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ABSTRACT     
 
Contemporary field-programmable gate array (FPGA) 
design requires a spectrum of available physical 
resources. As FPGA logic capacity has grown, locally 
accessed FPGA embedded memory blocks have 
increased in importance. When targeting FPGAs, 
application designers often specify high-
functions, which exhibit a range of sizes and control 
structures. These logical memories must be mapped to 
FPGA embedded memory resources such that 
physical design objectives are met. In this paper, a set 
of power efficient logical-to-physical RAM mapping 
algorithms is described, which converts user 
memory specifications to on-chip FPGA memory 
block resources. These algorithms minimize RAM 
dynamic power by evaluating a range of possible 
embedded memory block mappings and selecting the 
most power-efficient choice. Our automated approach 
has been validated with both simulation of power 
dissipation and measurements of power dissipation on 
FPGA hardware. A comparison of measured power 
reductions to values determined via simulation 
confirms the accuracy of our simulation approach. 
Our power-aware RAM mapping algorithm
been integrated into a commercial FPGA compiler 
and tested with 34 large FPGA benchmarks. Through 
experimentation, we show that, on average, embedded 
memory dynamic power can be reduced by 26% and 
overall core dynamic power can be reduced by 6% 
with a minimal loss (1%) in design performance. In 
addition, it is shown that the availability of multiple 
embedded memory block sizes in an FPGA reduces 
embedded memory dynamic power by an additional 
9.6% by giving more choices to the computer
design algorithms. 
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I. INTRODUCTION 
 
AS FIELD-PROGRAMMABLE gate arrays (FPGAs) 
have grown in logic capacity, the need for on
data storage has increased since 
designs contain memory. In contemporary FPGAs, 
most on-chip storage is implemented in large RAM 
blocks integrated into the FPGA architecture. These 
storage blocks allow for the implementation of a 
variety of memory structures, including 
out (FIFO) memories, scratch pad memories, and shift 
registers, within close physical proximity of logic 
resources. Due to their extensive use, embedded 
memory blocks have been found to consume
 

Fig. 1. Core dynamic power distribution for 124 
benchmarks mapped to Stratix II devices. Test 
vectors are not available for these designs; thus, 
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have grown in logic capacity, the need for on-chip 

has increased since almost all modern 
designs contain memory. In contemporary FPGAs, 

chip storage is implemented in large RAM 
blocks integrated into the FPGA architecture. These 
storage blocks allow for the implementation of a 
variety of memory structures, including first in–first 
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resources. Due to their extensive use, embedded 
memory blocks have been found to consume. 
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logic is assumed to toggle during 12.5% of clock 
cycles. 
 
between 10% and 20% of core dynamic power in 
typical FPGA designs [1]. For example, Fig. 1 
illustrates the core dynamic power breakdown for 124 
FPGA designs of varying sizes and functionalities 
mapped to Altera Stratix II [2] devices. On average, 
embedded memory consumes as much power as 
lookup tables (LUTs) in these designs. As the amount 
of FPGA logic and on-chip memory increases over 
the next few years and the application domain of 
FPGAs expands to include mobile and power-
sensitive environments, the power-efficient use of 
embedded memory blocks will become increasingly 
important. Embedded memory blocks in 
contemporary FPGAs are typically implemented with 
synchronous static RAM (SRAM) [2], [19] to 
improve design performance. Like other synchronous 
SRAM architectures, FPGA embedded memory 
accesses are performed in concert with a design clock 
and a series of interface signals including read/write 
(R/W) enables, clock enables, address, and data 
signals. During application development, designers 
usually do not specify RAM blocks that precisely 
match the size and fully specify the control signals of 
the physical RAM blocks on an FPGA. More 
typically, a higher level “logical memory” 
representation is specified, and the computer-aided 
design (CAD) flow automatically implements this 
specification using “physical memories” and any 
required control circuitry. Synchronous FPGA 
embedded memories primarily consume dynamic 
power as a result of internal RAM clocking. To save 
power, RAM control signals can be configured to 
suppress internal clocking when RAM access is 
unnecessary on a specific clock cycle. Although user-
defined or generated control signals provide for valid 
functional embedded memory behaviour, their 
configuration may not efficiently suppress 
unnecessary clocked memory accesses, leading to 
wasted RAM dynamic power. These limitations 
motivate the development of RAM mapping 
algorithms that take power objectives into account 
while maintaining valid functional behaviour. In this 
paper, we describe a series of algorithms to 
automatically map user-specified logical memories to 
available physical embedded memory block resources 
with the goal of reducing overall FPGA dynamic 
power consumption. In considering feasible RAM 
mappings, our approach estimates the relative 
dynamic power consumption of each potential 

