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ABSTRACT 
 
In this work performance comparison of Time
frequency algorithms is presented for removal of 
Additive White Gaussian Noise. For better time
frequency resolution properties & better adaptability 
of STFT, it is used in this work. Most of the audio 
sound signals are too large to be processed entirely; 
for Mozart signal of 10 second sampled at 11 KHz 
will contain 11,000 samples. Processing such a large 
block of data demands rigorous requirements of 
hardware & software, also the execution time is very 
long, hence less speed. Hence data is segmented into 
blocks & each block of data is then processed 
individually. The important task is to choose the block 
length. The signal is segmented into blocks, of 
optimal length & then, denoising is performed in 
STFT domain by thresholding the STFT coefficients. 
When each block is denoised by taking optimal 
window size or block size, it is further concluded that 
STFT based algorithm proposed here is superior in 
terms of quality of the denoised signal & the 
execution time. It is observed that adaptive block hard 
type thresholding with STFT gives the best SNR for 
sound signal. It is further concluded that proposed 
algorithm performs better than other algorithms in 
respect of SNR & time of execution. 

Keywords: STFT; Adaptive Block Denoising; Signal 
to Noise Ratio; Thresholding 
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1. INTRODUCTION 
 
Fourier transform analysis pioneered by Fourier in 
1807 is a powerful tool to decompose a time
signal into separate frequency components & the 
relative intensities of the individual frequencies are 
shown in the representation [1]. However, the 
temporal behavior of the signal’s frequency 
components is unknown in the conventional Fourier 
analysis. Unlike the conventional Fourier frequency 
domain, the joint time-frequency (TF) domain 
provides a convenient platform for signal analysis by 
involving the dimension of time in the frequency 
representation of a signal. A simple way to obtain 
localized statistics of the frequency content of the 
signal at distinguish times is to perform the FT over 
short-time periods rather than processing the whole 
signal at the same time. The o
representation is the Short-Time Fourier Transform 
(STFT) [20], which is the most extensively used 
technique for analyzing the signals whose spectral 
content are time varying. The spectrogram is the 
squared magnitude of the STFT. Applications in
signal denoising, instantaneous frequency & phase 
estimation [1], & speech recognition [7].

Characterization of audio denoising is a hot topic of 
research for the recent decades [7]. Prior frequency 
domain techniques were in use for the 
characterization of the audio denoising. In FFT, the 
signal is delineated in the manner of sinusoids of 
distinguish frequencies or stretched sinusoids. While 
FFT gives information about distinct frequencies & 
their amplitudes, the time instant at which a given 
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signal into separate frequency components & the 
elative intensities of the individual frequencies are 

shown in the representation [1]. However, the 
temporal behavior of the signal’s frequency 
components is unknown in the conventional Fourier 
analysis. Unlike the conventional Fourier frequency 

frequency (TF) domain 
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involving the dimension of time in the frequency 
representation of a signal. A simple way to obtain 
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Time Fourier Transform 
(STFT) [20], which is the most extensively used 
technique for analyzing the signals whose spectral 
content are time varying. The spectrogram is the 
squared magnitude of the STFT. Applications include 
signal denoising, instantaneous frequency & phase 
estimation [1], & speech recognition [7]. 

Characterization of audio denoising is a hot topic of 
research for the recent decades [7]. Prior frequency 
domain techniques were in use for the 
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frequency component occurs cannot be determined. 
To prevail over this problem, Short-Time Fourier 
Transform (STFT) technique was developed. 
However, in STFT designing optimal window size for 
a given application is not so simple [10]. For small 
window size, sinusoids are not fully resolved & some 
energy fluctuations are observed; for larger window 
size all sinusoids are resolved but time localization of 
sinusoids is not accurate. The noise free signal 
obtained after “wavelet transformation techniques is 
not fully free from noise, means some residues of 
noise are left or any other kinds of noise is generated 
by the transformation which affects the output signal. 
Several techniques were introduced to remove the 
residual noise from the signal; however, the efficiency 
remains an issue [13]. In [10], a signal denoising 
technique which is based in transformation domain on 
block matching technique was proposed. The 
improvement of the block matching is obtained by 
grouping same type of segments of the audio into a set 
of multidimensional arrays. Due to the similarities in 
these segments or blocks, the transformation can 
achieve a better reproduction of the original signal.  

