
International Journal of Trend in Scientific Research and Development (IJTSRD)
Volume 5 Issue 4, May-June 2021 Available Online: www.ijtsrd.com e-ISSN: 2456 – 6470

@ IJTSRD | Unique Paper ID – IJTSRD42490 | Volume – 5 | Issue – 4 | May-June 2021 Page 1137

Review on React JS

Bhupati Venkat Sai Indla1, Yogeshchandra Puranik2

1PG Student, 2Professor,
1,2MCA, P.E.S. Modern College of Engineering, Pune, Maharashtra, India

ABSTRACT

This is a review on react js. Its introduction, how to use it, why to use it. Its

uses in the front-end development world and its effectiveness and advantages

as well.

KEYWORDS: React, React js, web development, frontend web dev

How to cite this paper: Bhupati Venkat

Sai Indla | Yogeshchandra Puranik

"Review on React JS"

Published in

International Journal

of Trend in Scientific

Research and

Development (ijtsrd),

ISSN: 2456-6470,

Volume-5 | Issue-4,

June 2021, pp.1137-1139, URL:

www.ijtsrd.com/papers/ijtsrd42490.pdf

Copyright © 2021 by author (s) and

International Journal of Trend in Scientific

Research and Development Journal. This

is an Open Access article distributed

under the terms of

the Creative

Commons Attribution

License (CC BY 4.0)
(http: //creativecommons.org/licenses/by/4.0)

INTRODUCTION:

React (also known as React.js or ReactJS) is an open-source

front-end JavaScript library for building user interfaces or UI

components. It is maintained by Facebook and a community

of individual developers and companies. React can be used

as a base in the development of single-page or mobile

applications. However, React is only concerned with state

management and rendering that state to the DOM, so

creating React applications usually requires the use of

additional libraries for routing, as well as certain client-side

functionality.

Declarative

React makes it painless to create interactive UIs. Design

simple views for each state in your application, and React

will efficiently update and render just the right components

when your data changes.

Declarative views make your code more predictable and

easier to debug.

Component-Based

Build encapsulated components that manage their own state,

then compose them to make complex UIs.

Since component logic is written in JavaScript instead of

templates, you can easily pass rich data through your app

and keep state out of the DOM.

Learn Once, Write Anywhere

We don’t make assumptions about the rest of your

technology stack, so you can develop new features in React

without rewriting existing code.

React can also render on the server using Node and power

mobile apps using React Native.

Web before Reactjs

Let’s take a walk down to the technology space before 2015

when web development was all about scripting and

rendering. The time when languages like HTML, CSS ruled

the frontend, and PHP ruled the backend.

Web development was so easy back then. All we needed to

do was to put static HTML pages in some folders and render

them using PHP. Although that’s not a unique and intuitive

way to develop websites, you were still able to establish a

two-way connection between client and server. All the credit

goes to Server-Side Rendering (SSR). We’ve been building

web applications this way for decades, but what we didn’t

see coming is the revolution of websites after Javascript

libraries like Reactjs.

The dawn of Single page apps (SPA), Javascript, and

Reactjs

Ever since the Javascript revolution took over, you can do a

lot more with Javascript than you could ten years ago.

So what brings the change?

The answer is: writing web apps with client-side Javascript.

Yes, we are referring to the development of Single Page Apps

(SPA) using Javascript. While many Javascript frameworks

let you write client-side javascript, Angular was the only one

that promoted this approach.

Imagine being able to fetch some data via Javascript, add

some attributes to your markup, and voila!: you have built a

dynamic website without messing up with PHP and servers.

But, no matter how popularized this approach seemed to be,

DOM manipulations (a way to render several components)

remained not so fast.

IJTSRD42490

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD42490 | Volume – 5 | Issue – 4 | May-June 2021 Page 1138

Enter Reactjs!

The Isomorphic javascript library, introduced in 2015,

enabled developers to build dynamic web applications with

blazing speed.