implementation and selects the most power-efficient 
implementation subject to on-chip RAM availability 
constraints. When necessary, userspecified RAM 
control signals (R/W enable and clock enables) are 
remapped to achieve a logically equivalent RAM 
implementation with reduced dynamic power 
consumption. If an FPGA contains embedded 
memory blocks of different sizes, a mapping using 
each block type is considered. Our mapping 
techniques have been integrated into the Altera 
Quartus II synthesis system [1] and targeted to several 
Altera FPGA families, which contain embedded 
memories. To determine the benefit of our approach, 
we evaluate the power reduction for 34 designs, 
which contain RAM using a power estimation 
methodology based on digital simulation and circuit 
level power models. To evaluate the accuracy of the 
simulation based approach, we first map a sample set 
of six large FPGA designs and a group of primitive 
RAM instantiations to an FPGA-based board, which 
allows for accurate dynamic power measurements. 
Through experimentation with the sample designs, it 
is shown that the measured and predicted power 
savings due to our mapping optimizations differ by a 
little more than one percentage point. Subsequent 
simulation-based experimentation with the 34 RAM-
based designs demonstrates an average embedded 
memory dynamic power reduction of 26% and overall 
core dynamic power reduction of 6% on Stratix II 
devices. In addition, the availability of multiple types 
of embedded memory blocks in an FPGA device 
reduces memory dynamic power and overall core 
dynamic power by an additional 9.6% and 2%, 
respectively. In the next section, we discuss related 
power-aware memory mapping techniques. In Section 
III, the basic operation of FPGA embedded memories 
is described along with details of the basic mapping 
flow used to translate user-specified logical memory 
to physical embedded memory blocks. Section IV 
provides the details of our power-aware RAM 
mapping techniques and supporting algorithms. 
Experimental results are presented in Section V. 
Section VI summarizes the paper and provides 
directions for future work. 
 
II. RELATED WORK 
 
RAM dynamic power-reduction techniques for 
application specified integrated circuits (ASICs) and 
microprocessor systems have been considered at the 
application mapping, compiler, and circuit levels. 
Although these approaches provide insight into 
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reducing FPGA embedded memory power, none are 
directly applicable. Several synthesis techniques for 
application-specific embedded systems create power-
optimized memory structures based on application 
address traces. In [5], the memory trace of an 
embedded application is analyzed by an algorithm to 
determine the portion of program and data memory 
that is most frequently accessed. These addresses are 
then grouped into memory banks, which are 
implemented with scratch pad memories. Infrequently 
accessed addresses are grouped into larger physical 
memory blocks. Later work by Cao et al. [6] extends 
this optimization to consider data width scaling. 
Wuytack et al. [18] have developed techniques to 
optimize the entire memory hierarchy of an 
application for power consumption based on 
application information. These previous approaches 
rely on application trace information to perform 
memory partitioning. A number of compiler 
techniques have been developed for processor-based 
systems, which optimize power while mapping data to 
fixed system memory resources. For example, in [16], 
a series of memory locations for multimedia 
applications are remapped to a small local scratch pad 
memory to save dynamic power. In [13], the 
organization and power consumption of a translation 
look-aside buffer are adjusted on a per-application 
basis. In [8], memory energy is managed through 
memory and register allocation using a network flow 
algorithm. In [7], a compiler technique to optimize 
sleep-mode operation for memories is described. 
Memory reactivations are minimized via scheduling 
to save dynamic power. Numerous circuit-level 
techniques for power reduction have been explored 
[11] including reduced swing pre-decode lines, 
multistage address decoding, and divided word and bit 
lines, among others. These techniques may be used in 
the future by FPGA designers to reduce FPGA 
embedded memory block power and are additive to 
the approaches described in this paper. 
Although FPGA logic and routing dynamic power 
reduction has been studied [10], these techniques were 
not applied to embedded memory blocks. Except for 
[15], previous research efforts that map design logic 
to embedded memory blocks in ASICs [4], [14] and 
FPGAs [9] do not consider power optimization as a 
mapping goal. This paper extends our earlier work in 
[15] by providing more detailed algorithm 
descriptions and many new experimental 
results. We validate our simulation-based power 
estimation approach by comparing the power 
reductions estimated via simulation with those 