A general denoising technique based on STFT 
coefficients contraction [15] basically consists of 
three steps; 

1.Apply STFT to noisy signal as; 
𝑆. 𝑦 = 𝑆. 𝑠 + 𝑆. 𝑧 

Where; y, s, z & W are the resultant noisy audio, 
clean audio signal, noise signal & the matrix 
associated to the STFT respectively. 

2. Thresholding is done for the obtained transformed 
coefficients. 

 
3. The final denoised version of the signal is 

reconstructed by ISTFT to the thresholded STFT 
coefficients. 

 

The continuous Short-Time Fourier Transform 
(STFT) analysis of a signal 𝑥(𝑡) can be obtained as 
[10]: 

𝑋ௌ்ி்(𝑡, 𝜔; ℎ) = ∫ ℎ∗(𝑡 − 𝜏)𝑥(𝜏)𝑒ି௝ఠఛ𝑑𝜏  
 

 
 

Figure 1: Comparison of STFT with other 
transforms 

Signal Denoising 
 
In signal processing removal of noise from signal is 
very tedious job. An undesired signal when 
overlapped to a clean signal makes it distorted. How 
one can extract the original signal & remove the 
overlapped signal without deterioration of original 
clean signal. Many algorithms were developed for 
efficient removal of noise in various applications. The 
technique used to denoise the signal gets more 
advanced when the regularity of noise is reduced. 
When signals pass from equipments & 
communicating medium, the noise is added naturally 
which results in signal contamination. It is tuff to 
remove this unwanted signal. Hence, the major task in 
signal processing is to denoise the audio signal with 
minimum quality degradation of the original signal. 
The major cause for pollution in audio sound signals 
is the humming distortion from audio equipments or 
buzzing & environmental noise [15]. Hence, 
attenuation of noise while reconstructing the 
underlying signals is the primary objective of audio 
denoising.   
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Figure 2: Signal Denoising Example 

 

2. LITERATURE REVIEW 

 
[1] Ilker Bayram, “Employing phase information for 
audio denoising”, IEEE International Conference on 
Acoustic, Speech and Signal Processing (ICASSP), 
2014. 

In this paper, authors propose a scheme that takes into 
account the phase information of the signals for the 
audio denoising problem. The scheme requires to 
minimize a cost function composed of a diagonally 
weighted quadrature data term and a fused-lasso type 
penalty. They have formulated the problem as a 
saddle point search problem and propose an algorithm 
that numerically finds the solution. Based on the 
optimality conditions of the problem, we present a 
guideline on how to select the parameters of the 
problem. 

[2] Gautam Bhattacharya, Philippe Depalle, “Sparse 
denoising of audio by greedy time-frequency 
shrinkage”, IEEE International Conference on 
Acoustic, Speech and Signal Processing (ICASSP), 
2014. 

This work presents an analysis of MP in the context of 
audio denoising. By interpreting the algorithm as a 
simple shrinkage approach, we identify the factors 
critical to its success, and propose several approaches 
to improve its performance and robustness. They have 
presented experimental results on a wide range of 
audio signals, and show that the method is able to 

yield results that’s are competitive with other audio 
denoising approaches. Notably, the proposed 
approach retains a small percentage of the transform 
signal coefficients in building a denoised 
representation, i.e., it produces very sparse denoised 
results. 

[3] Richard E. Turner, Maneesh Sahani, “Time-
Frequency Analysis as Probabilistic Inference”, IEEE 
transaction on signal processing, Volume-62, 
Number-23, 2014. 

This paper proposes a new view of time-frequency 
analysis framed in terms of probabilistic inference. 
Natural signals are assumed to be formed by the 
superposition of distinct time-frequency components, 
with the analytic goal being to infer these components 
by application of Bayes’ rule. The framework serves 
to unify various existing models for natural time-
series; it relates to both the Wiener and Kalman 
filters, and with suitable assumptions yields 
inferential interpretations of the short-time Fourier 
transform, spectrogram, filter bank, and wavelet 
representations. Value is gained by placing time-
frequency analysis on the same probabilistic basis as 
is often employed in applications such as denoising, 
source separation, or recognition. Uncertainty in the 
time-frequency representation can be propagated 
correctly to application-specific stages, improving the 
handing of noise and missing data. 