React was primarily used to render views in web or mobile

applications. It allowed developers to create reusable

components that are independent of each other. So when any

critical feature of a web application broke, they were still

better off with the remaining elements. Also, React brought

this fantastic feature called Virtual DOM that enabled

developers to implement SSR without needing to update the

whole view each time during an update.

What’s so revolutionary about this, you ask?

For instance, while building a dynamic front-end or a SPA,

you also want client-side routing to ensure a quick

navigational experience for the end-user. Now, navigation is

not something you would want to lose when you implement

SSR. Thankfully, you can still use Reactjs on the client-side

and implement navigation. What this means is that the initial

render uses SSR, and the subsequent navigations behave like

a SPA. Also, with React, you are not moving away with SSR;

you are just utilizing it whenever needed.

To sum this up: Reactjs shines in building dynamic and

engaging web interfaces and triumphs over other javascript

frameworks (such as Angular, Ember). The reason is: Virtual

DOM facilitates updating components whenever a user does

any interaction without affecting other parts of the interface.

Why Do JavaScript Developers Use React JS?

React is a JavaScript library that specializes in helping

developers build user interfaces, or UIs. In terms of websites

and web applications, UIs are the collection of on-screen

menus, search bars, buttons, and anything else someone

interacts with to USE a website or app.

Before React JS, developers were stuck building UIs by hand

with “vanilla JavaScript” (developers speak for the raw

JavaScript language on its own) or with less UI-focused React

predecessors like jQuery. That meant longer development

times and plenty of opportunities for errors and bugs. So, in

2011, Facebook engineer Jordan Walke created React JS

specifically to improve UI development.

In addition to providing reusable React library code (saving

development time and cutting down on the chance for

coding errors), React comes with two key features that add

to its appeal for JavaScript developers:

JSX

Virtual DOM

JSX

At the heart of any basic website are HTML documents. Web

browsers read these documents and display them on your

computer, tablet, or phone as web pages. During this

process, browsers create something called a Document

Object Model (DOM), a representational tree of how the web

page is arranged. Developers can then add dynamic content

to their projects by modifying the DOM with languages like

JavaScript.

JSX (short for JavaScript eXtension) is a React extension that

makes it easy for web developers to modify their DOM by

using simple, HTML-style code. And—since React JS browser

support extends to all modern web browsers—JSX is

compatible with any browser platform you might be working

with.

This isn’t just a matter of convenience, though—using JSX to

update a DOM leads to significant site performance

improvements and development efficiency.

Virtual DOM

If you’re not using React JS (and JSX), your website will use

HTML to update its DOM (the process that makes things

“change” on screen without a user having to manually

refresh a page). This works fine for simple, static websites,

but for dynamic websites that involve heavy user interaction

it can become a problem (since the entire DOM needs to

reload every time the user clicks a feature calling for a page

refresh).

However, if a developer uses JSX to manipulate and update

its DOM, React JS creates something called a Virtual DOM.

The Virtual DOM (like the name implies) is a copy of the

site’s DOM, and React JS uses this copy to see what parts of

the actual DOM need to change when an event happens (like

a user clicking a button).

Let’s say a user enters a comment in a blog post form and

pushes the “Comment” button. Without using React JS, the

entire DOM would have to update to reflect this change

(using the time and processing power it takes to make this

update). React, on the other hand, scans the Virtual DOM to

see what changed after a user action (in this case, a comment

being added) and selectively updates that section of the DOM

only.

This kind of selective updating takes less computing power

and less loading time, which might not sound like much

when you’re talking about a single blog comment, but—

when you start to think about all the dynamics and updates

associated with even a slightly complex website—you’ll

realize it adds up to a lot.

Why use React? – React usage benefits

Now that you found out the origination of this ground-

breaking library, let’s find out the benefits of React and why

should you use it for your web application projects:

It’s Easier to Learn for Developers : One of the main

concerns developers have is choosing a framework (or

library) that is easier to learn and implement. React is easy

to grasp for developers who are familiar with Javascript. So if

you have a team of developers that are very well-versed with

Javascript, Reactjs should be your best bet. However, even if

developers don’t know Javascript, React can be the right

place to start. Unlike Angular, React holds a smooth learning

curve.