measured on physical hardware for a subset of our 
design suite and show that the results are very 
consistent. We also measure all power reductions due 
to our RAM mapping algorithm using a more recent 
version of the Quartus CAD tool than the one used in 
[15]. This more recent version of the Quartus software 
includes synthesis, placement, and routing algorithms, 
which incorporate power optimizations; thus, the 
results in this paper show that power-aware RAM 
mapping saves significant power even when a CAD 
suite incorporates other power-reduction techniques. 
Finally, this paper extends [15] by evaluating the 
effect of RAM power-reduction techniques across 
multiple FPGA device families. 
 
III. BACKGROUND 
 
The development of a power-efficient embedded 
RAM mapping strategy requires insight into the 
internal behaviour of synchronous SRAM.  
 

 
 
Fig. 2. Internal view of embedded memory R/W 
port 
 
Typically, each port of an embedded memory block is 
controlled by one or more R/W enable signals, clock 
(Clk) enable signals, and clock signals. As shown in 
Fig. 2, these signals directly or indirectly control data 
movement in different parts of the embedded memory 
port. During a typical memory “read” operation, the 
following events occur in sequence, in response to a 
rising clock edge. 
 
1) The memory port clock (MClk) is strobed, causing 

the 
2) BIT lines to be pre-charged to Vcc. 
3) The read address is decoded, and one word line is 

activated. 
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4) The BIT line difference is identified by sense 
amplifiers, causing the read data to be strobed into 
a column multiplexer. 

5) The Read Data passes through the column 
multiplexer and a latch conditioned by Read 
Enable to the RAM external Read Data lines. 

 
Memory “write” operations require a similar sequence 
of operations, which occur in the following order. 
1) MClk is strobed, causing the BIT lines to be pre-

charged to Vcc. 
2) The Write Enable signal, which is conditioned by 

MClk, creates a write pulse that transfers write 
data to the write buffers, and a word line is 
activated following write address decode. 

3) The write buffer data is stored in the RAM cell. 
4) For both synchronous read and write RAM 

operations, most dynamic power is consumed via 
BIT line pre-charging [12]. 

 
To control clocking, embedded memory ports often 
have a clock enable signal, which can eliminate 
internal pre-charging, word-line decoding, and RAM 
cell access. The disabling of the clock enable signal 
when memory port access is not required provides the 
best technique to eliminate embedded memory 
dynamic power consumption for a memory port. If a 
RAM port is inactive on a given clock cycle and its 
clock can be suppressed via an inactive clock enable, 
the RAM port will not consume significant dynamic 
power. A number of contemporary FPGAs support 
embedded memory blocks with enable and clock 
enable signals. 
 

 
 
Fig. 3. Typical logical RAM to embedded memory 
block mapping flow. 
 