[4] S. S. Joshi and Dr. S. M. Mukane, “Comparative 
Analysis of Thresholding Techniques using Discrete 
Wavelet Transform”, International Journal of 
Electronics Communication and Computer 
Engineering, Volume 5, Issue (4) July, 2014. 

This paper about to reduce the noise by Adaptive 
time-frequency Block Thresholding procedure using 
discrete wavelet transform to achieve better SNR of 
the audio signal. Discrete-wavelet transforms based 
algorithms are used for audio signal denoising. The 
resulting algorithm is robust to variations of signal 
structures such as short transients and long harmonics. 
Analysis is done on noisy speech signal corrupted by 
white noise at 0dB, 5dB, 10dB and 15dB signal to 
noise ratio levels.  Here, both hard thresholding and 
soft thresholding are used for denoising. Simulation & 
results are performed in MATLAB 7.10.0 (R2010a).  
In this paper they compared results of soft 
thresholding and hard thresholding 
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[5] Kwang Myung Jeon et-al, “An MDCT-Domain 
Audio Denoising Method with a Block Switching 
Scheme”, IEEE Transactions on Consumer 
Electronics, Vol. 59, No. 4, November 2013. 

In this paper, an audio denoising method is proposed 
for improving the quality of handheld audio recording 
devices. The proposed method reduces noise 
differently depending on the block size in the 
modified discrete cosine transform (MDCT) analysis 
of an audio coder. Specifically, denoising for a long 
block is performed by multi-band spectral subtraction 
(MBSS) with perceptually weighted scale-factor 
bands, while that for a short block is performed by 
subband power scaling to maintain coherence of 
power with the previously-denoised long block. In 
order to evaluate the performance of the proposed 
method, it is first embedded into MPEG-2 advanced 
audio coding (AAC) that is popularly used for audio 
recording devices. 

3. STATE OF ART OF AUDIO DENOISING  
A noise reduction technique developed by donoho, 
uses the STFT coefficients contraction and its 
principle consists of three steps; 

1) Apply discrete wavelet transform to noisy signal: 

W.y =W.s + W.z   (5) 

2) Threshold the obtained STFT coefficients. 

3) Reconstruct the desired signal by applying the 
inverse STFT to the thresholded STFT coefficients. 

If the audio signal f is corrupted by a noise w which is 
often modeled as a zero mean Gaussian process 
independent of f:    𝑦[𝑛] = 𝑓[𝑛] + 𝑤[𝑛],     𝑛 =
0,1 … … … … 𝑁 − 1 
 

3.1 Thresholding  
The thresholding function which is also known as 
shrinkage function is categorized as hard thresholding 
and soft thresholding function. The hard thresholding 
function retains the wavelet coefficients which are 
greater than the threshold λ and sets all other to zero. 
The hard thresholding is defined as: 

 

The threshold λ is chosen according to the signal 
energy and the standard deviation σ of the noise. If the 

coefficient is greater than λ, then it is assumed that it 
is significant and contributes to the original signal. 
Otherwise it is due to the noise and discarded. The 
soft thresholding function shrinks the coefficients by 
λ towards zero. Hence this function is also called as 
block shrinkage function. The soft thresholding 
function is defined as: 

 

In [13], we see that the soft thresholding gives lesser 
mean square error for image signals. Due to this 
reason soft thresholding is preferred over hard 
thresholding in case of image processing, but in case 
of audio signals, we could see that hard thresholding 
results in lesser amount of mean square error. 

3.2 Block Selection 
Most of the musical instrument sound signals are far 
too long to be processed in their entirety; for example, 
a 10 second sound signal sampled at 44.1 KHz will 
contain 441,000 samples. Thus, as with spectral 
methods of noise reduction, it is necessary to divide 
the time domain signal in multiple blocks and process 
each block individually. The block formation of the 
signal is shown in the Figure 3. The important task is 
to choose the block length. Berger et al. [14] shows 
that, blocks which are too shorts fail to pick important 
time structures of the signal. Conversely, blocks 
which are too long miss cause the algorithm to miss 
the important transient details in the musical 
instrument sound signal. Due to the binary splitting 
nature of the tree bases in wavelet analysis to 
decompose the signal, it is better to choose the length 
of each block with a number of samples to a power of 
two. 
 

 
Figure 3: Block Formation of a Signal 

 
As discussed previously, the block size chosen must 
strike a balance between being able to pick up 
important transient detail in the sound signal, as well 
as recognizing longer duration, sustained events. 
Tables 1 shows the PSNR values which are quality 
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measures, obtained for various block sizes and for 
different signals. 