React enables developers to reuse components: In React,

your application comprises components. Ideally, you start

with building small components like buttons, checkboxes,

dropdowns, menus, etc. and create wrapper components

around these smaller components. And as you go on writing

the higher level wrapper components, you will have a single

root component and several hierarchical components. Now,

here’s a no-brainer: each component in React has its own

logic. So if you want to re-use the button component through

your app, you are good to go. I am pretty much confident

everybody wants reusability in their project.

It provides a unique Abstraction Layer: Another lesser-

known business-related benefit with React is that it allows

for a good abstraction layer, which means an end-user can’t

International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470

@ IJTSRD | Unique Paper ID – IJTSRD42490 | Volume – 5 | Issue – 4 | May-June 2021 Page 1139

access the complex internals. Your developer only needs to

be aware of some basics, and they'd be better off knowing

the internal functionalities. Moreover, it does not dictate any

architectural patterns like MVC, MVP, and MVVM. Your

developer is free to design an app’s architecture in any way

he sees fit.

It’s well established with a vibrant ecosystem of

Developer tools: React consists of a rich and vibrant

ecosystem. Developers can find dozens of ready-made and

customizable charts, graphics, documentation tools, and

other components that allow them to build a web app in less

time without reinventing the wheel. There’s this awesome

collection of Reactjs dev tools and tutorials that help

developers to build awesome stuff.

Single-page applications catering to multiple industries

Reactjs can be used to build a Single page application

catering to any industry. A single-page app is different from

the traditional multi-page app that you see everywhere.

When a user navigates on a SPA, he will keep interacting

with the same page without interacting with an entirely new

page. Instead, the web pages (also known as views in this

context) typically load inline within the same page itself.

An app like Trello is the best example of single page

navigation. Technically, such a type of navigation can be

implemented by a technique called routing. The good news

is: React offers a library called React-router, which provides

routing capabilities in SPAs.

Cross-platform Mobile Apps (React Native)

Using Reactjs in your project comes with a bonus: React

Native. Yes, you can build cross-platform apps for Android

and iOS using React Native.

For instance, suppose you have built a website for your

bakery business. After some-time, you can also build a

mobile app using React Native to support it. Of course, you or

your developer will not be able to re-use the same code you

wrote for the web. Better still, you will be able to use the

same architecture and methodology for building the mobile

app. Sounds cool, doesn’t it?

Where else should you use Reactjs?

The list is endless, but here’s a taste of some example web

apps where you can use Reactjs:

� Blogs (Gatsby)

� Business websites

� Portfolios

� Forums

� Rating websites

� Membership sites

� eLearning modules

� Galleries

� Personal websites for self-promotion

� Job boards

� Business directories

� Q&A websites like Quora

� Non-profit websites for collecting donations

� Wikis and knowledge bases

� Media-centric sites like YouTube

� Auction and coupon sites

Conclusion

Reactjs is an excellent addition to the projects that need

component reusability, impressive user interactions, or

crazy animations. That said, it’s a robust UI library to build

projects that cater to small, medium, and even large-scale

organizations. That’s why so many companies rely heavily on

React for their long-term business goals. Considering React js

pros and cons, it can be easily summed up in three words:

non-risky, responsive and advanced. The main idea behind

this particular library is: “to build large-scale applications

with data that changes repeatedly over time” and it tackles

the challenge well. It provides developers with the

capability of working with a virtual browser (DOM) that is

much faster and user-friendly, than the real one. Apart from

that, it offers the easier creation of interactive UIs, JSX

support, component-based structure and much more. The

combination of the above-mentioned factors makes it a

reasonable choice for both startups and enterprises.

References:

[1] https://en.wikipedia.org/wiki/React_(JavaScript_libr

ary)

[2] https://reactjs.org/

[3] https://www.simform.com/why-use-react/

