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ABSTRACT

In this paper,he concept of generalized stabilizat
for nonlinear systems is introduced and
stabilization of the generalized Liu chaotic coh
system is explored. Based on the fdomain
approach with differential inequalities, a suita
control is presented ush that the generalize
stabilization for a class of Liu chaotic system s
achieved. Meanwhile, not only the guarant
exponential convergence rate can be arbitrarily-
specified but also the critical time can be coiye
estimated. Finally, somaumerical simulations ai
given to demonstrate the feasibility and effectess
of the obtained results.
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1. INTRODUCTION

In recent years, cho dynamic systems have be
widely investigated by researchesee, for instance
[1-12] and the references therein. Very often, chac
many dynamic systems &n origin of the generati

of oscillation ancan origin of instability For a chaotic
control system, it is important to design a corémr
that has both good transient and stestate respons

Furthermore, suppressing the occurrence of ¢
plays an important role in the cooller design of ¢
nonlinear system.

In the past decades, various methodologies in @k
design of chaotic system have bggasente, such as
variable structure control approachime-domain
approach, adaptive control approach, adaptivengi
mode control approach, baclstepping contrc
approach, and others.

In this paper, the concept géneralizecstabilizability
for nonlineardynamic systems is introduced and
stabilizability of generalized Liu chaoticcontrol
system will beinvestigate. Based on the time-
domain approach with differential inequality,
suitable control will be offered such that the
generalizedtabilization can be achieved for a clas
Liu chaoticsystem. Not onlithe critical time can be
correctly estimated but alst the guaranteed
exponential convergence rate can be arbitrarily-
specified Several numerical simulations will also
provided to illustrate the use of the main res

The layout of the rest of this paper is organizs
follows. The problem formulation, mn result, and
controller design procedure are prese in Section 2.
Numerical simulations argiven in Section o show
the effectiveness of theeveloped resuli Finally,

conclusion remarks are drain Section 4.

2. PROBLEM FORMULATION AND MAIN
RESULTS

Nomenclature

o" then-dimensional real spa

E the modulus of a complex numta

AT the transport of the matr A
x| the Euclidean norm of the vecixOO"

In this paper, we explorthe following generalize
Liu chaotic system:

% (t) = apx, (t) + a,x, (t) + u t), (1a)
):(2(t): ax(t)+ax(th(t)+u,(t).  (1b)
x3(t)=a5x1()+a6x2()+a7x3(t) (1c)

+axC(t)+us(t) Ot=0,
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where x(t):=[x(t) x(t) )] 0® is the state vecto
ult):=[u(t) u) ut) o® is the systemcontrol,
[%o %o X is the initial value, and,b00O indicate
the parameters of the systefhe originalLiu chaotic
systemis a special case of system (1) \ u(t)=0,
a=-a,=10, a,=40, a,=-1 a;,=a,=0 a, =-25, and
a,=4. It is well known that the system (1) withc
any control (i.e.u(t)=0) displays chaotic behavior fi
certain values of the parameters [1Lhelaim of this
paper is to search a novel contfot the system (1
such that the generalized stability the feedback-
controlled system can be guarantdecthis paper, the
concept of generalized stabilization  will - be
introduced. Motivated by timdemain approach wit
differential inequality, asuitable controstrategy will
be established. Our goal is to dese:control sucl
that the generalizestabilization of syste (1) can be
achieved.

(1d)

Let us introduce a definition which will be used

subsequent main results.

1 There exist two positive numbek and b, such
that |x(t) <k ™, Ot=0.

2 There exists a positive numbet,
xt)=0, Ot=t,.

such that

Definition 1

The system (1) is said to realize tlgeneralized
stabilization, provided thathere exist a suitab
control u such that the conditons (i) and (ii) ¢
satisfied.In this case, the positive numkb is called
the exponentialconvergence rate anthe positive
numbert, is called the critical time.

Now we present the main result fire generalized
stabilization of the system(1) via time-domain
approach with differential inequalities.