Altera Stratix II and Cyclone II [3] devices support 
both R/W enables and clock enables on each of the 
two ports on every memory block. Each Xilinx 
Virtex-II [20] and Virtex-4 [19] embedded Select 

RAM block contains write enable and clock enable 
control signals on each port, but no separate read 
enable. While Stratix II devices support three different 
embedded memory block sizes, Cyclone II, Virtex-II, 
and Virtex-4 contain embedded memory blocks of a 
single size. The goal of power-aware RAM mapping 
is to implement the functionality of a user-defined 
RAM module (logical memory) in one or more FPGA 
embedded memory blocks so that memory pre-
charges are limited. This optimization goal attempts to 
minimize RAM dynamic activity through the use of 
RAM port clock enables whenever possible. The 
effective use of clock enable signals ensures that the 
bulk of embedded memory block dynamic power is 
consumed when a “required” access to data within a 
RAM is performed. In some cases, this goal may 
require the synthesis of one of more clock enable 
signals during the mapping process. This mapping 
must achieve the same functional behaviour for the 
RAM as specified by the designer while allowing for 
possible tradeoffs between design power 
consumption, area, and performance. 
 
A. Typical RAM Mapping Flow- 
 
FPGA embedded memory blocks are used to 
implement a variety of RAM components including 
FIFOs, shift registers, and single- and dual-port 
memories. Logical RAMs are specified by the 
designer in register transfer level (RTL) or schematic 
form, which is created by the FPGA compiler and 
mapped [1], as shown in Fig. 3. 
1) Logical memory creation. User-defined RAM 

descriptions are processed by the FPGA 
compilation software to create logical memories 
with the desired characteristics. 

2) Logical-to-physical RAM processing. Logical 
RAMs are converted into one or more RAM 
blocks, which match the external interface and 
size constraints of available embedded memory 
blocks. 

3) Embedded memory block placement. RAM blocks 
and associated control logic are assigned to 
available on-chip embedded memory block and 
logic resources. The power-aware algorithms 
developed in this paper are applied in the logical-
to-physical RAM processing step. 
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Fig. 4. Area-efficient mapping of a 4K × 4 logical 
RAM to 4-kb memory blocks. 

 
Traditionally, RAM mapping has targeted logical 
RAM performance and FPGA area minimization [9] 
rather than power consumption. As shown in Section 
IV-B, however, an area optimal embedded memory 
implementation does not always minimize dynamic 
power. To conserve dynamic power, it is desirable to 
map the required memory functions to the available 
physical memories so that power consumption is 
optimized while meeting area and delay constraints. 
The size of both logical and physical (embedded) 
memory blocks can be defined in terms of the number 
of addressable locations (“depth”) and output bits per 
memory (“width”). The number of address bits 
required for both logical and physical memories is 
directly related to memory block depth. The number 
of data-in and data-out bits is related to memory block 
width. To promote flexibility, an FPGA embedded 
memory block may typically be programmed to 
support a range of depth versus width configurations 
[2], [19]. Until the relatively recent adoption of 
synchronous SRAMs, most user-defined RAM 
targeted asynchronous memories, which use read and 
write enable for data access control. Although 
embedded memory blocks now allow for the use of 
either operation-specific enable or clock enable 
signals to provide access control, many designers 
continue to use the operation-specific enable 
approach, ignoring the clock enable. Contemporary 
RAM mapping flows (e.g., Fig. 3) automatically map 
these user-defined enable signals to the R/W enable 
signals located on the embedded memory block ports. 
Unspecified clock enables are set to be continuously 
active. The use of read and write enable signals for 
data access control instead of clock enable signals 
leads to suboptimal power consumption in many 
cases. A second impediment to reduced RAM power 
dissipation is related to logical RAM size. In most 
cases, the size of a user specified logical memory will 

not exactly match the width and depth dimensions of 
an embedded memory block. Since RAM mapping 
flows typically focus on optimizing delay and 
resource usage rather than power, logical memories 
are usually mapped using a minimum of external 
logic. As an example, Fig. 4 illustrates the mapping of 
a 4K × 4 logical memory to four 4K × 1 embedded 
memory blocks. In this case, each memory block is 
configured as 4K × 1 so that a single bit of each 
addressable location is located in each block. This 
configuration requires no external logic. However, all 
four memory blocks must be active during each 
logical memory access; thus, this is a high-power 
implementation. 
 