3.3. Threshold Selection  
Donoho and Johnstone derived a general optimal 
universal threshold for the Gaussian white noise under 
a mean square error (MSE) criterion described in [12]. 
However, this threshold is not ideal for musical 
instrument sound signals due to poor correlation 
between the MSE and subjective quality and the more 
realistic presence of correlated noise. Here we use a 
new time frequency dependent threshold estimation 
method. In this method first of all the standard 
deviation of the noise, σ is calculated for each block. 
For given σ, we calculate the threshold for each block. 
Noise component removal by thresholding the 
wavelet coefficients is based on the observation that 
in musical instrument sound signal, energy is mostly 
concentrated in small number of wavelet dimensions. 
The coefficients of these dimensions are relatively 
very large compared to other dimensions or to any 
other signal like noise that has its energy spread over 
a large number of coefficients. Hence by setting 
smaller coefficients to be zero, we can optimally 
eliminate noise while preserving important 
information of the signal. In wavelet domain noise is 
characterized by smaller coefficients, while signal 
energy is concentrated in larger coefficients. This 
feature is useful for eliminating noise from signal by 
choosing the appropriate threshold. Generally the 
selected threshold is multiplied by the median value 
of the detail coefficients at some specified level which 
is called threshold processing.  

At each level of decomposition, the standard deviation 
of the noisy signal is calculated. The standard 
deviation is calculated by Equation (8):  
 

      (8) 
 
where cj are high frequency wavelet coefficients at jth 
level of decomposition, which are used to identify the 
noise components and σj is Median Absolute 
Deviation (MAD) at this level. This standard 
deviation can be further used to set the threshold 
value based on the noise energy at that level. The 
modified threshold value [15] can be obtained by the 
equation (9):  
 

    (9)  

where Th is threshold value, Lj is the length of each 
block of noisy signal and k is the constant whose 
value is varying between 0 - 1. For determining the 
optimum threshold, value of k should be estimated.  

3.4 Choice of Thresholding Level λ:  

Given a choice of block size and the residual noise 
probability level δ that one tolerates, the thresholding 
level λ .For each block width and length, λ is 
estimated using “Monte Carlo simulation“ [15]. Table 
1 shows the resulting λ with δ = 0.1%. Let us remark 
that for a block width W > 1, blocks that contain same 
number of coefficients,  B# = LXW , have close λ 
values [15].  
 
λ 
value  

W = 16  W = 8  W = 4  W = 2  W = 1  

L = 8  1.5  1.6  1.9  2.3  2.5  

L = 4  1.7  1.9  2.4  3.0  3.4  

L = 2  1.9  2.5   3.4  3.2  4.8  

Table 1. Thresholding level λ for different block 
size [15] 

The partition of macro blocks in to blocks of different 
sizes is as shown below:  

 
Figure 4: Partition of macroblocks into blocks of 

different sizes 

The adaptive block thresholding chooses the sizes by 
minimizing an estimate of the risk. The risk cannot be 
calculated since is unknown, but it can be estimated 
with Stein risk estimate. The adaptive block 
thresholding groups coefficients in blocks whose sizes 
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are adjusted to minimize the Stein risk estimate and it 
attenuates coefficients in those blocks [15].  For audio 
signal denoising, an adaptive block thresholding non-
diagonal estimator is described that automatically 
adjusts all parameters. It relies on the ability to 
compute an estimate of the risk, with no prior 
stochastic audio signal model, which makes this 
approach particularly robust. Thus, an adaptive audio 
block thresholding algorithm that adapts all 
parameters to the time-frequency regularity of the 
audio signal. The adaptation is performed by 
minimizing a Stein unbiased risk estimator calculated 
from the data. The resulting algorithm is robust to 
variations of signal structures such as short transients 
and long harmonics.  The coefficients (soft/hard 
thresholding}. The adaptive block thresholding 
chooses the Block sizes by minimizing an estimate of 
the risk.  

4. PROPOSED METHODOLOGY  
 
A block thresholding is the method of segmenting the 
time-frequency plane into disjoint rectangular blocks 
of width in frequency & length in time. The choice of 
block size & shape among various possibilities is 
called as “block size”.  The adaptive block 
thresholding is the technique that choose the size by 

reducing an estimated risk. The risk 𝐸 ቄฮ𝑓 −

𝑓መฮ
ଶ

ൟcan’t be computed as it is not known but can be 
estimated through Stein risk estimator. Best block 
sizes are computed by minimizing the estimated risk.  