Theorem 1
The system (1) realizes thgeneralizedstabilization
under the following control

u(t)=~(a, +b)x(t) - a,x(t) - a¢"*(t). (2a)
()"aeﬁiizt)a“‘” s()-05) o)
Us(t) = —agx,(t) - 3%, (t) - (&, +b)x(t)

2a1()

)-
- 2% (t)- (2c)

wherea>0b>0, a:= p2+q—11’ with p,qON and p>q
p-
In this case, the prepecified exponential

convergence rate and tilgearanteed critical tin are
given byb and
a
n b
¢ (0)+ 2 (0)+ 2 0)f " +
t =
¢ -21-a)b
respectively

a
bl (3)

Proof. From (1)-(2), thefeedbac-controlled system
can be performed

%, =~bx, —a(x 7, (4a)
%, ==, —alx, 7, (4a)

%, = =bx, —a(x, 7, (4a)

Let

W(x(t)) = x" (t)x(t). (5)

The time derivative ofv(x(t)) along the trajectories of

feedback-controlled systeis given b

W =2x, [X +2x%, [X
= ~20 % - 20 1% - 2a X
= -2b[W - 2a(xf" + xzz")
<-2bW-2alWw’, 0Ot=0.

-2alx”

It follows that
(1= aWW +201- a)ow*
< —2a(1— a), Ot=0.

(6)

Define

Q) =w(x(t)".

From (6) and (Y, it can be readily obtained tl
Q+21-a)Q<-2a(l-a) Ot=0.

gt=0.

(7)

It is easy to deduce that
ez(l—a)bt [Q('[) + eZ(l—a)bt [2(1_ a)bQ(t)

— % [ez(l—a)bt [Q(t)]

< -2a(l-a)? ™, Otzo0.

It follows that

j‘% [ez(l—a)bt [Q(t
0

- eZ(l—a)bt [qg(t) _ Q(O)

)] dt

@ IJTSRD | Available Online @ww.ijtsrd.con | Volume — 3 | Issue — 1 | N@ec 201:

Page: 1113



International Journaif Trend in Scientific Research and Developmeni$RD) ISSN: 245-6470

Consequently, we have

8| potap _ 2
R
Ot>0.

Hence, from (6), (7), and (8), we have
@) If ost<t,,

wix(t) < [[”x(o)"z-za +gj —— _%T(H); i) I tet,

x(t)=0.

Consquently, we conclude that
() If ost<t,,

OE {"x(o)"z—m ﬂ

(ii) If t=t, x(t)=o0,
in view of (5) with above condition (.
completes the proof o

V(2-2a)

&—bt;
This

3. NUMERICAL SIMULATIONS
Consider the generalizeldu chaotic systel of (1)
with a =-a,=10, a,=40, a,=-1 a =a,=0, a,=-25
, a,=4,and x(0)=[4 2 -2[". Our objective, i this
example, is to design a feedback control suchttie
system (1) realize the generalizethbilizatior with
with the guaranteed exponential convergence
b=05. From (2), witha=10Q p=3,q=2 we deduce
a=08,
u,(t) = —105x,(t) +10x,(t) -100x%(t), (9a)
t)= 2060 1 (00)-00f) gy
06

-100x2°(t),
ust) = 2x,(t)- 4x¢(t) -100¢°(t).  (9c)
Consequently, by Theorem We conclude thathe
system (1)achieves generalized stabilizaticwith
parameters ok, =-a, =10, a,=40, a,=-1 a;=a,=0,
a,=-25, a,=4, and feedback control law of9).
Furthermore, thexponential convergence r and the
guaranteed critical time areivgn by b=05 and
t, = 0.047.

The typical state trajectoriesf uncontrolled systerr
and controlled systems are depicted inure 1 and
Figure 2 respectively. From the foregoing simulatic

results, it is seen that théynamic system of1)
achieves the generalizedtabilization under th
control law of (9).

4. CONCLUSION

In this paper, the concept generalize stabilization

for nonlinear systems has been introduced anc

stabilization ofgeneralized Liu chaoticontrol system
has been studied. Based on the -domain approach
with differental inequalities, a uitable control has
been presented such that generalizecstabilization

for a class ofLiu chaotic systerrcan be achieved.
Besides, not only the guaranteed expone

convergence rate can be arbitrarily -specified but
also the adtical time can be correctly estimat

Finally, some numerical simulations have b

offered to show the feasibility and effectivenetthe

obtained results.
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Figure 1: Typical state trajectories of the system
with u=0, a =-a,=10, a,=40, a,=-1 a=8=0,
a,=-25,anda,=4.
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Figure 2: Typical state trajectories of the feedb-
controlled system of1) with (9).
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