IV. POWER-AWARE RAM MAPPING 
 
Our RAM mapping approach consists of two 
algorithms that obtain a power-efficient mapping of 
logical memories to FPGA embedded memory blocks. 
Two specific cases are targeted. 
1) Since most embedded memory block dynamic 

power is a result of clock-induced pre-charging, 
we identify cases where user-specified logical 
RAM read and write enable signals can be 
automatically “converted” or “combined” with 
corresponding read and write clock enable signals 
while maintaining correct functional behaviour. 

2) For cases where more than one embedded 
memory block is required to implement a logical 
RAM, we implement a multi-banked RAM 
mapping. As a result of this banked mapping, only 
one embedded memory block is clocked per 
access. In some cases, the banked structure may 
require the inclusion of supporting logic. 

 
A. Conversion of Read and Write Enable to Read and 

Write Clock Enable- 
 
In general, synchronous embedded memory blocks 
exhibit the same RAM behaviour if either an enable 
or a clock enable is used to control a read (or write) 
access and the alternate signal is set to an active state. 
If present, both read enable and read clock enable 
signals must be active to successfully perform an 
embedded memory block read transaction [15]. 
Consider a scenario where a read enable input is 
attached to a control signal and read clock enable 
input is always tied to active logic 1. 
Since the inputs both must be active for reads, the 
read clock enable input can be driven by the signal 
previously tied to read enable input, and read enable 
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input can be tied to logic 1. Similarly, write enable 
and write clock enable signals must be active 
simultaneously to successfully perform an embedded 
memory block write transaction [15]. Consider a 
scenario where a write enable input is attached to a 
control signal and the write clock enable input is 
always tied to active logic 1. 
 
Since the inputs both must be active for writes, the 
write clock enable input can be driven by the signal 
previously tied to the write enable input, and the write 
enable input can be tied to logic 1. 
 
The “conversion” of user-defined read and write 
enable signals to respective clock enables primarily 
reduces power by eliminating BIT line pre-charging 
when embedded memory block data access is not 
required. The same functional RAM behaviour is 
maintained. For some logical memories, a designer 
may specify both an enable and a clock enable signal 
for an embedded memory port. In these cases, simple 
conversion cannot be performed. Additional logic (an 
AND gate) must be added to the user design to allow 
the user-defined enable signal to condition the 
associated memory port clock. 

  
Fig. 5. Alternate mapping of a 4K × 4 logical RAM 
to 4-kb memory blocks. 
 
 
The “combining” of the enable and clock enable 
signal forms a new combined clock enable signal, 
which can be attached to the memory port clock 
enable input. Depending on designer timing 
constraints, the addition of logic delay to the clock 
enable path may negatively impact mapped design 
performance. As a result, this approach may only be 
appropriate if design power reduction is considered 
more important than design performance or 
preliminary timing information is available to 
determine that performance is not likely to be 
affected. The mapping steps in Fig. 5 are performed 

on each logical RAM. These steps perform enable-to-
clock enable conversion and combining for embedded 
memory block inputs Clken and Enable and designer 
signals User Clken and User Enable. 
 
B. Parameter Evaluation - 
The algorithms described in Sections IV-A have been 
integrated into Quartus II and are included in version 
5.1 and later versions. Before experimental results on 
a range of benchmarks were evaluated, the technology 
parameters noted in (1) were determined via 
experiments with a representative set of logical 
RAMs. The RAMs used for parameter evaluation 
include ROMs and single- and dual-port RAMs of 
sizes ranging from 512 × 2 to 8K × 132. Parameter 
evaluation was performed for the Altera Stratix II 
architecture, which contains three types of embedded 
memory blocks, each of a different size: 576 bits 
(M512), 4608 bits (M4K), and 589 824 bits 
(M-RAM) [2]. Each memory block allows for 
implementation of both single- and dual-port 
synchronous RAMs. Each logical RAM used for 
parameter evaluation was mapped to each of the three 
Stratix II memory block types using multi-block 
partitioning ranging from horizontal slicing to vertical 
slicing. Following synthesis with Quartus II, the 
memory designs were placed and routed using 
Quartus II. All synthesis, place, and route steps used 
an unattainable 1-GHz timing constraint to ensure 
maximum optimization effort by the CAD software. A 
digital simulation of each design at 100 MHz with 
random input vectors was performed to find the toggle 
rate of each signal. This simulation includes “glitch 
filtering,” where changes in logic state that are too 
rapid to propagate through the device routing or 
functional blocks are removed from the simulation 
waveform—This improves power estimation accuracy 
[1]. Dynamic power was then estimated by using the 
Quartus II Power Play power analyzer to combine the 
signal toggle rates with detailed models of the power 
dissipated by FPGA circuitry for each toggle. All the 
designs were able to satisfy a minimum clock 
frequency of 100 MHz. Statistical averaging was then 
used to determine the following values based on the 
reported power estimates for all RAM 
implementations. 
1) Power consumed by a single bit of an n-to-1 