If the noise is Gaussian white & the frame is an 
orthogonal basis then the noise coefficients are 
uncorrelated with same variance & Stein theorem 
proves that is an unbiased risk estimator of the risk. 
Hence, if the noise isn’t white in nature & if it is 
stationary then the variance doesn’t vary in time. If 
the blocks 𝐵௜   are sufficiently narrow in frequency 
then the variance remains unchanged over each block 
so the risk estimator remains unbiased & a tight frame 
acts as a union of orthogonal bases. As a 
consequence, the theorem result applies 
approximately & the resulting estimator mains nearly 
unbiased. 
 
In the adaptive block thresholding, coefficients are 
grouped in blocks where size is adjusted to minimize 
the Stein estimated risk. Firstly decomposition of 
time-frequency plane into macroblocks is done to 
regularize the adaptive segmentation in blocks, 

𝑀௝ , 𝑗 = 1,2, … … . , 𝐽 as illustrated in Figure 3. Each 
macroblock 𝑀௝ is segmented in blocks 𝐵௜of same size 
which means that 𝐵௜

# = 𝑃௝ is constant over a 
macroblock𝑀௝. The Stein risk estimation 
over 𝑀௝is(1 𝐴⁄ ) ∑ 𝑅෠௜௜∈ெೕ

. Several such segmentations 
are possible & we want to choose the one that leads to 
the smallest risk estimation [15]. The optimal block 
size & hence 𝑃௝ is calculated by choosing the block 
shape that minimizes ∑ 𝑅෠௜௜∈ெೕ

. Once the block sizes 

are computed, coefficients in each 𝐵௜are attenuated 

with 𝑎௜ = 1 −
ఒ

క෠೔ାଵ
 

where λ is calculated with; 

𝑃𝑟𝑜𝑏{∈ഥଶ> 𝜆𝜎ଶ} = 𝛿     

4.1 Proposed Algorithm 
The proposed STFT based block denoising algorithm 
for reduction of AWGN is explained in the following 
steps:  
 
1.  Take an input sound signal of desired length, 
which is suitable. 
 
2.  Add “White Gaussian Noise” to the original signal 
accordance with the standard deviation. 
 
3. Divide the resultant noisy signal data into blocks of 
different length &accordance with the length of the 
data in time domain; preferably, number of samples, 
N, 2M where M is an integer. 
 
4. Calculate Mean Square Error of each of these 
blocks by; 

𝑀𝑆𝐸 =
1

𝑁
 ෍[𝑆ௗ(𝑙) − 𝑆௜(𝑙)]ଶ

ே

௟ୀଵ

 

Where; 𝑁 is the length of the signal. 

5. Optimal block is the one resulting in minimum 
mean square error. 
 
6. Compute the “Short Time Fourier Transform 
(STFT)” of one block of the noisy signal at first level. 
 
7. Estimate the standard deviation of the noise using; 

𝜎௝ =
𝑚𝑒𝑑𝑖𝑎𝑛 ൫ห𝑐௝ห൯

0.6745
 

& determine the threshold value using; 

𝑇ℎ = 𝑘 ∗ 𝜎௝ට2𝑙𝑜𝑔൫𝐿௝𝑙𝑜𝑔ଶ𝐿௝൯ 
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Then apply the hard thresholding method for time & 
level dependent STFT coefficients using; 

𝑓ℎ(𝑥) = ൜
𝑥,            |𝑥| ≥ 𝜆
0,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 
8. Take “Inverse Short Time Fourier Transform 
(ISTFT)” of the noise free coefficients achieved 
through iterative loop from previous step, which are 
denoised version using proposed algorithm. 
 
9. Calculate performance parameters used for audio 
performance indication like MSE, SNR, MAE & CC 
of the denoised signal.  

