGA circuitry for each toggle. All the
designs were able to satisfy a minimum clock
frequency of 100 MHz. Statistical averaging was then
used to determine the following values based on the
reported power estimates for all RAM
implementations.
1) Power consumed by a single bit of an n-to-1

multiplexer Pmux. Values for only 2-to-1 and 4-
to-1 multiplexers were determined since shallower
embedded memory block depth slicings are not
performed by our system due to performance
concerns.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

 @ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 2548

2) Per-port design power consumed by an active
physical memory block Pram for M512, M4K,
and M-RAM embedded memory blocks.

3) Power consumed by a k-to-n address decoder
Paddr_decode for 2-to-4 and 1-to-2 decoders.

The variance of the multiplexer, memory block, and
address decoder dynamic power parameters listed
above across the various designs was found to be less
than 1%. Variations of the parameter values across
devices in the same device family were found to be
negligible since logic block and routing constructs are
consistent across devices. Because the power analyzer
takes detailed placement and routing into account
when producing a power estimate, the averaged
values for Pmux and Paddr_decode take the effects of
control signal, address, and data net fan-out into
account.

Although the calculated parameters measure dynamic
power values averaged across the RAM parameter
evaluation design set, the access patterns of user
logical RAMs may differ. Since our algorithm
considers relative rather than absolute dynamic power
values in making tradeoffs, we consider the
subsequent use of these parameters across a range of
user benchmarks to be acceptable and representative
of most RAM access patterns.

V. RESULTS

A. Validation of Simulation-Based Power Estimation
The power-saving benefits of our approach have been
tested experimentally using both physical
measurements and power estimates obtained via the
digital simulation and Quartus II power analyzer flow
described in Section IV-B.

CONCLUSION AND FUTURE WORK

In this paper, we have presented a set of RAM
mapping algorithms that are targeted to FPGA
embedded memory blocks. These techniques take
advantage of the internal structure of FPGA
embedded memory to reduce memory dynamic power
dissipation. When possible, embedded memory block
clock enables are used to deactivate RAM block pre-
charging. Our mapping algorithms maintain the
functional behaviour of each designer-specified RAM.
These techniques achieve a 26% RAM dynamic
power reduction and a 6% core dynamic power
reduction for 34 large benchmark designs with a

performance and logic cost of about 1%. The
availability of three embedded memory block sizes
leads to a 10% memory power and 2% dynamic
power reduction versus using only 4.5-kb embedded
memory blocks. Our power-reduction estimates have
been verified both via board-level power
measurement and via simulation-based power
estimates. Several optimizations to our power-saving
approaches could be implemented in the future. An
analysis of our benchmark designs shows that, on
average, 18% of logical memories in a design share
address decoding circuitry with other design logical
memories. Currently, we rely on the Quartus II logic
synthesis tool to identify and eliminate these and other
structural logic redundancies and to pack compatible
logical memories into the same physical memory.
Higher level logical RAM clustering may provide
additional dynamic power savings. Another possible
optimization is the RTL analysis of state machines to
determine when embedded memory block accesses
are not needed. More complex RAM shutdown
signals could then be generated. Finally, an
investigation to determine the optimal size and
availability of different-sized embedded memory
blocks is needed. In this paper, it has been shown that
a diverse selection of memory block sizes is
beneficial, and medium-sized blocks (e.g., 4–16 kb)
are desirable for power reduction. The exact mix of
block sizes for optimal power reduction remains an
openproblem.

REFERENCES

1) Altera Corporation, Quartus II Handbook, vol. 1,

Jul. 2005. ch. 7.
2) ——, Stratix II Device Handbook, vol. 2, Jul.

2005.
3) ——, Cyclone II Device Handbook, vol. 1, Jun.

2006.
4) S. Bakshi and D. Gajski, “A memory selection

algorithm for highperformance pipelines,” in
Proc. Eur. Des. Autom. Conf., Brighton, U.K.,
Sep. 1995, pp. 124–129.

5) L. Benini, A. Macii, and M. Poncino, “A recursive
algorithm for lowpower memory partitioning,” in
Proc. Int. Symp. Low Power Electron. and Des.,
Rapallo, Italy, Jul. 2000, pp. 78–83.

6) Y. Cao, H. Tomiyama, T. Okuma, and H.
Yasuura, “Data memory design considering
effective bitwidth for low-energy embedded
systems,” in Proc. IEEE Int. Symp. Syst.
Synthesis, Kyoto, Japan, Oct. 2002, pp. 201–206.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

 @ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 3 | Mar-Apr 2018 Page: 2549

7) A. Ferrahi, G. Tellez, and M. Sarrafzadeh,
“Memory segmentation to exploit sleep mode
operation,” in Proc. ACM/IEEE Des. Autom.
Conf., San Francisco, CA, Jun. 1995, pp. 36–41.

8) C. Gebotys, “Low energy memory and register
allocation using network flow,” in Proc.
ACM/IEEE Des. Autom. Conf., Anaheim, CA,
Jun. 1997, pp. 435–440.

9) W. Ho and S. Wilton, “Logical-to-physical
memory mapping for FPGAs with dual-port
embedded memories,” in Proc. Int. Workshop
Field Programmable Logic and Appl., Glasgow,
U.K., Aug. 1999, pp. 111–123.

10) J. Lamoureux and S. Wilton, “On the interaction
between FPGA CAD algorithms,” in Proc. IEEE
Int. Conf. Comput.-Aided Des., San Jose, CA,
Nov. 2003, pp. 701–708.

11) M. Margala, “Low-power SRAM circuit design,”
in Proc. IEEE Int. Workshop Memory Technol.
Des. and Testing, San Jose, CA, Aug. 1999, pp.
115–122.

12) M. Mamidipaka and N. Dutt, “An enhanced power
estimation model for on-chip caches,” Univ.
California, Irvine, CA, CECS Tech. Rep. 04–28,
2004.

13) P. Petrov and A. Orailoglu, “Virtual page tag
reduction for low-power TLBs,” in Proc. IEEE
Int. Conf. Comput. Des., San Jose, CA, Oct. 2003,
pp. 371–374.

14) H. Schmit and D. Thomas, “Address generation
for memories containing multiple arrays,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol.
17, no. 5, pp. 377–385, May 1998.

15) R. Tessier, V. Betz, D. Neto, and T. Gopalsamy,
“Power-aware RAM mapping for FPGA
embedded memory blocks,” in Proc. ACM/SIGDA
Int. Symp. Field Programmable Gate Arrays,
Monterey, CA, Feb. 2006, pp. 189–198.

16) O. Unsal, R. Ashok, I. Koren, C. Krishna, and C.
Moritz, “Cool-cache for hot multimedia,” in Proc.
ACM/IEEE Int. Symp. Microarchitecture, Austin,
TX, Dec. 2001, pp. 274–283.

17) S. Wilton, S. Ang, and W. Luk, “The impact of
pipelining on energy per operation in field-
programmable gate arrays,” in Proc. Int.
Workshop Field Programmable Logic and Appl.,
Antwerp, Belgium, Aug. 2004, pp. 719–728.

18) S. Wuytack, F. Catthoor, L. Nachtergaele, and H.
De Man, “Power exploration for data dominated
video applications,” in Proc. IEEE Int. Symp. Low
Power Des., Monterey, CA, Aug. 1996, pp. 359–
364.

19) Xilinx Corporation, Virtex-4 User’s Guide, Jul.
2005.

20) ——, Virtex II Platform FPGAs: Complete Data
Sheet, Mar. 2005