multiplexer Pmux. Values for only 2-to-1 and 4-
to-1 multiplexers were determined since shallower 
embedded memory block depth slicings are not 
performed by our system due to performance 
concerns. 
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2) Per-port design power consumed by an active 
physical memory block Pram for M512, M4K, 
and M-RAM embedded memory blocks. 

3) Power consumed by a k-to-n address decoder 
Paddr_decode for 2-to-4 and 1-to-2 decoders. 
 

The variance of the multiplexer, memory block, and 
address decoder dynamic power parameters listed 
above across the various designs was found to be less 
than 1%. Variations of the parameter values across 
devices in the same device family were found to be 
negligible since logic block and routing constructs are 
consistent across devices. Because the power analyzer 
takes detailed placement and routing into account 
when producing a power estimate, the averaged 
values for Pmux and Paddr_decode take the effects of 
control signal, address, and data net fan-out into 
account. 
 
Although the calculated parameters measure dynamic 
power values averaged across the RAM parameter 
evaluation design set, the access patterns of user 
logical RAMs may differ. Since our algorithm 
considers relative rather than absolute dynamic power 
values in making tradeoffs, we consider the 
subsequent use of these parameters across a range of 
user benchmarks to be acceptable and representative 
of most RAM access patterns. 
 
V. RESULTS 
 
A. Validation of Simulation-Based Power Estimation 
The power-saving benefits of our approach have been 
tested experimentally using both physical 
measurements and power estimates obtained via the 
digital simulation and Quartus II power analyzer flow 
described in Section IV-B. 
 
CONCLUSION AND FUTURE WORK 
 
In this paper, we have presented a set of RAM 
mapping algorithms that are targeted to FPGA 
embedded memory blocks. These techniques take 
advantage of the internal structure of FPGA 
embedded memory to reduce memory dynamic power 
dissipation. When possible, embedded memory block 
clock enables are used to deactivate RAM block pre-
charging. Our mapping algorithms maintain the 
functional behaviour of each designer-specified RAM. 
These techniques achieve a 26% RAM dynamic 
power reduction and a 6% core dynamic power 
reduction for 34 large benchmark designs with a 

performance and logic cost of about 1%. The 
availability of three embedded memory block sizes 
leads to a 10% memory power and 2% dynamic 
power reduction versus using only 4.5-kb embedded 
memory blocks. Our power-reduction estimates have 
been verified both via board-level power 
measurement and via simulation-based power 
estimates. Several optimizations to our power-saving 
approaches could be implemented in the future. An 
analysis of our benchmark designs shows that, on 
average, 18% of logical memories in a design share 
address decoding circuitry with other design logical 
memories. Currently, we rely on the Quartus II logic 
synthesis tool to identify and eliminate these and other 
structural logic redundancies and to pack compatible 
logical memories into the same physical memory. 
Higher level logical RAM clustering may provide 
additional dynamic power savings. Another possible 
optimization is the RTL analysis of state machines to 
determine when embedded memory block accesses 
are not needed. More complex RAM shutdown 
signals could then be generated. Finally, an 
investigation to determine the optimal size and 
availability of different-sized embedded memory 
blocks is needed. In this paper, it has been shown that 
a diverse selection of memory block sizes is 
beneficial, and medium-sized blocks (e.g., 4–16 kb) 
are desirable for power reduction. The exact mix of 
block sizes for optimal power reduction remains an 
openproblem. 
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