4.2 Performance Parameters 

 
SNR: For comparing the performance and 
measurement of quality of denoising, the “Signal to 
Noise Ratio (SNR)” is determined between the 
original signal𝑆௜ & the denoised signal 𝑆ௗ, by our 
proposed algorithm. The SNR is calculated as; 

𝑆𝑁𝑅 = 10𝑙𝑜𝑔ଵ଴ ൬
𝑆௠௔௫

𝑀𝑆𝐸
൰

ଶ

 

Where; 𝑆௠௔௫ is the maximum value of the signal & is 
given by, 

𝑆௠௔௫ = max (max(𝑆௜) , max(𝑆ௗ)) 

 
Cross-correlation: It is used in signal processing as a 
tool to find similarity between two signals. It is also 
called as a sliding inner-product or sliding dot 
product. It is generally used in time-series analysis for 
finding a large signal for smaller &known features. 
For continuous functions 𝑓&𝑓ௗ, the cross-correlation 
is defined as: 

𝑓 ∗ 𝑓ௗ ≝  න 𝑓∗(𝑡)𝑓ௗ(𝑡 + 𝜏) 𝑑𝑡,

∞

ି∞

 

Where 𝑓∗denotes the complex conjugate of 𝑓&𝜏 is the 
lag. Similarly, for discrete functions, the cross-
correlation is defined as: 

(𝑓 ∗ 𝑓ௗ)[𝑛] ≝ ෍ 𝑓∗[𝑚]𝑓ௗ[𝑚 + 𝑛] 

∞

௠ୀି∞

 

MAE: The Mean Absolute Error (MAE) is a 
quantitative parameter which is used find closeness of 
the predictions. In time series analysis the MAE is a 
general tool for predicting errors. The formulation of 
mean absolute error is given by: 

𝑀𝐴𝐸 =
1

𝑛
෍|𝑓ௗ − 𝑓| =

1

𝑛

௡

௜ୀଵ

෍|𝑒௜|

௡

௜ୀଵ

 

The MAE is the averaging of absolute errors |𝑒௜| =
|𝑓ௗ − 𝑓|, where 𝑓ௗ is the forecast & 𝑓 is the original 
value.  

4.3 Proposed Algorithm Flow Chart 

 
 

Figure 4: Proposed STFT based Audio Denoising 
Algorithm 

5. RESULTS AND DISCUSSIONS  
 
In this work all the simulations have been done in 
MATLAB 7.1. Signal Processing toolbox of 
MATLAB along with other general toolboxes has 
been used for coding in MATLAB. Standard 
Mozart.wav is taken as the test audio signal, since it is 
broadly used in literatures for testing purpose of audio 
denoising algorithm. First we have taken this audio 
signal & then AWGN noise with known variance is 
added, then our proposed Adaptive block 
Thresholding algorithm by using STFT is applied to 
it. Simulation gives SNR of the noisy signal is 5 dB & 
SNR of the denoised signal is 15.47 dB by our 
proposed method for Mozart sample at 11 KHz & 
Noisy sample of Mozart at -5dB AWGN with 0.047 
noise variance. 

5.1 Spectrogram Analysis 
The STFT’s squared magnitude or spectrogram can be 
achieved by using kernel equal to an analysis short-
time window. The short-time energy-density spectrum 
can be obtained as the squared magnitude of STFT & 
is commonly called the spectrogram. When a unit-
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energy window is used then the total energy of the 
spectrogram equals that of the signal.  For audio 
signal time-frequency representation spectrogram is 
quite commonly used. 

5.1.1 Spectrogram of Clean Audio 

Figure 5: Spectrogram of Clean Audio
 

Figure 5 shows clean audio has some high frequency, 
low amplitude components, which will become 
problematic when noise will be added. 

5.1.2 Spectrogram of Noisy Audio (at 5dB)

Figure 6: Spectrogram of Noisy Audio
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energy window is used then the total energy of the 
spectrogram equals that of the signal.  For audio 

frequency representation spectrogram is 

 
gram of Clean Audio 

Figure 5 shows clean audio has some high frequency, 
low amplitude components, which will become 

5.1.2 Spectrogram of Noisy Audio (at 5dB) 

 

Figure 6: Spectrogram of Noisy Audio 

5.1.3 Spectrogram of Denoised Audio (at 5dB)

Figure 7: Spectrogram of Denoised Audio

5.1.4 Spectrogram of Noisy Audio (at 15 dB)

Figure 8: Spectrogram of Noisy Audio

5.1.5 Spectrogram of Denoised Audio (at 15 dB)

Figure 9: Spectrogram of Denoised Audio
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of Denoised Audio (at 5dB) 

 

Figure 7: Spectrogram of Denoised Audio 

5.1.4 Spectrogram of Noisy Audio (at 15 dB) 

 

Figure 8: Spectrogram of Noisy Audio 

5.1.5 Spectrogram of Denoised Audio (at 15 dB) 

 

Figure 9: Spectrogram of Denoised Audio 
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5.1.6 Spectrogram of Noisy Audio (at 25 dB) 

 
Figure 10: Spectrogram of Noisy Audio 

Figure 10 shows spectrogram of the audio after 
corrupted with 25 dB AWGN i.e. noise variance 
σ=0.0047, which also has very dense high frequency 
& low amplitude components, which are more 
effected with noise, which will further cause musical 
noise. It can be seen from figure that noise density is 
furthermore, as compared to 15 dB. 

 

5.1.7 Spectrogram of Denoised Audio (at 25 dB) 

 

Figure 11: Spectrogram of Denoised Audio 
 

Figure 11 shows the spectrogram of denoised audio 
with our proposed algorithm, it can be clearly seen 
that musical noise or high frequency low amplitude 
components has been eliminated after denoising 
process. SNR of the denoised signal is 31.18 dB, with 
0.000007 MSE, 0.002096 MAE & cross-correlation 
of 0.999, which are further improved with 15 dB 
performance. 

5.2 Amplitude Spectrum Analysis 

5.2.1 Amplitude Spectrum of Original vs Noisy 
Signal 

 
Figure 12: Amplitude Spectrum of Original vs 

Noisy Signal 

5.2.2 Amplitude Spectrum of Noisy vs Denoised 
Signal 

 
Figure 13: Amplitude Spectrum of Noisy vs 

Denoised Signal 
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5.2.3 Amplitude Spectrum of Original vs Denoised 
Signal 

 
Figure 14: Amplitude Spectrum of Original vs 

Denoised Signal 

5.3 Simulation Results Summary 

 
Table 2: Simulation Results Summary of the 

Proposed Work 

In this work simulations have been done for various 
values of noise variance (σ) from 5 dB to 25 dB & 
various parameters for noisy & denoised signals are 
listed in table 2. The noise added to the original signal 
is AWGN (Additive White Gaussian Noise). The 
above table is for Mozart.wav audio, as in the 
literature this signal is most commonly used. From the 
above table it can be clearly seen that all the 
parameters like MSE, MAE, SNR, & PSNR & CC are 
improved for denoised signal as compared to the 
noisy signal.

 

Figure 15: SNR Performance after Denoising 

 

Figure 16: MSE Performance after Denoising 
 
 

 
 

Figure 17: MAE Performance after Denoising 
 
 

 

Figure 18: Cross Correlation Performance after 
Denoising 

 

5.4 Performance Comparison 
Performance comparison of Block Thresholding (BT), 
mentioned in the [1] of Mozart audio signal for the 
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various SNR values is depicted below in table 3. It 
shows improvement in SNR with proposed work with 
[1] for all values of noise variance. 

 

 
Table 3: Performance Comparison of Previous 

Work with Proposed Work 
 

 

Figure 19: Performance Comparison of Base 
Paper Work with Proposed Work 

 
From the table 3 & figure 19, the improvement in 
SNR of our proposed algorithm can be clearly seen 
compared to the results of base paper [1].  

6. CONCLUSION  
 
In this work performance comparison of Time-
frequency algorithms is presented for removal of 
Additive White Gaussian Noise. For better time-
frequency resolution properties & better adaptability 
of STFT, it is used in this work. Most of the audio 
sound signals are too large to be processed entirely; 
for Mozart signal of 10 second sampled at 11 KHz 
will contain 11,000 samples. Processing such a large 
block of data demands rigorous requirements of 
hardware & software, also the execution time is very 
long, hence less speed. Hence data is segmented into 
blocks & each block of data is then processed 
individually. The important task is to choose the block 

length. The signal is segmented into blocks, of 
optimal length & then, denoising is performed in 
STFT domain by thresholding the STFT coefficients. 
When each block is denoised by taking optimal 
window size or block size, it is further concluded that 
STFT based algorithm proposed here is superior in 
terms of quality of the denoised signal & the 
execution time. It is observed that adaptive block hard 
type thresholding with STFT gives the best SNR for 
sound signal. It is further concluded that proposed 
algorithm performs better than other algorithms in 
respect of SNR & time of execution. 
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